1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 #include "thread.h"
20
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 #include <sstream>
33
34 #include "arch/context.h"
35 #include "art_field-inl.h"
36 #include "art_method-inl.h"
37 #include "base/bit_utils.h"
38 #include "base/mutex.h"
39 #include "base/timing_logger.h"
40 #include "base/to_str.h"
41 #include "class_linker-inl.h"
42 #include "debugger.h"
43 #include "dex_file-inl.h"
44 #include "entrypoints/entrypoint_utils.h"
45 #include "entrypoints/quick/quick_alloc_entrypoints.h"
46 #include "gc_map.h"
47 #include "gc/accounting/card_table-inl.h"
48 #include "gc/allocator/rosalloc.h"
49 #include "gc/heap.h"
50 #include "gc/space/space.h"
51 #include "handle_scope-inl.h"
52 #include "indirect_reference_table-inl.h"
53 #include "jni_internal.h"
54 #include "mirror/class_loader.h"
55 #include "mirror/class-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/stack_trace_element.h"
58 #include "monitor.h"
59 #include "object_lock.h"
60 #include "quick_exception_handler.h"
61 #include "quick/quick_method_frame_info.h"
62 #include "reflection.h"
63 #include "runtime.h"
64 #include "scoped_thread_state_change.h"
65 #include "ScopedLocalRef.h"
66 #include "ScopedUtfChars.h"
67 #include "stack.h"
68 #include "thread_list.h"
69 #include "thread-inl.h"
70 #include "utils.h"
71 #include "verifier/dex_gc_map.h"
72 #include "verifier/method_verifier.h"
73 #include "verify_object-inl.h"
74 #include "vmap_table.h"
75 #include "well_known_classes.h"
76
77 namespace art {
78
79 bool Thread::is_started_ = false;
80 pthread_key_t Thread::pthread_key_self_;
81 ConditionVariable* Thread::resume_cond_ = nullptr;
82 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
83
84 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
85
InitCardTable()86 void Thread::InitCardTable() {
87 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
88 }
89
UnimplementedEntryPoint()90 static void UnimplementedEntryPoint() {
91 UNIMPLEMENTED(FATAL);
92 }
93
94 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
95 QuickEntryPoints* qpoints);
96
InitTlsEntryPoints()97 void Thread::InitTlsEntryPoints() {
98 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
99 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
100 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
101 sizeof(tlsPtr_.quick_entrypoints));
102 for (uintptr_t* it = begin; it != end; ++it) {
103 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
104 }
105 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
106 &tlsPtr_.quick_entrypoints);
107 }
108
InitStringEntryPoints()109 void Thread::InitStringEntryPoints() {
110 ScopedObjectAccess soa(this);
111 QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
112 qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
113 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
114 qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
115 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
116 qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
117 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
118 qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
119 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
120 qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
121 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
122 qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
123 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
124 qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
125 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
126 qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
127 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
128 qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
129 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
130 qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
131 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
132 qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
133 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
134 qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
135 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
136 qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
137 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
138 qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
139 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
140 qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
141 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
142 qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
143 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
144 }
145
ResetQuickAllocEntryPointsForThread()146 void Thread::ResetQuickAllocEntryPointsForThread() {
147 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
148 }
149
150 class DeoptimizationReturnValueRecord {
151 public:
DeoptimizationReturnValueRecord(const JValue & ret_val,bool is_reference,DeoptimizationReturnValueRecord * link)152 DeoptimizationReturnValueRecord(const JValue& ret_val,
153 bool is_reference,
154 DeoptimizationReturnValueRecord* link)
155 : ret_val_(ret_val), is_reference_(is_reference), link_(link) {}
156
GetReturnValue() const157 JValue GetReturnValue() const { return ret_val_; }
IsReference() const158 bool IsReference() const { return is_reference_; }
GetLink() const159 DeoptimizationReturnValueRecord* GetLink() const { return link_; }
GetGCRoot()160 mirror::Object** GetGCRoot() {
161 DCHECK(is_reference_);
162 return ret_val_.GetGCRoot();
163 }
164
165 private:
166 JValue ret_val_;
167 const bool is_reference_;
168 DeoptimizationReturnValueRecord* const link_;
169
170 DISALLOW_COPY_AND_ASSIGN(DeoptimizationReturnValueRecord);
171 };
172
173 class StackedShadowFrameRecord {
174 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)175 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
176 StackedShadowFrameType type,
177 StackedShadowFrameRecord* link)
178 : shadow_frame_(shadow_frame),
179 type_(type),
180 link_(link) {}
181
GetShadowFrame() const182 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const183 StackedShadowFrameType GetType() const { return type_; }
GetLink() const184 StackedShadowFrameRecord* GetLink() const { return link_; }
185
186 private:
187 ShadowFrame* const shadow_frame_;
188 const StackedShadowFrameType type_;
189 StackedShadowFrameRecord* const link_;
190
191 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
192 };
193
PushAndClearDeoptimizationReturnValue()194 void Thread::PushAndClearDeoptimizationReturnValue() {
195 DeoptimizationReturnValueRecord* record = new DeoptimizationReturnValueRecord(
196 tls64_.deoptimization_return_value,
197 tls32_.deoptimization_return_value_is_reference,
198 tlsPtr_.deoptimization_return_value_stack);
199 tlsPtr_.deoptimization_return_value_stack = record;
200 ClearDeoptimizationReturnValue();
201 }
202
PopDeoptimizationReturnValue()203 JValue Thread::PopDeoptimizationReturnValue() {
204 DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
205 DCHECK(record != nullptr);
206 tlsPtr_.deoptimization_return_value_stack = record->GetLink();
207 JValue ret_val(record->GetReturnValue());
208 delete record;
209 return ret_val;
210 }
211
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)212 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
213 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
214 sf, type, tlsPtr_.stacked_shadow_frame_record);
215 tlsPtr_.stacked_shadow_frame_record = record;
216 }
217
PopStackedShadowFrame(StackedShadowFrameType type)218 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type) {
219 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
220 DCHECK(record != nullptr);
221 DCHECK_EQ(record->GetType(), type);
222 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
223 ShadowFrame* shadow_frame = record->GetShadowFrame();
224 delete record;
225 return shadow_frame;
226 }
227
InitTid()228 void Thread::InitTid() {
229 tls32_.tid = ::art::GetTid();
230 }
231
InitAfterFork()232 void Thread::InitAfterFork() {
233 // One thread (us) survived the fork, but we have a new tid so we need to
234 // update the value stashed in this Thread*.
235 InitTid();
236 }
237
CreateCallback(void * arg)238 void* Thread::CreateCallback(void* arg) {
239 Thread* self = reinterpret_cast<Thread*>(arg);
240 Runtime* runtime = Runtime::Current();
241 if (runtime == nullptr) {
242 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
243 return nullptr;
244 }
245 {
246 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
247 // after self->Init().
248 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
249 // Check that if we got here we cannot be shutting down (as shutdown should never have started
250 // while threads are being born).
251 CHECK(!runtime->IsShuttingDownLocked());
252 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
253 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
254 // the runtime in such a case. In case this ever changes, we need to make sure here to
255 // delete the tmp_jni_env, as we own it at this point.
256 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
257 self->tlsPtr_.tmp_jni_env = nullptr;
258 Runtime::Current()->EndThreadBirth();
259 }
260 {
261 ScopedObjectAccess soa(self);
262 self->InitStringEntryPoints();
263
264 // Copy peer into self, deleting global reference when done.
265 CHECK(self->tlsPtr_.jpeer != nullptr);
266 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
267 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
268 self->tlsPtr_.jpeer = nullptr;
269 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
270
271 ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
272 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
273 Dbg::PostThreadStart(self);
274
275 // Invoke the 'run' method of our java.lang.Thread.
276 mirror::Object* receiver = self->tlsPtr_.opeer;
277 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
278 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
279 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
280 }
281 // Detach and delete self.
282 Runtime::Current()->GetThreadList()->Unregister(self);
283
284 return nullptr;
285 }
286
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)287 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
288 mirror::Object* thread_peer) {
289 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
290 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
291 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
292 // to stop it from going away.
293 if (kIsDebugBuild) {
294 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
295 if (result != nullptr && !result->IsSuspended()) {
296 Locks::thread_list_lock_->AssertHeld(soa.Self());
297 }
298 }
299 return result;
300 }
301
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)302 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
303 jobject java_thread) {
304 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
305 }
306
FixStackSize(size_t stack_size)307 static size_t FixStackSize(size_t stack_size) {
308 // A stack size of zero means "use the default".
309 if (stack_size == 0) {
310 stack_size = Runtime::Current()->GetDefaultStackSize();
311 }
312
313 // Dalvik used the bionic pthread default stack size for native threads,
314 // so include that here to support apps that expect large native stacks.
