1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor.h"
18
19 #define ATRACE_TAG ATRACE_TAG_DALVIK
20
21 #include <cutils/trace.h>
22 #include <vector>
23
24 #include "art_method-inl.h"
25 #include "base/mutex.h"
26 #include "base/stl_util.h"
27 #include "base/time_utils.h"
28 #include "class_linker.h"
29 #include "dex_file-inl.h"
30 #include "dex_instruction.h"
31 #include "lock_word-inl.h"
32 #include "mirror/class-inl.h"
33 #include "mirror/object-inl.h"
34 #include "mirror/object_array-inl.h"
35 #include "scoped_thread_state_change.h"
36 #include "thread.h"
37 #include "thread_list.h"
38 #include "verifier/method_verifier.h"
39 #include "well_known_classes.h"
40
41 namespace art {
42
43 static constexpr uint64_t kLongWaitMs = 100;
44
45 /*
46 * Every Object has a monitor associated with it, but not every Object is actually locked. Even
47 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
48 * or b) wait() is called on the Object.
49 *
50 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
51 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us,
52 * though, because we have a full 32 bits to work with.
53 *
54 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition
55 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
56 * a lock has been inflated it remains in the "fat" state indefinitely.
57 *
58 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
59 * in the LockWord value type.
60 *
61 * Monitors provide:
62 * - mutually exclusive access to resources
63 * - a way for multiple threads to wait for notification
64 *
65 * In effect, they fill the role of both mutexes and condition variables.
66 *
67 * Only one thread can own the monitor at any time. There may be several threads waiting on it
68 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified
69 * at any given time.
70 */
71
72 bool (*Monitor::is_sensitive_thread_hook_)() = nullptr;
73 uint32_t Monitor::lock_profiling_threshold_ = 0;
74
IsSensitiveThread()75 bool Monitor::IsSensitiveThread() {
76 if (is_sensitive_thread_hook_ != nullptr) {
77 return (*is_sensitive_thread_hook_)();
78 }
79 return false;
80 }
81
Init(uint32_t lock_profiling_threshold,bool (* is_sensitive_thread_hook)())82 void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) {
83 lock_profiling_threshold_ = lock_profiling_threshold;
84 is_sensitive_thread_hook_ = is_sensitive_thread_hook;
85 }
86
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)87 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
88 : monitor_lock_("a monitor lock", kMonitorLock),
89 monitor_contenders_("monitor contenders", monitor_lock_),
90 num_waiters_(0),
91 owner_(owner),
92 lock_count_(0),
93 obj_(GcRoot<mirror::Object>(obj)),
94 wait_set_(nullptr),
95 hash_code_(hash_code),
96 locking_method_(nullptr),
97 locking_dex_pc_(0),
98 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
99 #ifdef __LP64__
100 DCHECK(false) << "Should not be reached in 64b";
101 next_free_ = nullptr;
102 #endif
103 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
104 // with the owner unlocking the thin-lock.
105 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
106 // The identity hash code is set for the life time of the monitor.
107 }
108
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code,MonitorId id)109 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
110 MonitorId id)
111 : monitor_lock_("a monitor lock", kMonitorLock),
112 monitor_contenders_("monitor contenders", monitor_lock_),
113 num_waiters_(0),
114 owner_(owner),
115 lock_count_(0),
116 obj_(GcRoot<mirror::Object>(obj)),
117 wait_set_(nullptr),
118 hash_code_(hash_code),
119 locking_method_(nullptr),
120 locking_dex_pc_(0),
121 monitor_id_(id) {
122 #ifdef __LP64__
123 next_free_ = nullptr;
124 #endif
125 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
126 // with the owner unlocking the thin-lock.
127 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
128 // The identity hash code is set for the life time of the monitor.
129 }
130
GetHashCode()131 int32_t Monitor::GetHashCode() {
132 while (!HasHashCode()) {
133 if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
134 break;
135 }
136 }
137 DCHECK(HasHashCode());
138 return hash_code_.LoadRelaxed();
139 }
140
Install(Thread * self)141 bool Monitor::Install(Thread* self) {
142 MutexLock mu(self, monitor_lock_); // Uncontended mutex acquisition as monitor isn't yet public.
143 CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
144 // Propagate the lock state.
145 LockWord lw(GetObject()->GetLockWord(false));
146 switch (lw.GetState()) {
147 case LockWord::kThinLocked: {
148 CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
149 lock_count_ = lw.ThinLockCount();
150 break;
151 }
152 case LockWord::kHashCode: {
153 CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
154 break;
155 }
156 case LockWord::kFatLocked: {
157 // The owner_ is suspended but another thread beat us to install a monitor.
158 return false;
159 }
160 case LockWord::kUnlocked: {
161 LOG(FATAL) << "Inflating unlocked lock word";
162 break;
163 }
164 default: {
165 LOG(FATAL) << "Invalid monitor state " << lw.GetState();
166 return false;
167 }
168 }
169 LockWord fat(this, lw.ReadBarrierState());
170 // Publish the updated lock word, which may race with other threads.
171 bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
172 // Lock profiling.
173 if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
174 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
175 // abort.
176 locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
177 }
178 return success;
179 }
180
~Monitor()181 Monitor::~Monitor() {
182 // Deflated monitors have a null object.