315 stack_size += 1 * MB;
316
317 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
318 if (stack_size < PTHREAD_STACK_MIN) {
319 stack_size = PTHREAD_STACK_MIN;
320 }
321
322 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
323 // It's likely that callers are trying to ensure they have at least a certain amount of
324 // stack space, so we should add our reserved space on top of what they requested, rather
325 // than implicitly take it away from them.
326 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
327 } else {
328 // If we are going to use implicit stack checks, allocate space for the protected
329 // region at the bottom of the stack.
330 stack_size += Thread::kStackOverflowImplicitCheckSize +
331 GetStackOverflowReservedBytes(kRuntimeISA);
332 }
333
334 // Some systems require the stack size to be a multiple of the system page size, so round up.
335 stack_size = RoundUp(stack_size, kPageSize);
336
337 return stack_size;
338 }
339
340 // Global variable to prevent the compiler optimizing away the page reads for the stack.
341 uint8_t dont_optimize_this;
342
343 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
344 // overflow is detected. It is located right below the stack_begin_.
345 //
346 // There is a little complexity here that deserves a special mention. On some
347 // architectures, the stack created using a VM_GROWSDOWN flag
348 // to prevent memory being allocated when it's not needed. This flag makes the
349 // kernel only allocate memory for the stack by growing down in memory. Because we
350 // want to put an mprotected region far away from that at the stack top, we need
351 // to make sure the pages for the stack are mapped in before we call mprotect. We do
352 // this by reading every page from the stack bottom (highest address) to the stack top.
353 // We then madvise this away.
InstallImplicitProtection()354 void Thread::InstallImplicitProtection() {
355 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
356 uint8_t* stack_himem = tlsPtr_.stack_end;
357 uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
358 ~(kPageSize - 1)); // Page containing current top of stack.
359
360 // First remove the protection on the protected region as will want to read and
361 // write it. This may fail (on the first attempt when the stack is not mapped)
362 // but we ignore that.
363 UnprotectStack();
364
365 // Map in the stack. This must be done by reading from the
366 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
367 // in the kernel. Any access more than a page below the current SP might cause
368 // a segv.
369
370 // Read every page from the high address to the low.
371 for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
372 dont_optimize_this = *p;
373 }
374
375 VLOG(threads) << "installing stack protected region at " << std::hex <<
376 static_cast<void*>(pregion) << " to " <<
377 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
378
379 // Protect the bottom of the stack to prevent read/write to it.
380 ProtectStack();
381
382 // Tell the kernel that we won't be needing these pages any more.
383 // NB. madvise will probably write zeroes into the memory (on linux it does).
384 uint32_t unwanted_size = stack_top - pregion - kPageSize;
385 madvise(pregion, unwanted_size, MADV_DONTNEED);
386 }
387
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)388 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
389 CHECK(java_peer != nullptr);
390 Thread* self = static_cast<JNIEnvExt*>(env)->self;
391 Runtime* runtime = Runtime::Current();
392
393 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
394 bool thread_start_during_shutdown = false;
395 {
396 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
397 if (runtime->IsShuttingDownLocked()) {
398 thread_start_during_shutdown = true;
399 } else {
400 runtime->StartThreadBirth();
401 }
402 }
403 if (thread_start_during_shutdown) {
404 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
405 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
406 return;
407 }
408
409 Thread* child_thread = new Thread(is_daemon);
410 // Use global JNI ref to hold peer live while child thread starts.
411 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
412 stack_size = FixStackSize(stack_size);
413
414 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
415 // assign it.
416 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
417 reinterpret_cast<jlong>(child_thread));
418
419 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
420 // do not have a good way to report this on the child's side.
421 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
422 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
423
424 int pthread_create_result = 0;
425 if (child_jni_env_ext.get() != nullptr) {
426 pthread_t new_pthread;
427 pthread_attr_t attr;
428 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
429 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
430 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
431 "PTHREAD_CREATE_DETACHED");
432 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
433 pthread_create_result = pthread_create(&new_pthread,
434 &attr,
435 Thread::CreateCallback,
436 child_thread);
437 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
438
439 if (pthread_create_result == 0) {
440 // pthread_create started the new thread. The child is now responsible for managing the
441 // JNIEnvExt we created.
442 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
443 // between the threads.
444 child_jni_env_ext.release();
445 return;
446 }
447 }
448
449 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
450 {
451 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
452 runtime->EndThreadBirth();
453 }
454 // Manually delete the global reference since Thread::Init will not have been run.
455 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
456 child_thread->tlsPtr_.jpeer = nullptr;
457 delete child_thread;
458 child_thread = nullptr;
459 // TODO: remove from thread group?
460 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
461 {
462 std::string msg(child_jni_env_ext.get() == nullptr ?
463 "Could not allocate JNI Env" :
464 StringPrintf("pthread_create (%s stack) failed: %s",
465 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
466 ScopedObjectAccess soa(env);
467 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
468 }
469 }
470
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)471 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
472 // This function does all the initialization that must be run by the native thread it applies to.
473 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
474 // we can handshake with the corresponding native thread when it's ready.) Check this native
475 // thread hasn't been through here already...
476 CHECK(Thread::Current() == nullptr);
477
478 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
479 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
480 tlsPtr_.pthread_self = pthread_self();
481 CHECK(is_started_);
482
483 SetUpAlternateSignalStack();
484 if (!InitStackHwm()) {
485 return false;
486 }
487 InitCpu();
488 InitTlsEntryPoints();
489 RemoveSuspendTrigger();
490 InitCardTable();
491 InitTid();
492
493 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
494 DCHECK_EQ(Thread::Current(), this);
495
496 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
497
498 if (jni_env_ext != nullptr) {
499 DCHECK_EQ(jni_env_ext->vm, java_vm);
500 DCHECK_EQ(jni_env_ext->self, this);
501 tlsPtr_.jni_env = jni_env_ext;
502 } else {
503 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
504 if (tlsPtr_.jni_env == nullptr) {
505 return false;
506 }
507 }
508
509 thread_list->Register(this);
510 return true;
511 }
512
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)513 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
514 bool create_peer) {
515 Runtime* runtime = Runtime::Current();
516 if (runtime == nullptr) {
517 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
518 return nullptr;
519 }
520 Thread* self;
521 {
522 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
523 if (runtime->IsShuttingDownLocked()) {
524 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
525 return nullptr;
526 } else {
527 Runtime::Current()->StartThreadBirth();
528 self = new Thread(as_daemon);
529 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
530 Runtime::Current()->EndThreadBirth();
531 if (!init_success) {
532 delete self;
533 return nullptr;
534 }
535 }
536 }
537
538 self->InitStringEntryPoints();
539
540 CHECK_NE(self->GetState(), kRunnable);
541 self->SetState(kNative);
542
543 // If we're the main thread, ClassLinker won't be created until after we're attached,
544 // so that thread needs a two-stage attach. Regular threads don't need this hack.
545 // In the compiler, all threads need this hack, because no-one's going to be getting
546 // a native peer!
547 if (create_peer) {
548 self->CreatePeer(thread_name, as_daemon, thread_group);
549 } else {
550 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
551 if (thread_name != nullptr) {
552 self->tlsPtr_.name->assign(thread_name);
553 ::art::SetThreadName(thread_name);
554 } else if (self->GetJniEnv()->check_jni) {
555 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
556 }
557 }
558
559 {
560 ScopedObjectAccess soa(self);
561 Dbg::PostThreadStart(self);
562 }
563
564 return self;
565 }
566
CreatePeer(const char * name,bool as_daemon,jobject thread_group)567 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
568 Runtime* runtime = Runtime::Current();
569 CHECK(runtime->IsStarted());
570 JNIEnv* env = tlsPtr_.jni_env;
571
572 if (thread_group == nullptr) {
573 thread_group = runtime->GetMainThreadGroup();
574 }
575 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
576 // Add missing null check in case of OOM b/18297817
577 if (name != nullptr && thread_name.get() == nullptr) {
578 CHECK(IsExceptionPending());
579 return;
580 }
581 jint thread_priority = GetNativePriority();
582 jboolean thread_is_daemon = as_daemon;
583
584 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
585 if (peer.get() == nullptr) {
586 CHECK(IsExceptionPending());
587 return;
588 }
589 {
590 ScopedObjectAccess soa(this);
591 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
592 }
593 env->CallNonvirtualVoidMethod(peer.get(),
594 WellKnownClasses::java_lang_Thread,
595 WellKnownClasses::java_lang_Thread_init,
596 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
597 AssertNoPendingException();
598
599 Thread* self = this;
600 DCHECK_EQ(self, Thread::Current());
601 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
602 reinterpret_cast<jlong>(self));
603
604 ScopedObjectAccess soa(self);
605 StackHandleScope<1> hs(self);
606 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
607 if (peer_thread_name.Get() == nullptr) {
608 // The Thread constructor should have set the Thread.name to a
609 // non-null value. However, because we can run without code
610 // available (in the compiler, in tests), we manually assign the
611 // fields the constructor should have set.
612 if (runtime->IsActiveTransaction()) {
613 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
614 } else {
615 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
616 }
617 peer_thread_name.Assign(GetThreadName(soa));
618 }
619 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
620 if (peer_thread_name.Get() != nullptr) {
621 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
622 }
623 }
624
625 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)626 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
627 jobject thread_name, jint thread_priority) {
628 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
629 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
630 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
631 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
632 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
633 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
634 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
635 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
636 }
637
SetThreadName(const char * name)638 void Thread::SetThreadName(const char* name) {
639 tlsPtr_.name->assign(name);
640 ::art::SetThreadName(name);
641 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
642 }
643
InitStackHwm()644 bool Thread::InitStackHwm() {
645 void* read_stack_base;
646 size_t read_stack_size;
647 size_t read_guard_size;
648 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
649
650 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
651 tlsPtr_.stack_size = read_stack_size;
652
653 // The minimum stack size we can cope with is the overflow reserved bytes (typically
654 // 8K) + the protected region size (4K) + another page (4K). Typically this will
655 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
656 // between 8K and 12K.
657 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
658 + 4 * KB;
659 if (read_stack_size <= min_stack) {
660 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
661 LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
662 "Attempt to attach a thread with a too-small stack");
663 return false;
664 }
665
666 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
667 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
668 read_stack_base,
669 PrettySize(read_stack_size).c_str(),
670 PrettySize(read_guard_size).c_str());
671
672 // Set stack_end_ to the bottom of the stack saving space of stack overflows
673
674 Runtime* runtime = Runtime::Current();
675 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
676 ResetDefaultStackEnd();
677
678 // Install the protected region if we are doing implicit overflow checks.
679 if (implicit_stack_check) {
680 // The thread might have protected region at the bottom. We need
681 // to install our own region so we need to move the limits
682 // of the stack to make room for it.
683
684 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
685 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
686 tlsPtr_.stack_size -= read_guard_size;
687
688 InstallImplicitProtection();
689 }
690
691 // Sanity check.
692 int stack_variable;
693 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
694
695 return true;
696 }
697
ShortDump(std::ostream & os) const698 void Thread::ShortDump(std::ostream& os) const {
699 os << "Thread[";
700 if (GetThreadId() != 0) {
701 // If we're in kStarting, we won't have a thin lock id or tid yet.
702 os << GetThreadId()
703 << ",tid=" << GetTid() << ',';
704 }
705 os << GetState()
706 << ",Thread*=" << this
707 << ",peer=" << tlsPtr_.opeer
708 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
709 << "]";
710 }
711
Dump(std::ostream & os) const712 void Thread::Dump(std::ostream& os) const {
713 DumpState(os);
714 DumpStack(os);
715 }
716
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const717 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
718 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
719 return (tlsPtr_.opeer != nullptr) ?
720 reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
721 }
722
GetThreadName(std::string & name) const723 void Thread::GetThreadName(std::string& name) const {
724 name.assign(*tlsPtr_.name);
725 }
726
GetCpuMicroTime() const727 uint64_t Thread::GetCpuMicroTime() const {
728 #if defined(__linux__)
729 clockid_t cpu_clock_id;
730 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
731 timespec now;
732 clock_gettime(cpu_clock_id, &now);
733 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
734 #else // __APPLE__
735 UNIMPLEMENTED(WARNING);
736 return -1;
737 #endif
738 }
739
740 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)741 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
742 LOG(ERROR) << *thread << " suspend count already zero.";
743 Locks::thread_suspend_count_lock_->Unlock(self);
744 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
745 Locks::mutator_lock_->SharedTryLock(self);
746 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
747 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
748 }
749 }
750 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
751 Locks::thread_list_lock_->TryLock(self);
752 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
753 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
754 }
755 }
756 std::ostringstream ss;
757 Runtime::Current()->GetThreadList()->Dump(ss);
758 LOG(FATAL) << ss.str();
759 }
760
ModifySuspendCount(Thread * self,int delta,bool for_debugger)761 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
762 if (kIsDebugBuild) {
763 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
764 << delta << " " << tls32_.debug_suspend_count << " " << this;
765 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
766 Locks::thread_suspend_count_lock_->AssertHeld(self);
767 if (this != self && !IsSuspended()) {
768 Locks::thread_list_lock_->AssertHeld(self);
769 }
770 }
771 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
772 UnsafeLogFatalForSuspendCount(self, this);
773 return;
774 }
775
776 tls32_.suspend_count += delta;
777 if (for_debugger) {
778 tls32_.debug_suspend_count += delta;
779 }
780
781 if (tls32_.suspend_count == 0) {
782 AtomicClearFlag(kSuspendRequest);
783 } else {
784 AtomicSetFlag(kSuspendRequest);
785 TriggerSuspend();
786 }
787 }
788
RunCheckpointFunction()789 void Thread::RunCheckpointFunction() {
790 Closure *checkpoints[kMaxCheckpoints];
791
792 // Grab the suspend_count lock and copy the current set of
793 // checkpoints. Then clear the list and the flag. The RequestCheckpoint
794 // function will also grab this lock so we prevent a race between setting
795 // the kCheckpointRequest flag and clearing it.
796 {
797 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
798 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
799 checkpoints[i] = tlsPtr_.checkpoint_functions[i];
800 tlsPtr_.checkpoint_functions[i] = nullptr;
801 }
802 AtomicClearFlag(kCheckpointRequest);
803 }
804
805 // Outside the lock, run all the checkpoint functions that
806 // we collected.
807 bool found_checkpoint = false;
808 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
809 if (checkpoints[i] != nullptr) {
810 ATRACE_BEGIN("Checkpoint function");
811 checkpoints[i]->Run(this);
812 ATRACE_END();
813 found_checkpoint = true;
814 }
815 }
816 CHECK(found_checkpoint);
817 }
818
RequestCheckpoint(Closure * function)819 bool Thread::RequestCheckpoint(Closure* function) {
820 union StateAndFlags old_state_and_flags;
821 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
822 if (old_state_and_flags.as_struct.state != kRunnable) {
823 return false; // Fail, thread is suspended and so can't run a checkpoint.
824 }
825
826 uint32_t available_checkpoint = kMaxCheckpoints;
827 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
828 if (tlsPtr_.checkpoint_functions[i] == nullptr) {
829 available_checkpoint = i;
830 break;
831 }
832 }
833 if (available_checkpoint == kMaxCheckpoints) {
834 // No checkpoint functions available, we can't run a checkpoint
835 return false;
836 }
837 tlsPtr_.checkpoint_functions[available_checkpoint] = function;
838
839 // Checkpoint function installed now install flag bit.
840 // We must be runnable to request a checkpoint.
841 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
842 union StateAndFlags new_state_and_flags;
843 new_state_and_flags.as_int = old_state_and_flags.as_int;
844 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
845 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
846 old_state_and_flags.as_int, new_state_and_flags.as_int);
847 if (UNLIKELY(!success)) {
848 // The thread changed state before the checkpoint was installed.
849 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
850 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
851 } else {
852 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
853 TriggerSuspend();
854 }
855 return success;
856 }
857
GetFlipFunction()858 Closure* Thread::GetFlipFunction() {
859 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
860 Closure* func;
861 do {
862 func = atomic_func->LoadRelaxed();
863 if (func == nullptr) {
864 return nullptr;
865 }
866 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
867 DCHECK(func != nullptr);
868 return func;
869 }
870
SetFlipFunction(Closure * function)871 void Thread::SetFlipFunction(Closure* function) {
872 CHECK(function != nullptr);
873 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
874 atomic_func->StoreSequentiallyConsistent(function);
875 }
876
FullSuspendCheck()877 void Thread::FullSuspendCheck() {
878 VLOG(threads) << this << " self-suspending";
879 ATRACE_BEGIN("Full suspend check");
880 // Make thread appear suspended to other threads, release mutator_lock_.
881 tls32_.suspended_at_suspend_check = true;
882 TransitionFromRunnableToSuspended(kSuspended);
883 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
884 TransitionFromSuspendedToRunnable();
885 tls32_.suspended_at_suspend_check = false;
886 ATRACE_END();
887 VLOG(threads) << this << " self-reviving";
888 }
889
DumpState(std::ostream & os,const Thread * thread,pid_t tid)890 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
891 std::string group_name;
892 int priority;
893 bool is_daemon = false;
894 Thread* self = Thread::Current();
895
896 // If flip_function is not null, it means we have run a checkpoint
897 // before the thread wakes up to execute the flip function and the
898 // thread roots haven't been forwarded. So the following access to
899 // the roots (opeer or methods in the frames) would be bad. Run it
900 // here. TODO: clean up.
901 if (thread != nullptr) {
902 ScopedObjectAccessUnchecked soa(self);
903 Thread* this_thread = const_cast<Thread*>(thread);
904 Closure* flip_func = this_thread->GetFlipFunction();
905 if (flip_func != nullptr) {
906 flip_func->Run(this_thread);
907 }
908 }
909
910 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
911 // cause ScopedObjectAccessUnchecked to deadlock.