183 }
184
AppendToWaitSet(Thread * thread)185 void Monitor::AppendToWaitSet(Thread* thread) {
186 DCHECK(owner_ == Thread::Current());
187 DCHECK(thread != nullptr);
188 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
189 if (wait_set_ == nullptr) {
190 wait_set_ = thread;
191 return;
192 }
193
194 // push_back.
195 Thread* t = wait_set_;
196 while (t->GetWaitNext() != nullptr) {
197 t = t->GetWaitNext();
198 }
199 t->SetWaitNext(thread);
200 }
201
RemoveFromWaitSet(Thread * thread)202 void Monitor::RemoveFromWaitSet(Thread *thread) {
203 DCHECK(owner_ == Thread::Current());
204 DCHECK(thread != nullptr);
205 if (wait_set_ == nullptr) {
206 return;
207 }
208 if (wait_set_ == thread) {
209 wait_set_ = thread->GetWaitNext();
210 thread->SetWaitNext(nullptr);
211 return;
212 }
213
214 Thread* t = wait_set_;
215 while (t->GetWaitNext() != nullptr) {
216 if (t->GetWaitNext() == thread) {
217 t->SetWaitNext(thread->GetWaitNext());
218 thread->SetWaitNext(nullptr);
219 return;
220 }
221 t = t->GetWaitNext();
222 }
223 }
224
SetObject(mirror::Object * object)225 void Monitor::SetObject(mirror::Object* object) {
226 obj_ = GcRoot<mirror::Object>(object);
227 }
228
Lock(Thread * self)229 void Monitor::Lock(Thread* self) {
230 MutexLock mu(self, monitor_lock_);
231 while (true) {
232 if (owner_ == nullptr) { // Unowned.
233 owner_ = self;
234 CHECK_EQ(lock_count_, 0);
235 // When debugging, save the current monitor holder for future
236 // acquisition failures to use in sampled logging.
237 if (lock_profiling_threshold_ != 0) {
238 locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
239 }
240 return;
241 } else if (owner_ == self) { // Recursive.
242 lock_count_++;
243 return;
244 }
245 // Contended.
246 const bool log_contention = (lock_profiling_threshold_ != 0);
247 uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
248 ArtMethod* owners_method = locking_method_;
249 uint32_t owners_dex_pc = locking_dex_pc_;
250 // Do this before releasing the lock so that we don't get deflated.
251 size_t num_waiters = num_waiters_;
252 ++num_waiters_;
253 monitor_lock_.Unlock(self); // Let go of locks in order.
254 self->SetMonitorEnterObject(GetObject());
255 {
256 ScopedThreadStateChange tsc(self, kBlocked); // Change to blocked and give up mutator_lock_.
257 // Reacquire monitor_lock_ without mutator_lock_ for Wait.
258 MutexLock mu2(self, monitor_lock_);
259 if (owner_ != nullptr) { // Did the owner_ give the lock up?
260 if (ATRACE_ENABLED()) {
261 std::string name;
262 owner_->GetThreadName(name);
263 ATRACE_BEGIN(("Contended on monitor with owner " + name).c_str());
264 }
265 monitor_contenders_.Wait(self); // Still contended so wait.
266 // Woken from contention.
267 if (log_contention) {
268 uint64_t wait_ms = MilliTime() - wait_start_ms;
269 uint32_t sample_percent;
270 if (wait_ms >= lock_profiling_threshold_) {
271 sample_percent = 100;
272 } else {
273 sample_percent = 100 * wait_ms / lock_profiling_threshold_;
274 }
275 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
276 const char* owners_filename;
277 uint32_t owners_line_number;
278 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
279 if (wait_ms > kLongWaitMs && owners_method != nullptr) {
280 LOG(WARNING) << "Long monitor contention event with owner method="
281 << PrettyMethod(owners_method) << " from " << owners_filename << ":"
282 << owners_line_number << " waiters=" << num_waiters << " for "
283 << PrettyDuration(MsToNs(wait_ms));
284 }
285 LogContentionEvent(self, wait_ms, sample_percent, owners_filename, owners_line_number);
286 }
287 }
288 ATRACE_END();
289 }
290 }
291 self->SetMonitorEnterObject(nullptr);
292 monitor_lock_.Lock(self); // Reacquire locks in order.
293 --num_waiters_;
294 }
295 }
296
297 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
298 __attribute__((format(printf, 1, 2)));
299
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)300 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
301 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
302 va_list args;
303 va_start(args, fmt);
304 Thread* self = Thread::Current();
305 self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
306 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
307 std::ostringstream ss;
308 self->Dump(ss);
309 LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
310 << self->GetException()->Dump() << "\n" << ss.str();
311 }
312 va_end(args);
313 }
314
ThreadToString(Thread * thread)315 static std::string ThreadToString(Thread* thread) {
316 if (thread == nullptr) {
317 return "nullptr";
318 }
319 std::ostringstream oss;
320 // TODO: alternatively, we could just return the thread's name.
321 oss << *thread;
322 return oss.str();
323 }
324
FailedUnlock(mirror::Object * o,Thread * expected_owner,Thread * found_owner,Monitor * monitor)325 void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner,
326 Monitor* monitor) {
327 Thread* current_owner = nullptr;
328 std::string current_owner_string;
329 std::string expected_owner_string;
330 std::string found_owner_string;
331 {
332 // TODO: isn't this too late to prevent threads from disappearing?