912 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
913 ScopedObjectAccessUnchecked soa(self);
914 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
915 ->GetInt(thread->tlsPtr_.opeer);
916 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
917 ->GetBoolean(thread->tlsPtr_.opeer);
918
919 mirror::Object* thread_group =
920 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
921
922 if (thread_group != nullptr) {
923 ArtField* group_name_field =
924 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
925 mirror::String* group_name_string =
926 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
927 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
928 }
929 } else {
930 priority = GetNativePriority();
931 }
932
933 std::string scheduler_group_name(GetSchedulerGroupName(tid));
934 if (scheduler_group_name.empty()) {
935 scheduler_group_name = "default";
936 }
937
938 if (thread != nullptr) {
939 os << '"' << *thread->tlsPtr_.name << '"';
940 if (is_daemon) {
941 os << " daemon";
942 }
943 os << " prio=" << priority
944 << " tid=" << thread->GetThreadId()
945 << " " << thread->GetState();
946 if (thread->IsStillStarting()) {
947 os << " (still starting up)";
948 }
949 os << "\n";
950 } else {
951 os << '"' << ::art::GetThreadName(tid) << '"'
952 << " prio=" << priority
953 << " (not attached)\n";
954 }
955
956 if (thread != nullptr) {
957 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
958 os << " | group=\"" << group_name << "\""
959 << " sCount=" << thread->tls32_.suspend_count
960 << " dsCount=" << thread->tls32_.debug_suspend_count
961 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
962 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
963 }
964
965 os << " | sysTid=" << tid
966 << " nice=" << getpriority(PRIO_PROCESS, tid)
967 << " cgrp=" << scheduler_group_name;
968 if (thread != nullptr) {
969 int policy;
970 sched_param sp;
971 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
972 __FUNCTION__);
973 os << " sched=" << policy << "/" << sp.sched_priority
974 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
975 }
976 os << "\n";
977
978 // Grab the scheduler stats for this thread.
979 std::string scheduler_stats;
980 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
981 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
982 } else {
983 scheduler_stats = "0 0 0";
984 }
985
986 char native_thread_state = '?';
987 int utime = 0;
988 int stime = 0;
989 int task_cpu = 0;
990 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
991
992 os << " | state=" << native_thread_state
993 << " schedstat=( " << scheduler_stats << " )"
994 << " utm=" << utime
995 << " stm=" << stime
996 << " core=" << task_cpu
997 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
998 if (thread != nullptr) {
999 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1000 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1001 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1002 // Dump the held mutexes.
1003 os << " | held mutexes=";
1004 for (size_t i = 0; i < kLockLevelCount; ++i) {
1005 if (i != kMonitorLock) {
1006 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1007 if (mutex != nullptr) {
1008 os << " \"" << mutex->GetName() << "\"";
1009 if (mutex->IsReaderWriterMutex()) {
1010 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1011 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1012 os << "(exclusive held)";
1013 } else {
1014 os << "(shared held)";
1015 }
1016 }
1017 }
1018 }
1019 }
1020 os << "\n";
1021 }
1022 }
1023
DumpState(std::ostream & os) const1024 void Thread::DumpState(std::ostream& os) const {
1025 Thread::DumpState(os, this, GetTid());
1026 }
1027
1028 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1029 StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
1030 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1031 : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1032 os(os_in),
1033 thread(thread_in),
1034 can_allocate(can_allocate_in),
1035 last_method(nullptr),
1036 last_line_number(0),
1037 repetition_count(0),
1038 frame_count(0) {}
1039
~StackDumpVisitorart::StackDumpVisitor1040 virtual ~StackDumpVisitor() {
1041 if (frame_count == 0) {
1042 os << " (no managed stack frames)\n";
1043 }
1044 }
1045
VisitFrameart::StackDumpVisitor1046 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1047 ArtMethod* m = GetMethod();
1048 if (m->IsRuntimeMethod()) {
1049 return true;
1050 }
1051 m = m->GetInterfaceMethodIfProxy(sizeof(void*));
1052 const int kMaxRepetition = 3;
1053 mirror::Class* c = m->GetDeclaringClass();
1054 mirror::DexCache* dex_cache = c->GetDexCache();
1055 int line_number = -1;
1056 if (dex_cache != nullptr) { // be tolerant of bad input
1057 const DexFile& dex_file = *dex_cache->GetDexFile();
1058 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
1059 }
1060 if (line_number == last_line_number && last_method == m) {
1061 ++repetition_count;
1062 } else {
1063 if (repetition_count >= kMaxRepetition) {
1064 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1065 }
1066 repetition_count = 0;
1067 last_line_number = line_number;
1068 last_method = m;
1069 }
1070 if (repetition_count < kMaxRepetition) {
1071 os << " at " << PrettyMethod(m, false);
1072 if (m->IsNative()) {
1073 os << "(Native method)";
1074 } else {
1075 const char* source_file(m->GetDeclaringClassSourceFile());
1076 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1077 << ":" << line_number << ")";
1078 }
1079 os << "\n";
1080 if (frame_count == 0) {
1081 Monitor::DescribeWait(os, thread);
1082 }
1083 if (can_allocate) {
1084 // Visit locks, but do not abort on errors. This would trigger a nested abort.
1085 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1086 }
1087 }
1088
1089 ++frame_count;
1090 return true;
1091 }
1092
DumpLockedObjectart::StackDumpVisitor1093 static void DumpLockedObject(mirror::Object* o, void* context)
1094 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1095 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1096 os << " - locked ";
1097 if (o == nullptr) {
1098 os << "an unknown object";
1099 } else {
1100 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1101 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1102 // Getting the identity hashcode here would result in lock inflation and suspension of the
1103 // current thread, which isn't safe if this is the only runnable thread.
1104 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1105 PrettyTypeOf(o).c_str());
1106 } else {
1107 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1108 // we get the pretty type beofre we call IdentityHashCode.
1109 const std::string pretty_type(PrettyTypeOf(o));
1110 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1111 }
1112 }
1113 os << "\n";
1114 }
1115
1116 std::ostream& os;
1117 const Thread* thread;
1118 const bool can_allocate;
1119 ArtMethod* last_method;
1120 int last_line_number;
1121 int repetition_count;
1122 int frame_count;
1123 };
1124
ShouldShowNativeStack(const Thread * thread)1125 static bool ShouldShowNativeStack(const Thread* thread)
1126 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1127 ThreadState state = thread->GetState();
1128
1129 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1130 if (state > kWaiting && state < kStarting) {
1131 return true;
1132 }
1133
1134 // In an Object.wait variant or Thread.sleep? That's not interesting.
1135 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1136 return false;
1137 }
1138
1139 // Threads with no managed stack frames should be shown.
1140 const ManagedStack* managed_stack = thread->GetManagedStack();
1141 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1142 managed_stack->GetTopShadowFrame() == nullptr)) {
1143 return true;
1144 }
1145
1146 // In some other native method? That's interesting.
1147 // We don't just check kNative because native methods will be in state kSuspended if they're
1148 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1149 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1150 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1151 return current_method != nullptr && current_method->IsNative();
1152 }
1153
DumpJavaStack(std::ostream & os) const1154 void Thread::DumpJavaStack(std::ostream& os) const {
1155 // If flip_function is not null, it means we have run a checkpoint
1156 // before the thread wakes up to execute the flip function and the
1157 // thread roots haven't been forwarded. So the following access to
1158 // the roots (locks or methods in the frames) would be bad. Run it
1159 // here. TODO: clean up.
1160 {
1161 Thread* this_thread = const_cast<Thread*>(this);
1162 Closure* flip_func = this_thread->GetFlipFunction();
1163 if (flip_func != nullptr) {
1164 flip_func->Run(this_thread);
1165 }
1166 }
1167
1168 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1169 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1170 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1171 // thread.
1172 StackHandleScope<1> scope(Thread::Current());
1173 Handle<mirror::Throwable> exc;
1174 bool have_exception = false;
1175 if (IsExceptionPending()) {
1176 exc = scope.NewHandle(GetException());
1177 const_cast<Thread*>(this)->ClearException();
1178 have_exception = true;
1179 }
1180
1181 std::unique_ptr<Context> context(Context::Create());
1182 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1183 !tls32_.throwing_OutOfMemoryError);
1184 dumper.WalkStack();
1185
1186 if (have_exception) {
1187 const_cast<Thread*>(this)->SetException(exc.Get());
1188 }
1189 }
1190
DumpStack(std::ostream & os) const1191 void Thread::DumpStack(std::ostream& os) const {
1192 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1193 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1194 // the race with the thread_suspend_count_lock_).
1195 bool dump_for_abort = (gAborting > 0);
1196 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1197 if (!kIsDebugBuild) {
1198 // We always want to dump the stack for an abort, however, there is no point dumping another
1199 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1200 safe_to_dump = (safe_to_dump || dump_for_abort);
1201 }
1202 if (safe_to_dump) {
1203 // If we're currently in native code, dump that stack before dumping the managed stack.
1204 if (dump_for_abort || ShouldShowNativeStack(this)) {
1205 DumpKernelStack(os, GetTid(), " kernel: ", false);
1206 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1207 }
1208 DumpJavaStack(os);
1209 } else {
1210 os << "Not able to dump stack of thread that isn't suspended";
1211 }
1212 }
1213
ThreadExitCallback(void * arg)1214 void Thread::ThreadExitCallback(void* arg) {
1215 Thread* self = reinterpret_cast<Thread*>(arg);
1216 if (self->tls32_.thread_exit_check_count == 0) {
1217 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1218 "going to use a pthread_key_create destructor?): " << *self;
1219 CHECK(is_started_);
1220 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1221 self->tls32_.thread_exit_check_count = 1;
1222 } else {
1223 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1224 }
1225 }
1226
Startup()1227 void Thread::Startup() {
1228 CHECK(!is_started_);
1229 is_started_ = true;
1230 {
1231 // MutexLock to keep annotalysis happy.
1232 //
1233 // Note we use null for the thread because Thread::Current can
1234 // return garbage since (is_started_ == true) and
1235 // Thread::pthread_key_self_ is not yet initialized.
1236 // This was seen on glibc.
1237 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1238 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1239 *Locks::thread_suspend_count_lock_);
1240 }
1241
1242 // Allocate a TLS slot.
1243 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1244 "self key");
1245
1246 // Double-check the TLS slot allocation.
1247 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1248 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1249 }
1250 }
1251
FinishStartup()1252 void Thread::FinishStartup() {
1253 Runtime* runtime = Runtime::Current();
1254 CHECK(runtime->IsStarted());
1255
1256 // Finish attaching the main thread.
1257 ScopedObjectAccess soa(Thread::Current());
1258 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1259
1260 Runtime::Current()->GetClassLinker()->RunRootClinits();
1261 }
1262
Shutdown()1263 void Thread::Shutdown() {
1264 CHECK(is_started_);
1265 is_started_ = false;
1266 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1267 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1268 if (resume_cond_ != nullptr) {
1269 delete resume_cond_;
1270 resume_cond_ = nullptr;
1271 }
1272 }
1273
Thread(bool daemon)1274 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1275 wait_mutex_ = new Mutex("a thread wait mutex");
1276 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1277 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1278 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1279 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1280
1281 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1282 tls32_.state_and_flags.as_struct.flags = 0;
1283 tls32_.state_and_flags.as_struct.state = kNative;
1284 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1285 std::fill(tlsPtr_.rosalloc_runs,
1286 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1287 gc::allocator::RosAlloc::GetDedicatedFullRun());
1288 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1289 tlsPtr_.checkpoint_functions[i] = nullptr;
1290 }
1291 tlsPtr_.flip_function = nullptr;
1292 tls32_.suspended_at_suspend_check = false;
1293 }
1294
IsStillStarting() const1295 bool Thread::IsStillStarting() const {
1296 // You might think you can check whether the state is kStarting, but for much of thread startup,
1297 // the thread is in kNative; it might also be in kVmWait.
1298 // You might think you can check whether the peer is null, but the peer is actually created and
1299 // assigned fairly early on, and needs to be.
1300 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1301 // this thread _ever_ entered kRunnable".
1302 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1303 (*tlsPtr_.name == kThreadNameDuringStartup);
1304 }
1305
AssertPendingException() const1306 void Thread::AssertPendingException() const {
1307 CHECK(IsExceptionPending()) << "Pending exception expected.";
1308 }
1309
AssertPendingOOMException() const1310 void Thread::AssertPendingOOMException() const {
1311 AssertPendingException();
1312 auto* e = GetException();
1313 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
1314 << e->Dump();
1315 }
1316
AssertNoPendingException() const1317 void Thread::AssertNoPendingException() const {
1318 if (UNLIKELY(IsExceptionPending())) {
1319 ScopedObjectAccess soa(Thread::Current());
1320 mirror::Throwable* exception = GetException();
1321 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1322 }
1323 }
1324
AssertNoPendingExceptionForNewException(const char * msg) const1325 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1326 if (UNLIKELY(IsExceptionPending())) {
1327 ScopedObjectAccess soa(Thread::Current());
1328 mirror::Throwable* exception = GetException();
1329 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1330 << exception->Dump();
1331 }
1332 }
1333
1334 class MonitorExitVisitor : public SingleRootVisitor {
1335 public:
MonitorExitVisitor(Thread * self)1336 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
1337
1338 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)1339 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
1340 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1341 if (self_->HoldsLock(entered_monitor)) {
1342 LOG(WARNING) << "Calling MonitorExit on object "
1343 << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
1344 << " left locked by native thread "
1345 << *Thread::Current() << " which is detaching";
1346 entered_monitor->MonitorExit(self_);
1347 }
1348 }
1349
1350 private:
1351 Thread* const self_;
1352 };
1353
Destroy()1354 void Thread::Destroy() {
1355 Thread* self = this;
1356 DCHECK_EQ(self, Thread::Current());
1357
1358 if (tlsPtr_.jni_env != nullptr) {
1359 {
1360 ScopedObjectAccess soa(self);
1361 MonitorExitVisitor visitor(self);
1362 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1363 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
1364 }
1365 // Release locally held global references which releasing may require the mutator lock.
1366 if (tlsPtr_.jpeer != nullptr) {
1367 // If pthread_create fails we don't have a jni env here.
1368 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1369 tlsPtr_.jpeer = nullptr;
1370 }
1371 if (tlsPtr_.class_loader_override != nullptr) {
1372 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1373 tlsPtr_.class_loader_override = nullptr;
1374 }
1375 }
1376
1377 if (tlsPtr_.opeer != nullptr) {
1378 ScopedObjectAccess soa(self);
1379 // We may need to call user-supplied managed code, do this before final clean-up.
1380 HandleUncaughtExceptions(soa);
1381 RemoveFromThreadGroup(soa);
1382
1383 // this.nativePeer = 0;
1384 if (Runtime::Current()->IsActiveTransaction()) {
1385 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1386 ->SetLong<true>(tlsPtr_.opeer, 0);
1387 } else {
1388 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1389 ->SetLong<false>(tlsPtr_.opeer, 0);
1390 }
1391 Dbg::PostThreadDeath(self);
1392
1393 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1394 // who is waiting.
1395 mirror::Object* lock =
1396 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1397 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1398 if (lock != nullptr) {
1399 StackHandleScope<1> hs(self);
1400 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1401 ObjectLock<mirror::Object> locker(self, h_obj);
1402 locker.NotifyAll();
1403 }
1404 tlsPtr_.opeer = nullptr;
1405 }
1406
1407 {
1408 ScopedObjectAccess soa(self);
1409 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1410 }
1411 }
1412
~Thread()1413 Thread::~Thread() {
1414 CHECK(tlsPtr_.class_loader_override == nullptr);
1415 CHECK(tlsPtr_.jpeer == nullptr);
1416 CHECK(tlsPtr_.opeer == nullptr);
1417 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
1418 if (initialized) {
1419 delete tlsPtr_.jni_env;
1420 tlsPtr_.jni_env = nullptr;
1421 }
1422 CHECK_NE(GetState(), kRunnable);
1423 CHECK_NE(ReadFlag(kCheckpointRequest), true);
1424 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1425 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1426 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1427 CHECK(tlsPtr_.flip_function == nullptr);
1428 CHECK_EQ(tls32_.suspended_at_suspend_check, false);
1429
1430 // We may be deleting a still born thread.
1431 SetStateUnsafe(kTerminated);
1432
1433 delete wait_cond_;
1434 delete wait_mutex_;
1435
1436 if (tlsPtr_.long_jump_context != nullptr) {
1437 delete tlsPtr_.long_jump_context;
1438 }
1439
1440 if (initialized) {
1441 CleanupCpu();
1442 }
1443
1444 if (tlsPtr_.single_step_control != nullptr) {
1445 delete tlsPtr_.single_step_control;
1446 }
1447 delete tlsPtr_.instrumentation_stack;
1448 delete tlsPtr_.name;
1449 delete tlsPtr_.stack_trace_sample;
1450 free(tlsPtr_.nested_signal_state);
1451
1452 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1453
1454 TearDownAlternateSignalStack();
1455 }
1456
HandleUncaughtExceptions(ScopedObjectAccess & soa)1457 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1458 if (!IsExceptionPending()) {
1459 return;
1460 }
1461 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1462 ScopedThreadStateChange tsc(this, kNative);
1463
1464 // Get and clear the exception.
1465 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1466 tlsPtr_.jni_env->ExceptionClear();
1467
1468 // If the thread has its own handler, use that.