333 // Acquire thread list lock so threads won't disappear from under us.
334 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
335 // Re-read owner now that we hold lock.
336 current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
337 // Get short descriptions of the threads involved.
338 current_owner_string = ThreadToString(current_owner);
339 expected_owner_string = ThreadToString(expected_owner);
340 found_owner_string = ThreadToString(found_owner);
341 }
342 if (current_owner == nullptr) {
343 if (found_owner == nullptr) {
344 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
345 " on thread '%s'",
346 PrettyTypeOf(o).c_str(),
347 expected_owner_string.c_str());
348 } else {
349 // Race: the original read found an owner but now there is none
350 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
351 " (where now the monitor appears unowned) on thread '%s'",
352 found_owner_string.c_str(),
353 PrettyTypeOf(o).c_str(),
354 expected_owner_string.c_str());
355 }
356 } else {
357 if (found_owner == nullptr) {
358 // Race: originally there was no owner, there is now
359 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
360 " (originally believed to be unowned) on thread '%s'",
361 current_owner_string.c_str(),
362 PrettyTypeOf(o).c_str(),
363 expected_owner_string.c_str());
364 } else {
365 if (found_owner != current_owner) {
366 // Race: originally found and current owner have changed
367 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
368 " owned by '%s') on object of type '%s' on thread '%s'",
369 found_owner_string.c_str(),
370 current_owner_string.c_str(),
371 PrettyTypeOf(o).c_str(),
372 expected_owner_string.c_str());
373 } else {
374 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
375 " on thread '%s",
376 current_owner_string.c_str(),
377 PrettyTypeOf(o).c_str(),
378 expected_owner_string.c_str());
379 }
380 }
381 }
382 }
383
Unlock(Thread * self)384 bool Monitor::Unlock(Thread* self) {
385 DCHECK(self != nullptr);
386 MutexLock mu(self, monitor_lock_);
387 Thread* owner = owner_;
388 if (owner == self) {
389 // We own the monitor, so nobody else can be in here.
390 if (lock_count_ == 0) {
391 owner_ = nullptr;
392 locking_method_ = nullptr;
393 locking_dex_pc_ = 0;
394 // Wake a contender.
395 monitor_contenders_.Signal(self);
396 } else {
397 --lock_count_;
398 }
399 } else {
400 // We don't own this, so we're not allowed to unlock it.
401 // The JNI spec says that we should throw IllegalMonitorStateException
402 // in this case.
403 FailedUnlock(GetObject(), self, owner, this);
404 return false;
405 }
406 return true;
407 }
408
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)409 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
410 bool interruptShouldThrow, ThreadState why) {
411 DCHECK(self != nullptr);
412 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
413
414 monitor_lock_.Lock(self);
415
416 // Make sure that we hold the lock.
417 if (owner_ != self) {
418 monitor_lock_.Unlock(self);
419 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
420 return;
421 }
422
423 // We need to turn a zero-length timed wait into a regular wait because
424 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
425 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
426 why = kWaiting;
427 }
428
429 // Enforce the timeout range.
430 if (ms < 0 || ns < 0 || ns > 999999) {
431 monitor_lock_.Unlock(self);
432 self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
433 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
434 return;
435 }
436
437 /*
438 * Add ourselves to the set of threads waiting on this monitor, and
439 * release our hold. We need to let it go even if we're a few levels
440 * deep in a recursive lock, and we need to restore that later.
441 *
442 * We append to the wait set ahead of clearing the count and owner
443 * fields so the subroutine can check that the calling thread owns
444 * the monitor. Aside from that, the order of member updates is
445 * not order sensitive as we hold the pthread mutex.
446 */
447 AppendToWaitSet(self);
448 ++num_waiters_;
449 int prev_lock_count = lock_count_;
450 lock_count_ = 0;
451 owner_ = nullptr;
452 ArtMethod* saved_method = locking_method_;
453 locking_method_ = nullptr;
454 uintptr_t saved_dex_pc = locking_dex_pc_;
455 locking_dex_pc_ = 0;
456
457 /*
458 * Update thread state. If the GC wakes up, it'll ignore us, knowing
459 * that we won't touch any references in this state, and we'll check
460 * our suspend mode before we transition out.
461 */
462 self->TransitionFromRunnableToSuspended(why);
463
464 bool was_interrupted = false;
465 {
466 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
467 MutexLock mu(self, *self->GetWaitMutex());
468
469 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
470 // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
471 // up.
472 DCHECK(self->GetWaitMonitor() == nullptr);
473 self->SetWaitMonitor(this);
474
475 // Release the monitor lock.
476 monitor_contenders_.Signal(self);
477 monitor_lock_.Unlock(self);
478
479 // Handle the case where the thread was interrupted before we called wait().
480 if (self->IsInterruptedLocked()) {
481 was_interrupted = true;
482 } else {
483 // Wait for a notification or a timeout to occur.
484 if (why == kWaiting) {
485 self->GetWaitConditionVariable()->Wait(self);
486 } else {
487 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
488 self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
489 }
490 if (self->IsInterruptedLocked()) {
491 was_interrupted = true;
492 }
493 self->SetInterruptedLocked(false);
494 }
495 }
496
497 // Set self->status back to kRunnable, and self-suspend if needed.