1469 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1470 tlsPtr_.jni_env->GetObjectField(peer.get(),
1471 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1472 if (handler.get() == nullptr) {
1473 // Otherwise use the thread group's default handler.
1474 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1475 WellKnownClasses::java_lang_Thread_group));
1476 }
1477
1478 // Call the handler.
1479 tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1480 WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
1481 peer.get(), exception.get());
1482
1483 // If the handler threw, clear that exception too.
1484 tlsPtr_.jni_env->ExceptionClear();
1485 }
1486
RemoveFromThreadGroup(ScopedObjectAccess & soa)1487 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1488 // this.group.removeThread(this);
1489 // group can be null if we're in the compiler or a test.
1490 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1491 ->GetObject(tlsPtr_.opeer);
1492 if (ogroup != nullptr) {
1493 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1494 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1495 ScopedThreadStateChange tsc(soa.Self(), kNative);
1496 tlsPtr_.jni_env->CallVoidMethod(group.get(),
1497 WellKnownClasses::java_lang_ThreadGroup_removeThread,
1498 peer.get());
1499 }
1500 }
1501
NumHandleReferences()1502 size_t Thread::NumHandleReferences() {
1503 size_t count = 0;
1504 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1505 count += cur->NumberOfReferences();
1506 }
1507 return count;
1508 }
1509
HandleScopeContains(jobject obj) const1510 bool Thread::HandleScopeContains(jobject obj) const {
1511 StackReference<mirror::Object>* hs_entry =
1512 reinterpret_cast<StackReference<mirror::Object>*>(obj);
1513 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1514 if (cur->Contains(hs_entry)) {
1515 return true;
1516 }
1517 }
1518 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1519 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1520 }
1521
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)1522 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
1523 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1524 visitor, RootInfo(kRootNativeStack, thread_id));
1525 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1526 for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
1527 // GetReference returns a pointer to the stack reference within the handle scope. If this
1528 // needs to be updated, it will be done by the root visitor.
1529 buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
1530 }
1531 }
1532 }
1533
DecodeJObject(jobject obj) const1534 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1535 if (obj == nullptr) {
1536 return nullptr;
1537 }
1538 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1539 IndirectRefKind kind = GetIndirectRefKind(ref);
1540 mirror::Object* result;
1541 bool expect_null = false;
1542 // The "kinds" below are sorted by the frequency we expect to encounter them.
1543 if (kind == kLocal) {
1544 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1545 // Local references do not need a read barrier.
1546 result = locals.Get<kWithoutReadBarrier>(ref);
1547 } else if (kind == kHandleScopeOrInvalid) {
1548 // TODO: make stack indirect reference table lookup more efficient.
1549 // Check if this is a local reference in the handle scope.
1550 if (LIKELY(HandleScopeContains(obj))) {
1551 // Read from handle scope.
1552 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1553 VerifyObject(result);
1554 } else {
1555 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1556 expect_null = true;
1557 result = nullptr;
1558 }
1559 } else if (kind == kGlobal) {
1560 result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref);
1561 } else {
1562 DCHECK_EQ(kind, kWeakGlobal);
1563 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1564 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1565 // This is a special case where it's okay to return null.
1566 expect_null = true;
1567 result = nullptr;
1568 }
1569 }
1570
1571 if (UNLIKELY(!expect_null && result == nullptr)) {
1572 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1573 ToStr<IndirectRefKind>(kind).c_str(), obj);
1574 }
1575 return result;
1576 }
1577
1578 // Implements java.lang.Thread.interrupted.
Interrupted()1579 bool Thread::Interrupted() {
1580 MutexLock mu(Thread::Current(), *wait_mutex_);
1581 bool interrupted = IsInterruptedLocked();
1582 SetInterruptedLocked(false);
1583 return interrupted;
1584 }
1585
1586 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1587 bool Thread::IsInterrupted() {
1588 MutexLock mu(Thread::Current(), *wait_mutex_);
1589 return IsInterruptedLocked();
1590 }
1591
Interrupt(Thread * self)1592 void Thread::Interrupt(Thread* self) {
1593 MutexLock mu(self, *wait_mutex_);
1594 if (interrupted_) {
1595 return;
1596 }
1597 interrupted_ = true;
1598 NotifyLocked(self);
1599 }
1600
Notify()1601 void Thread::Notify() {
1602 Thread* self = Thread::Current();
1603 MutexLock mu(self, *wait_mutex_);
1604 NotifyLocked(self);
1605 }
1606
NotifyLocked(Thread * self)1607 void Thread::NotifyLocked(Thread* self) {
1608 if (wait_monitor_ != nullptr) {
1609 wait_cond_->Signal(self);
1610 }
1611 }
1612
SetClassLoaderOverride(jobject class_loader_override)1613 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1614 if (tlsPtr_.class_loader_override != nullptr) {
1615 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1616 }
1617 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1618 }
1619
1620 class CountStackDepthVisitor : public StackVisitor {
1621 public:
1622 explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1623 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1624 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1625 depth_(0), skip_depth_(0), skipping_(true) {}
1626
VisitFrame()1627 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1628 // We want to skip frames up to and including the exception's constructor.
1629 // Note we also skip the frame if it doesn't have a method (namely the callee
1630 // save frame)
1631 ArtMethod* m = GetMethod();
1632 if (skipping_ && !m->IsRuntimeMethod() &&
1633 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1634 skipping_ = false;
1635 }
1636 if (!skipping_) {
1637 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1638 ++depth_;
1639 }
1640 } else {
1641 ++skip_depth_;
1642 }
1643 return true;
1644 }
1645
GetDepth() const1646 int GetDepth() const {
1647 return depth_;
1648 }
1649
GetSkipDepth() const1650 int GetSkipDepth() const {
1651 return skip_depth_;
1652 }
1653
1654 private:
1655 uint32_t depth_;
1656 uint32_t skip_depth_;
1657 bool skipping_;
1658 };
1659
1660 template<bool kTransactionActive>
1661 class BuildInternalStackTraceVisitor : public StackVisitor {
1662 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1663 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1664 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1665 self_(self),
1666 skip_depth_(skip_depth),
1667 count_(0),
1668 trace_(nullptr),
1669 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
1670
Init(int depth)1671 bool Init(int depth)
1672 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1673 // Allocate method trace with format [method pointers][pcs].
1674 auto* cl = Runtime::Current()->GetClassLinker();
1675 trace_ = cl->AllocPointerArray(self_, depth * 2);
1676 if (trace_ == nullptr) {
1677 self_->AssertPendingOOMException();
1678 return false;
1679 }
1680 // If We are called from native, use non-transactional mode.
1681 const char* last_no_suspend_cause =
1682 self_->StartAssertNoThreadSuspension("Building internal stack trace");
1683 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1684 return true;
1685 }
1686
~BuildInternalStackTraceVisitor()1687 virtual ~BuildInternalStackTraceVisitor() {
1688 if (trace_ != nullptr) {
1689 self_->EndAssertNoThreadSuspension(nullptr);
1690 }
1691 }
1692
VisitFrame()1693 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1694 if (trace_ == nullptr) {
1695 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1696 }
1697 if (skip_depth_ > 0) {
1698 skip_depth_--;
1699 return true;
1700 }
1701 ArtMethod* m = GetMethod();
1702 if (m->IsRuntimeMethod()) {
1703 return true; // Ignore runtime frames (in particular callee save).
1704 }
1705 trace_->SetElementPtrSize<kTransactionActive>(
1706 count_, m, pointer_size_);
1707 trace_->SetElementPtrSize<kTransactionActive>(
1708 trace_->GetLength() / 2 + count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
1709 pointer_size_);
1710 ++count_;
1711 return true;
1712 }
1713
GetInternalStackTrace() const1714 mirror::PointerArray* GetInternalStackTrace() const {
1715 return trace_;
1716 }
1717
1718 private:
1719 Thread* const self_;
1720 // How many more frames to skip.
1721 int32_t skip_depth_;
1722 // Current position down stack trace.
1723 uint32_t count_;
1724 // An array of the methods on the stack, the last entries are the dex PCs.
1725 mirror::PointerArray* trace_;
1726 // For cross compilation.
1727 size_t pointer_size_;
1728 };
1729
1730 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1731 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1732 // Compute depth of stack
1733 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1734 count_visitor.WalkStack();
1735 int32_t depth = count_visitor.GetDepth();
1736 int32_t skip_depth = count_visitor.GetSkipDepth();
1737
1738 // Build internal stack trace.
1739 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1740 const_cast<Thread*>(this),
1741 skip_depth);
1742 if (!build_trace_visitor.Init(depth)) {
1743 return nullptr; // Allocation failed.
1744 }
1745 build_trace_visitor.WalkStack();
1746 mirror::PointerArray* trace = build_trace_visitor.GetInternalStackTrace();
1747 if (kIsDebugBuild) {
1748 // Second half is dex PCs.
1749 for (uint32_t i = 0; i < static_cast<uint32_t>(trace->GetLength() / 2); ++i) {
1750 auto* method = trace->GetElementPtrSize<ArtMethod*>(
1751 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1752 CHECK(method != nullptr);
1753 }
1754 }
1755 return soa.AddLocalReference<jobject>(trace);
1756 }
1757 template jobject Thread::CreateInternalStackTrace<false>(
1758 const ScopedObjectAccessAlreadyRunnable& soa) const;
1759 template jobject Thread::CreateInternalStackTrace<true>(
1760 const ScopedObjectAccessAlreadyRunnable& soa) const;
1761
IsExceptionThrownByCurrentMethod(mirror::Throwable * exception) const1762 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
1763 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1764 count_visitor.WalkStack();
1765 return count_visitor.GetDepth() == exception->GetStackDepth();
1766 }
1767
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1768 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1769 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1770 int* stack_depth) {
1771 // Decode the internal stack trace into the depth, method trace and PC trace
1772 int32_t depth = soa.Decode<mirror::PointerArray*>(internal)->GetLength() / 2;
1773
1774 auto* cl = Runtime::Current()->GetClassLinker();
1775
1776 jobjectArray result;
1777
1778 if (output_array != nullptr) {
1779 // Reuse the array we were given.
1780 result = output_array;
1781 // ...adjusting the number of frames we'll write to not exceed the array length.
1782 const int32_t traces_length =
1783 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1784 depth = std::min(depth, traces_length);
1785 } else {
1786 // Create java_trace array and place in local reference table
1787 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1788 cl->AllocStackTraceElementArray(soa.Self(), depth);
1789 if (java_traces == nullptr) {
1790 return nullptr;
1791 }
1792 result = soa.AddLocalReference<jobjectArray>(java_traces);
1793 }
1794
1795 if (stack_depth != nullptr) {
1796 *stack_depth = depth;
1797 }
1798
1799 for (int32_t i = 0; i < depth; ++i) {
1800 auto* method_trace = soa.Decode<mirror::PointerArray*>(internal);
1801 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1802 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
1803 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
1804 i + method_trace->GetLength() / 2, sizeof(void*));
1805 int32_t line_number;
1806 StackHandleScope<3> hs(soa.Self());
1807 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1808 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1809 if (method->IsProxyMethod()) {
1810 line_number = -1;
1811 class_name_object.Assign(method->GetDeclaringClass()->GetName());
1812 // source_name_object intentionally left null for proxy methods
1813 } else {
1814 line_number = method->GetLineNumFromDexPC(dex_pc);
1815 // Allocate element, potentially triggering GC
1816 // TODO: reuse class_name_object via Class::name_?
1817 const char* descriptor = method->GetDeclaringClassDescriptor();
1818 CHECK(descriptor != nullptr);
1819 std::string class_name(PrettyDescriptor(descriptor));
1820 class_name_object.Assign(
1821 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1822 if (class_name_object.Get() == nullptr) {
1823 soa.Self()->AssertPendingOOMException();
1824 return nullptr;
1825 }
1826 const char* source_file = method->GetDeclaringClassSourceFile();
1827 if (source_file != nullptr) {
1828 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1829 if (source_name_object.Get() == nullptr) {
1830 soa.Self()->AssertPendingOOMException();
1831 return nullptr;
1832 }
1833 }
1834 }
1835 const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
1836 CHECK(method_name != nullptr);
1837 Handle<mirror::String> method_name_object(
1838 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1839 if (method_name_object.Get() == nullptr) {
1840 return nullptr;
1841 }
1842 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1843 soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1844 if (obj == nullptr) {
1845 return nullptr;
1846 }
1847 // We are called from native: use non-transactional mode.
1848 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1849 }
1850 return result;
1851 }
1852
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)1853 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
1854 va_list args;
1855 va_start(args, fmt);
1856 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
1857 va_end(args);
1858 }
1859
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)1860 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
1861 const char* fmt, va_list ap) {
1862 std::string msg;
1863 StringAppendV(&msg, fmt, ap);
1864 ThrowNewException(exception_class_descriptor, msg.c_str());
1865 }
1866
ThrowNewException(const char * exception_class_descriptor,const char * msg)1867 void Thread::ThrowNewException(const char* exception_class_descriptor,
1868 const char* msg) {
1869 // Callers should either clear or call ThrowNewWrappedException.
1870 AssertNoPendingExceptionForNewException(msg);
1871 ThrowNewWrappedException(exception_class_descriptor, msg);
1872 }
1873
GetCurrentClassLoader(Thread * self)1874 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
1875 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1876 ArtMethod* method = self->GetCurrentMethod(nullptr);
1877 return method != nullptr
1878 ? method->GetDeclaringClass()->GetClassLoader()
1879 : nullptr;
1880 }
1881
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)1882 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
1883 const char* msg) {
1884 DCHECK_EQ(this, Thread::Current());
1885 ScopedObjectAccessUnchecked soa(this);
1886 StackHandleScope<3> hs(soa.Self());
1887 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
1888 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
1889 ClearException();
1890 Runtime* runtime = Runtime::Current();
1891 auto* cl = runtime->GetClassLinker();
1892 Handle<mirror::Class> exception_class(
1893 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
1894 if (UNLIKELY(exception_class.Get() == nullptr)) {
1895 CHECK(IsExceptionPending());
1896 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1897 return;
1898 }
1899
1900 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
1901 true))) {
1902 DCHECK(IsExceptionPending());
1903 return;
1904 }
1905 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1906 Handle<mirror::Throwable> exception(
1907 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1908
1909 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1910 if (exception.Get() == nullptr) {
1911 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1912 return;
1913 }
1914
1915 // Choose an appropriate constructor and set up the arguments.
1916 const char* signature;
1917 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1918 if (msg != nullptr) {
1919 // Ensure we remember this and the method over the String allocation.
1920 msg_string.reset(
1921 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1922 if (UNLIKELY(msg_string.get() == nullptr)) {
1923 CHECK(IsExceptionPending()); // OOME.
1924 return;
1925 }
1926 if (cause.get() == nullptr) {
1927 signature = "(Ljava/lang/String;)V";
1928 } else {
1929 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1930 }
1931 } else {
1932 if (cause.get() == nullptr) {
1933 signature = "()V";
1934 } else {
1935 signature = "(Ljava/lang/Throwable;)V";
1936 }
1937 }
1938 ArtMethod* exception_init_method =
1939 exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
1940
1941 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1942 << PrettyDescriptor(exception_class_descriptor);
1943
1944 if (UNLIKELY(!runtime->IsStarted())) {
1945 // Something is trying to throw an exception without a started runtime, which is the common
1946 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1947 // the exception fields directly.