498 self->TransitionFromSuspendedToRunnable();
499
500 {
501 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
502 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
503 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
504 // are waiting on "null".)
505 MutexLock mu(self, *self->GetWaitMutex());
506 DCHECK(self->GetWaitMonitor() != nullptr);
507 self->SetWaitMonitor(nullptr);
508 }
509
510 // Re-acquire the monitor and lock.
511 Lock(self);
512 monitor_lock_.Lock(self);
513 self->GetWaitMutex()->AssertNotHeld(self);
514
515 /*
516 * We remove our thread from wait set after restoring the count
517 * and owner fields so the subroutine can check that the calling
518 * thread owns the monitor. Aside from that, the order of member
519 * updates is not order sensitive as we hold the pthread mutex.
520 */
521 owner_ = self;
522 lock_count_ = prev_lock_count;
523 locking_method_ = saved_method;
524 locking_dex_pc_ = saved_dex_pc;
525 --num_waiters_;
526 RemoveFromWaitSet(self);
527
528 monitor_lock_.Unlock(self);
529
530 if (was_interrupted) {
531 /*
532 * We were interrupted while waiting, or somebody interrupted an
533 * un-interruptible thread earlier and we're bailing out immediately.
534 *
535 * The doc sayeth: "The interrupted status of the current thread is
536 * cleared when this exception is thrown."
537 */
538 {
539 MutexLock mu(self, *self->GetWaitMutex());
540 self->SetInterruptedLocked(false);
541 }
542 if (interruptShouldThrow) {
543 self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
544 }
545 }
546 }
547
Notify(Thread * self)548 void Monitor::Notify(Thread* self) {
549 DCHECK(self != nullptr);
550 MutexLock mu(self, monitor_lock_);
551 // Make sure that we hold the lock.
552 if (owner_ != self) {
553 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
554 return;
555 }
556 // Signal the first waiting thread in the wait set.
557 while (wait_set_ != nullptr) {
558 Thread* thread = wait_set_;
559 wait_set_ = thread->GetWaitNext();
560 thread->SetWaitNext(nullptr);
561
562 // Check to see if the thread is still waiting.
563 MutexLock wait_mu(self, *thread->GetWaitMutex());
564 if (thread->GetWaitMonitor() != nullptr) {
565 thread->GetWaitConditionVariable()->Signal(self);
566 return;
567 }
568 }
569 }
570
NotifyAll(Thread * self)571 void Monitor::NotifyAll(Thread* self) {
572 DCHECK(self != nullptr);
573 MutexLock mu(self, monitor_lock_);
574 // Make sure that we hold the lock.
575 if (owner_ != self) {
576 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
577 return;
578 }
579 // Signal all threads in the wait set.
580 while (wait_set_ != nullptr) {
581 Thread* thread = wait_set_;
582 wait_set_ = thread->GetWaitNext();
583 thread->SetWaitNext(nullptr);
584 thread->Notify();
585 }
586 }
587
Deflate(Thread * self,mirror::Object * obj)588 bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
589 DCHECK(obj != nullptr);
590 // Don't need volatile since we only deflate with mutators suspended.
591 LockWord lw(obj->GetLockWord(false));
592 // If the lock isn't an inflated monitor, then we don't need to deflate anything.
593 if (lw.GetState() == LockWord::kFatLocked) {
594 Monitor* monitor = lw.FatLockMonitor();
595 DCHECK(monitor != nullptr);
596 MutexLock mu(self, monitor->monitor_lock_);
597 // Can't deflate if we have anybody waiting on the CV.
598 if (monitor->num_waiters_ > 0) {
599 return false;
600 }
601 Thread* owner = monitor->owner_;
602 if (owner != nullptr) {
603 // Can't deflate if we are locked and have a hash code.
604 if (monitor->HasHashCode()) {
605 return false;
606 }
607 // Can't deflate if our lock count is too high.
608 if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
609 return false;
610 }
611 // Deflate to a thin lock.
612 LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_,
613 lw.ReadBarrierState());
614 // Assume no concurrent read barrier state changes as mutators are suspended.
615 obj->SetLockWord(new_lw, false);
616 VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
617 << monitor->lock_count_;
618 } else if (monitor->HasHashCode()) {
619 LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.ReadBarrierState());
620 // Assume no concurrent read barrier state changes as mutators are suspended.
621 obj->SetLockWord(new_lw, false);
622 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
623 } else {
624 // No lock and no hash, just put an empty lock word inside the object.
625 LockWord new_lw = LockWord::FromDefault(lw.ReadBarrierState());
626 // Assume no concurrent read barrier state changes as mutators are suspended.
627 obj->SetLockWord(new_lw, false);
628 VLOG(monitor) << "Deflated" << obj << " to empty lock word";
629 }
630 // The monitor is deflated, mark the object as null so that we know to delete it during the
631 // next GC.
632 monitor->obj_ = GcRoot<mirror::Object>(nullptr);
633 }
634 return true;
635 }
636
Inflate(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)637 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
638 DCHECK(self != nullptr);
639 DCHECK(obj != nullptr);
640 // Allocate and acquire a new monitor.
641 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
642 DCHECK(m != nullptr);
643 if (m->Install(self)) {
644 if (owner != nullptr) {
645 VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
646 << " created monitor " << m << " for object " << obj;
647 } else {
648 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
649 << " created monitor " << m << " for object " << obj;
650 }
651 Runtime::Current()->GetMonitorList()->Add(m);
652 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
653 } else {
654 MonitorPool::ReleaseMonitor(self, m);
655 }
656 }
657
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)658 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
659 uint32_t hash_code) {
660 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
661 uint32_t owner_thread_id = lock_word.ThinLockOwner();
662 if (owner_thread_id == self->GetThreadId()) {
663 // We own the monitor, we can easily inflate it.
664 Inflate(self, self, obj.Get(), hash_code);
665 } else {
666 ThreadList* thread_list = Runtime::Current()->GetThreadList();
667 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
668 self->SetMonitorEnterObject(obj.Get());
669 bool timed_out;
670 Thread* owner;
671 {
672 ScopedThreadStateChange tsc(self, kBlocked);
673 owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
674 }
675 if (owner != nullptr) {
676 // We succeeded in suspending the thread, check the lock's status didn't change.
677 lock_word = obj->GetLockWord(true);
678 if (lock_word.GetState() == LockWord::kThinLocked &&
679 lock_word.ThinLockOwner() == owner_thread_id) {
680 // Go ahead and inflate the lock.
681 Inflate(self, owner, obj.Get(), hash_code);
682 }
683 thread_list->Resume(owner, false);
684 }
685 self->SetMonitorEnterObject(nullptr);
686 }
687 }
688
689 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(mirror::Object * obj)690 static mirror::Object* FakeLock(mirror::Object* obj)
691 EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
692 return obj;
693 }
694
695 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(mirror::Object * obj)696 static mirror::Object* FakeUnlock(mirror::Object* obj)
697 UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
698 return obj;
699 }
700
MonitorEnter(Thread * self,mirror::Object * obj)701 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
702 DCHECK(self != nullptr);
703 DCHECK(obj != nullptr);
704 obj = FakeLock(obj);
705 uint32_t thread_id = self->GetThreadId();
706 size_t contention_count = 0;
707 StackHandleScope<1> hs(self);
708 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
709 while (true) {
710 LockWord lock_word = h_obj->GetLockWord(true);
711 switch (lock_word.GetState()) {
712 case LockWord::kUnlocked: {
713 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.ReadBarrierState()));
714 if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
715 // CasLockWord enforces more than the acquire ordering we need here.
716 return h_obj.Get(); // Success!
717 }
718 continue; // Go again.
719 }
720 case LockWord::kThinLocked: {
721 uint32_t owner_thread_id = lock_word.ThinLockOwner();
722 if (owner_thread_id == thread_id) {
723 // We own the lock, increase the recursion count.
724 uint32_t new_count = lock_word.ThinLockCount() + 1;
725 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
726 LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count,
727 lock_word.ReadBarrierState()));
728 if (!kUseReadBarrier) {
729 h_obj->SetLockWord(thin_locked, true);
730 return h_obj.Get(); // Success!
731 } else {
732 // Use CAS to preserve the read barrier state.
733 if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
734 return h_obj.Get(); // Success!
735 }
736 }
737 continue; // Go again.
738 } else {
739 // We'd overflow the recursion count, so inflate the monitor.
740 InflateThinLocked(self, h_obj, lock_word, 0);
741 }
742 } else {
743 // Contention.
744 contention_count++;
745 Runtime* runtime = Runtime::Current();
746 if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
747 // TODO: Consider switching the thread state to kBlocked when we are yielding.
748 // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
749 // parameter you pass in. This can cause thread suspension to take excessively long
750 // and make long pauses. See b/16307460.
751 sched_yield();
752 } else {
753 contention_count = 0;
754 InflateThinLocked(self, h_obj, lock_word, 0);
755 }
756 }
757 continue; // Start from the beginning.
758 }
759 case LockWord::kFatLocked: {
760 Monitor* mon = lock_word.FatLockMonitor();
761 mon->Lock(self);
762 return h_obj.Get(); // Success!
763 }
764 case LockWord::kHashCode:
765 // Inflate with the existing hashcode.
766 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
767 continue; // Start from the beginning.
768 default: {
769 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
770 return h_obj.Get();
771 }
772 }
773 }
774 }
775
MonitorExit(Thread * self,mirror::Object * obj)776 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
777 DCHECK(self != nullptr);
778 DCHECK(obj != nullptr);
779 obj = FakeUnlock(obj);
780 StackHandleScope<1> hs(self);
781 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
782 while (true) {
783 LockWord lock_word = obj->GetLockWord(true);
784 switch (lock_word.GetState()) {
785 case LockWord::kHashCode:
786 // Fall-through.
787 case LockWord::kUnlocked:
788 FailedUnlock(h_obj.Get(), self, nullptr, nullptr);
789 return false; // Failure.
790 case LockWord::kThinLocked: {
791 uint32_t thread_id = self->GetThreadId();
792 uint32_t owner_thread_id = lock_word.ThinLockOwner();
793 if (owner_thread_id != thread_id) {
794 // TODO: there's a race here with the owner dying while we unlock.
795 Thread* owner =
796 Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
797 FailedUnlock(h_obj.Get(), self, owner, nullptr);
798 return false; // Failure.
799 } else {
800 // We own the lock, decrease the recursion count.
801 LockWord new_lw = LockWord::Default();
802 if (lock_word.ThinLockCount() != 0) {
803 uint32_t new_count = lock_word.ThinLockCount() - 1;
804 new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.ReadBarrierState());
805 } else {
806 new_lw = LockWord::FromDefault(lock_word.ReadBarrierState());
807 }
808 if (!kUseReadBarrier) {
809 DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
810 h_obj->SetLockWord(new_lw, true);
811 // Success!
812 return true;
813 } else {
814 // Use CAS to preserve the read barrier state.
815 if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, new_lw)) {
816 // Success!
817 return true;
818 }
819 }
820 continue; // Go again.
821 }
822 }
823 case LockWord::kFatLocked: {
824 Monitor* mon = lock_word.FatLockMonitor();
825 return mon->Unlock(self);
826 }
827 default: {
828 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
829 return false;
830 }
831 }
832 }
833 }
834
Wait(Thread * self,mirror::Object * obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)835 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
836 bool interruptShouldThrow, ThreadState why) {
837 DCHECK(self != nullptr);
838 DCHECK(obj != nullptr);
839 LockWord lock_word = obj->GetLockWord(true);
840 while (lock_word.GetState() != LockWord::kFatLocked) {
841 switch (lock_word.GetState()) {
842 case LockWord::kHashCode:
843 // Fall-through.
844 case LockWord::kUnlocked:
845 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
846 return; // Failure.
847 case LockWord::kThinLocked: {
848 uint32_t thread_id = self->GetThreadId();
849 uint32_t owner_thread_id = lock_word.ThinLockOwner();
850 if (owner_thread_id != thread_id) {
851 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
852 return; // Failure.
853 } else {
854 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
855 // re-load.
856 Inflate(self, self, obj, 0);
857 lock_word = obj->GetLockWord(true);
858 }
859 break;
860 }
861 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through.
862 default: {
863 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
864 return;
865 }
866 }
867 }
868 Monitor* mon = lock_word.FatLockMonitor();
869 mon->Wait(self, ms, ns, interruptShouldThrow, why);
870 }
871
DoNotify(Thread * self,mirror::Object * obj,bool notify_all)872 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
873 DCHECK(self != nullptr);
874 DCHECK(obj != nullptr);
875 LockWord lock_word = obj->GetLockWord(true);
876 switch (lock_word.GetState()) {
877 case LockWord::kHashCode:
878 // Fall-through.
879 case LockWord::kUnlocked:
880 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
881 return; // Failure.
882 case LockWord::kThinLocked: {
883 uint32_t thread_id = self->GetThreadId();
884 uint32_t owner_thread_id = lock_word.ThinLockOwner();
885 if (owner_thread_id != thread_id) {
886 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
887 return; // Failure.
888 } else {
889 // We own the lock but there's no Monitor and therefore no waiters.
890 return; // Success.
891 }
892 }
893 case LockWord::kFatLocked: {
894 Monitor* mon = lock_word.FatLockMonitor();
895 if (notify_all) {
896 mon->NotifyAll(self);
897 } else {
898 mon->Notify(self);
899 }
900 return; // Success.
901 }
902 default: {
903 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
904 return;
905 }
906 }
907 }
908
GetLockOwnerThreadId(mirror::Object * obj)909 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
910 DCHECK(obj != nullptr);
911 LockWord lock_word = obj->GetLockWord(true);
912 switch (lock_word.GetState()) {
913 case LockWord::kHashCode:
914 // Fall-through.
915 case LockWord::kUnlocked:
916 return ThreadList::kInvalidThreadId;
917 case LockWord::kThinLocked:
918 return lock_word.ThinLockOwner();
919 case LockWord::kFatLocked: {
920 Monitor* mon = lock_word.FatLockMonitor();
921 return mon->GetOwnerThreadId();
922 }
923 default: {
924 LOG(FATAL) << "Unreachable";
925 UNREACHABLE();
926 }
927 }
928 }
929
DescribeWait(std::ostream & os,const Thread * thread)930 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
931 // Determine the wait message and object we're waiting or blocked upon.
932 mirror::Object* pretty_object = nullptr;
933 const char* wait_message = nullptr;
934 uint32_t lock_owner = ThreadList::kInvalidThreadId;
935 ThreadState state = thread->GetState();
936 if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
937 wait_message = (state == kSleeping) ? " - sleeping on " : " - waiting on ";
938 Thread* self = Thread::Current();
939 MutexLock mu(self, *thread->GetWaitMutex());
940 Monitor* monitor = thread->GetWaitMonitor();
941 if (monitor != nullptr) {
942 pretty_object = monitor->GetObject();
943 }
944 } else if (state == kBlocked) {
945 wait_message = " - waiting to lock ";
946 pretty_object = thread->GetMonitorEnterObject();
947 if (pretty_object != nullptr) {
948 lock_owner = pretty_object->GetLockOwnerThreadId();
949 }
950 }
951
952 if (wait_message != nullptr) {
953 if (pretty_object == nullptr) {
954 os << wait_message << "an unknown object";
955 } else {
956 if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
957 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
958 // Getting the identity hashcode here would result in lock inflation and suspension of the
959 // current thread, which isn't safe if this is the only runnable thread.
960 os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
961 reinterpret_cast<intptr_t>(pretty_object),
962 PrettyTypeOf(pretty_object).c_str());
963 } else {
964 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
965 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
966 // suspension and move pretty_object.
967 const std::string pretty_type(PrettyTypeOf(pretty_object));
968 os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
969 pretty_type.c_str());
970 }
971 }
972 // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
973 if (lock_owner != ThreadList::kInvalidThreadId) {
974 os << " held by thread " << lock_owner;
975 }
976 os << "\n";
977 }
978 }
979
GetContendedMonitor(Thread * thread)980 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
981 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
982 // definition of contended that includes a monitor a thread is trying to enter...
983 mirror::Object* result = thread->GetMonitorEnterObject();
984 if (result == nullptr) {
985 // ...but also a monitor that the thread is waiting on.
986 MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
987 Monitor* monitor = thread->GetWaitMonitor();
988 if (monitor != nullptr) {
989 result = monitor->GetObject();
990 }
991 }
992 return result;
993 }
994
VisitLocks(StackVisitor * stack_visitor,void (* callback)(mirror::Object *,void *),void * callback_context,bool abort_on_failure)995 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
996 void* callback_context, bool abort_on_failure) {
997 ArtMethod* m = stack_visitor->GetMethod();
998 CHECK(m != nullptr);
999
1000 // Native methods are an easy special case.
1001 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1002 if (m->IsNative()) {
1003 if (m->IsSynchronized()) {
1004 mirror::Object* jni_this =
1005 stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
1006 callback(jni_this, callback_context);
1007 }
1008 return;
1009 }
1010
1011 // Proxy methods should not be synchronized.
1012 if (m->IsProxyMethod()) {
1013 CHECK(!m->IsSynchronized());
1014 return;
1015 }
1016
1017 // Is there any reason to believe there's any synchronization in this method?
1018 const DexFile::CodeItem* code_item = m->GetCodeItem();
1019 CHECK(code_item != nullptr) << PrettyMethod(m);
1020 if (code_item->tries_size_ == 0) {
1021 return; // No "tries" implies no synchronization, so no held locks to report.
1022 }
1023
1024 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1025 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1026 // inconsistent stack anyways.
1027 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1028 if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
1029 LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m);
1030 return;
1031 }
1032
1033 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1034 // the locks held in this stack frame.
1035 std::vector<uint32_t> monitor_enter_dex_pcs;
1036 verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
1037 for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) {
1038 // The verifier works in terms of the dex pcs of the monitor-enter instructions.
1039 // We want the registers used by those instructions (so we can read the values out of them).
1040 uint16_t monitor_enter_instruction = code_item->insns_[monitor_dex_pc];
1041
1042 // Quick sanity check.
1043 if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) {
1044 LOG(FATAL) << "expected monitor-enter @" << monitor_dex_pc << "; was "
1045 << reinterpret_cast<void*>(monitor_enter_instruction);
1046 }
1047
1048 uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff);
1049 uint32_t value;
1050 bool success = stack_visitor->GetVReg(m, monitor_register, kReferenceVReg, &value);
1051 CHECK(success) << "Failed to read v" << monitor_register << " of kind "
1052 << kReferenceVReg << " in method " << PrettyMethod(m);
1053 mirror::Object* o = reinterpret_cast<mirror::Object*>(value);
1054 callback(o, callback_context);
1055 }
1056 }
1057
IsValidLockWord(LockWord lock_word)1058 bool Monitor::IsValidLockWord(LockWord lock_word) {
1059 switch (lock_word.GetState()) {
1060 case LockWord::kUnlocked:
1061 // Nothing to check.
1062 return true;
1063 case LockWord::kThinLocked:
1064 // Basic sanity check of owner.
1065 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1066 case LockWord::kFatLocked: {
1067 // Check the monitor appears in the monitor list.
1068 Monitor* mon = lock_word.FatLockMonitor();
1069 MonitorList* list = Runtime::Current()->GetMonitorList();
1070 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1071 for (Monitor* list_mon : list->list_) {
1072 if (mon == list_mon) {
1073 return true; // Found our monitor.
1074 }
1075 }
1076 return false; // Fail - unowned monitor in an object.
1077 }
1078 case LockWord::kHashCode:
1079 return true;
1080 default:
1081 LOG(FATAL) << "Unreachable";
1082 UNREACHABLE();
1083 }
1084 }
1085
IsLocked()1086 bool Monitor::IsLocked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1087 MutexLock mu(Thread::Current(), monitor_lock_);
1088 return owner_ != nullptr;
1089 }
1090
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,uint32_t * line_number) const1091 void Monitor::TranslateLocation(ArtMethod* method, uint32_t dex_pc,
1092 const char** source_file, uint32_t* line_number) const {
1093 // If method is null, location is unknown
1094 if (method == nullptr) {
1095 *source_file = "";
1096 *line_number = 0;
1097 return;
1098 }
1099 *source_file = method->GetDeclaringClassSourceFile();
1100 if (*source_file == nullptr) {
1101 *source_file = "";
1102 }
1103 *line_number = method->GetLineNumFromDexPC(dex_pc);
1104 }
1105
GetOwnerThreadId()1106 uint32_t Monitor::GetOwnerThreadId() {
1107 MutexLock mu(Thread::Current(), monitor_lock_);
1108 Thread* owner = owner_;
1109 if (owner != nullptr) {
1110 return owner->GetThreadId();
1111 } else {
1112 return ThreadList::kInvalidThreadId;
1113 }
1114 }
1115
MonitorList()1116 MonitorList::MonitorList()
1117 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1118 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1119 }
1120
~MonitorList()1121 MonitorList::~MonitorList() {
1122 Thread* self = Thread::Current();
1123 MutexLock mu(self, monitor_list_lock_);
1124 // Release all monitors to the pool.
1125 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1126 // clear faster in the pool.
1127 MonitorPool::ReleaseMonitors(self, &list_);
1128 }
1129
DisallowNewMonitors()1130 void MonitorList::DisallowNewMonitors() {
1131 MutexLock mu(Thread::Current(), monitor_list_lock_);
1132 allow_new_monitors_ = false;
1133 }
1134
AllowNewMonitors()1135 void MonitorList::AllowNewMonitors() {
1136 Thread* self = Thread::Current();
1137 MutexLock mu(self, monitor_list_lock_);
1138 allow_new_monitors_ = true;
1139 monitor_add_condition_.Broadcast(self);
1140 }
1141
EnsureNewMonitorsDisallowed()1142 void MonitorList::EnsureNewMonitorsDisallowed() {
1143 // Lock and unlock once to ensure that no threads are still in the
1144 // middle of adding new monitors.
1145 MutexLock mu(Thread::Current(), monitor_list_lock_);
1146 CHECK(!allow_new_monitors_);
1147 }
1148
Add(Monitor * m)1149 void MonitorList::Add(Monitor* m) {
1150 Thread* self = Thread::Current();
1151 MutexLock mu(self, monitor_list_lock_);
1152 while (UNLIKELY(!allow_new_monitors_)) {
1153 monitor_add_condition_.WaitHoldingLocks(self);
1154 }
1155 list_.push_front(m);
1156 }
1157
SweepMonitorList(IsMarkedCallback * callback,void * arg)1158 void MonitorList::SweepMonitorList(IsMarkedCallback* callback, void* arg) {
1159 Thread* self = Thread::Current();
1160 MutexLock mu(self, monitor_list_lock_);
1161 for (auto it = list_.begin(); it != list_.end(); ) {
1162 Monitor* m = *it;
1163 // Disable the read barrier in GetObject() as this is called by GC.
1164 mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1165 // The object of a monitor can be null if we have deflated it.
1166 mirror::Object* new_obj = obj != nullptr ? callback(obj, arg) : nullptr;
1167 if (new_obj == nullptr) {
1168 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1169 << obj;
1170 MonitorPool::ReleaseMonitor(self, m);
1171 it = list_.erase(it);
1172 } else {
1173 m->SetObject(new_obj);
1174 ++it;
1175 }
1176 }
1177 }
1178
1179 struct MonitorDeflateArgs {
MonitorDeflateArgsart::MonitorDeflateArgs1180 MonitorDeflateArgs() : self(Thread::Current()), deflate_count(0) {}
1181 Thread* const self;
1182 size_t deflate_count;
1183 };
1184
MonitorDeflateCallback(mirror::Object * object,void * arg)1185 static mirror::Object* MonitorDeflateCallback(mirror::Object* object, void* arg)
1186 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1187 MonitorDeflateArgs* args = reinterpret_cast<MonitorDeflateArgs*>(arg);
1188 if (Monitor::Deflate(args->self, object)) {
1189 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1190 ++args->deflate_count;
1191 // If we deflated, return null so that the monitor gets removed from the array.
1192 return nullptr;
1193 }
1194 return object; // Monitor was not deflated.
1195 }
1196
DeflateMonitors()1197 size_t MonitorList::DeflateMonitors() {
1198 MonitorDeflateArgs args;
1199 Locks::mutator_lock_->AssertExclusiveHeld(args.self);
1200 SweepMonitorList(MonitorDeflateCallback, &args);
1201 return args.deflate_count;
1202 }
1203
MonitorInfo(mirror::Object * obj)1204 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) {
1205 DCHECK(obj != nullptr);
1206 LockWord lock_word = obj->GetLockWord(true);
1207 switch (lock_word.GetState()) {
1208 case LockWord::kUnlocked:
1209 // Fall-through.
1210 case LockWord::kForwardingAddress:
1211 // Fall-through.
1212 case LockWord::kHashCode:
1213 break;
1214 case LockWord::kThinLocked:
1215 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1216 entry_count_ = 1 + lock_word.ThinLockCount();
1217 // Thin locks have no waiters.
1218 break;
1219 case LockWord::kFatLocked: {
1220 Monitor* mon = lock_word.FatLockMonitor();
1221 owner_ = mon->owner_;
1222 entry_count_ = 1 + mon->lock_count_;
1223 for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1224 waiters_.push_back(waiter);
1225 }
1226 break;
1227 }
1228 }
1229 }
1230
1231 } // namespace art
1232