1948 if (msg != nullptr) {
1949 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1950 }
1951 if (cause.get() != nullptr) {
1952 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1953 }
1954 ScopedLocalRef<jobject> trace(GetJniEnv(),
1955 Runtime::Current()->IsActiveTransaction()
1956 ? CreateInternalStackTrace<true>(soa)
1957 : CreateInternalStackTrace<false>(soa));
1958 if (trace.get() != nullptr) {
1959 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1960 }
1961 SetException(exception.Get());
1962 } else {
1963 jvalue jv_args[2];
1964 size_t i = 0;
1965
1966 if (msg != nullptr) {
1967 jv_args[i].l = msg_string.get();
1968 ++i;
1969 }
1970 if (cause.get() != nullptr) {
1971 jv_args[i].l = cause.get();
1972 ++i;
1973 }
1974 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
1975 InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
1976 if (LIKELY(!IsExceptionPending())) {
1977 SetException(exception.Get());
1978 }
1979 }
1980 }
1981
ThrowOutOfMemoryError(const char * msg)1982 void Thread::ThrowOutOfMemoryError(const char* msg) {
1983 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1984 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1985 if (!tls32_.throwing_OutOfMemoryError) {
1986 tls32_.throwing_OutOfMemoryError = true;
1987 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
1988 tls32_.throwing_OutOfMemoryError = false;
1989 } else {
1990 Dump(LOG(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
1991 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1992 }
1993 }
1994
CurrentFromGdb()1995 Thread* Thread::CurrentFromGdb() {
1996 return Thread::Current();
1997 }
1998
DumpFromGdb() const1999 void Thread::DumpFromGdb() const {
2000 std::ostringstream ss;
2001 Dump(ss);
2002 std::string str(ss.str());
2003 // log to stderr for debugging command line processes
2004 std::cerr << str;
2005 #ifdef HAVE_ANDROID_OS
2006 // log to logcat for debugging frameworks processes
2007 LOG(INFO) << str;
2008 #endif
2009 }
2010
2011 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2012 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
2013 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
2014
2015 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2016 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2017 #define DO_THREAD_OFFSET(x, y) \
2018 if (offset == x.Uint32Value()) { \
2019 os << y; \
2020 return; \
2021 }
2022 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2023 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2024 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2025 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2026 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2027 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2028 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2029 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2030 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2031 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2032 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2033 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2034 #undef DO_THREAD_OFFSET
2035
2036 #define INTERPRETER_ENTRY_POINT_INFO(x) \
2037 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2038 os << #x; \
2039 return; \
2040 }
2041 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
2042 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
2043 #undef INTERPRETER_ENTRY_POINT_INFO
2044
2045 #define JNI_ENTRY_POINT_INFO(x) \
2046 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2047 os << #x; \
2048 return; \
2049 }
2050 JNI_ENTRY_POINT_INFO(pDlsymLookup)
2051 #undef JNI_ENTRY_POINT_INFO
2052
2053 #define QUICK_ENTRY_POINT_INFO(x) \
2054 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2055 os << #x; \
2056 return; \
2057 }
2058 QUICK_ENTRY_POINT_INFO(pAllocArray)
2059 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2060 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
2061 QUICK_ENTRY_POINT_INFO(pAllocObject)
2062 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2063 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2064 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
2065 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
2066 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
2067 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2068 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2069 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2070 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2071 QUICK_ENTRY_POINT_INFO(pCheckCast)
2072 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2073 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2074 QUICK_ENTRY_POINT_INFO(pInitializeType)
2075 QUICK_ENTRY_POINT_INFO(pResolveString)
2076 QUICK_ENTRY_POINT_INFO(pSet8Instance)
2077 QUICK_ENTRY_POINT_INFO(pSet8Static)
2078 QUICK_ENTRY_POINT_INFO(pSet16Instance)
2079 QUICK_ENTRY_POINT_INFO(pSet16Static)
2080 QUICK_ENTRY_POINT_INFO(pSet32Instance)
2081 QUICK_ENTRY_POINT_INFO(pSet32Static)
2082 QUICK_ENTRY_POINT_INFO(pSet64Instance)
2083 QUICK_ENTRY_POINT_INFO(pSet64Static)
2084 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2085 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2086 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2087 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2088 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2089 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2090 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2091 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2092 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2093 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2094 QUICK_ENTRY_POINT_INFO(pGet32Instance)
2095 QUICK_ENTRY_POINT_INFO(pGet32Static)
2096 QUICK_ENTRY_POINT_INFO(pGet64Instance)
2097 QUICK_ENTRY_POINT_INFO(pGet64Static)
2098 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2099 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2100 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
2101 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
2102 QUICK_ENTRY_POINT_INFO(pAputObject)
2103 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
2104 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2105 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2106 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2107 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2108 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2109 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2110 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2111 QUICK_ENTRY_POINT_INFO(pLockObject)
2112 QUICK_ENTRY_POINT_INFO(pUnlockObject)
2113 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2114 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2115 QUICK_ENTRY_POINT_INFO(pCmplDouble)
2116 QUICK_ENTRY_POINT_INFO(pCmplFloat)
2117 QUICK_ENTRY_POINT_INFO(pFmod)
2118 QUICK_ENTRY_POINT_INFO(pL2d)
2119 QUICK_ENTRY_POINT_INFO(pFmodf)
2120 QUICK_ENTRY_POINT_INFO(pL2f)
2121 QUICK_ENTRY_POINT_INFO(pD2iz)
2122 QUICK_ENTRY_POINT_INFO(pF2iz)
2123 QUICK_ENTRY_POINT_INFO(pIdivmod)
2124 QUICK_ENTRY_POINT_INFO(pD2l)
2125 QUICK_ENTRY_POINT_INFO(pF2l)
2126 QUICK_ENTRY_POINT_INFO(pLdiv)
2127 QUICK_ENTRY_POINT_INFO(pLmod)
2128 QUICK_ENTRY_POINT_INFO(pLmul)
2129 QUICK_ENTRY_POINT_INFO(pShlLong)
2130 QUICK_ENTRY_POINT_INFO(pShrLong)
2131 QUICK_ENTRY_POINT_INFO(pUshrLong)
2132 QUICK_ENTRY_POINT_INFO(pIndexOf)
2133 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2134 QUICK_ENTRY_POINT_INFO(pMemcpy)
2135 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2136 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2137 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2138 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2139 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2140 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2141 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2142 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2143 QUICK_ENTRY_POINT_INFO(pTestSuspend)
2144 QUICK_ENTRY_POINT_INFO(pDeliverException)
2145 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2146 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2147 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
2148 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2149 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2150 QUICK_ENTRY_POINT_INFO(pDeoptimize)
2151 QUICK_ENTRY_POINT_INFO(pA64Load)
2152 QUICK_ENTRY_POINT_INFO(pA64Store)
2153 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2154 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2155 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2156 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2157 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2158 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2159 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2160 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2161 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2162 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2163 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2164 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2165 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2166 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2167 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2168 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2169 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2170 #undef QUICK_ENTRY_POINT_INFO
2171
2172 os << offset;
2173 }
2174
QuickDeliverException()2175 void Thread::QuickDeliverException() {
2176 // Get exception from thread.
2177 mirror::Throwable* exception = GetException();
2178 CHECK(exception != nullptr);
2179 // Don't leave exception visible while we try to find the handler, which may cause class
2180 // resolution.
2181 ClearException();
2182 bool is_deoptimization = (exception == GetDeoptimizationException());
2183 QuickExceptionHandler exception_handler(this, is_deoptimization);
2184 if (is_deoptimization) {
2185 exception_handler.DeoptimizeStack();
2186 } else {
2187 exception_handler.FindCatch(exception);
2188 }
2189 exception_handler.UpdateInstrumentationStack();
2190 exception_handler.DoLongJump();
2191 }
2192
GetLongJumpContext()2193 Context* Thread::GetLongJumpContext() {
2194 Context* result = tlsPtr_.long_jump_context;
2195 if (result == nullptr) {
2196 result = Context::Create();
2197 } else {
2198 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
2199 result->Reset();
2200 }
2201 return result;
2202 }
2203
2204 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
2205 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
2206 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL2207 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
2208 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2209 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2210 this_object_(nullptr),
2211 method_(nullptr),
2212 dex_pc_(0),
2213 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL2214 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2215 ArtMethod* m = GetMethod();
2216 if (m->IsRuntimeMethod()) {
2217 // Continue if this is a runtime method.
2218 return true;
2219 }
2220 if (context_ != nullptr) {
2221 this_object_ = GetThisObject();
2222 }
2223 method_ = m;
2224 dex_pc_ = GetDexPc(abort_on_error_);
2225 return false;
2226 }
2227 mirror::Object* this_object_;
2228 ArtMethod* method_;
2229 uint32_t dex_pc_;
2230 const bool abort_on_error_;
2231 };
2232
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2233 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2234 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2235 visitor.WalkStack(false);
2236 if (dex_pc != nullptr) {
2237 *dex_pc = visitor.dex_pc_;
2238 }
2239 return visitor.method_;
2240 }
2241
HoldsLock(mirror::Object * object) const2242 bool Thread::HoldsLock(mirror::Object* object) const {
2243 if (object == nullptr) {
2244 return false;
2245 }
2246 return object->GetLockOwnerThreadId() == GetThreadId();
2247 }
2248
2249 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2250 template <typename RootVisitor>
2251 class ReferenceMapVisitor : public StackVisitor {
2252 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)2253 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
2254 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2255 // We are visiting the references in compiled frames, so we do not need
2256 // to know the inlined frames.
2257 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2258 visitor_(visitor) {}
2259
VisitFrame()2260 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2261 if (false) {
2262 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2263 << StringPrintf("@ PC:%04x", GetDexPc());
2264 }
2265 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2266 if (shadow_frame != nullptr) {
2267 VisitShadowFrame(shadow_frame);
2268 } else {
2269 VisitQuickFrame();
2270 }
2271 return true;
2272 }
2273
VisitShadowFrame(ShadowFrame * shadow_frame)2274 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2275 ArtMethod* m = shadow_frame->GetMethod();
2276 DCHECK(m != nullptr);
2277 size_t num_regs = shadow_frame->NumberOfVRegs();
2278 if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2279 // handle scope for JNI or References for interpreter.
2280 for (size_t reg = 0; reg < num_regs; ++reg) {
2281 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2282 if (ref != nullptr) {
2283 mirror::Object* new_ref = ref;
2284 visitor_(&new_ref, reg, this);
2285 if (new_ref != ref) {
2286 shadow_frame->SetVRegReference(reg, new_ref);
2287 }
2288 }
2289 }
2290 } else {
2291 // Java method.
2292 // Portable path use DexGcMap and store in Method.native_gc_map_.
2293 const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
2294 CHECK(gc_map != nullptr) << PrettyMethod(m);
2295 verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2296 uint32_t dex_pc = shadow_frame->GetDexPC();
2297 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2298 DCHECK(reg_bitmap != nullptr);
2299 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2300 for (size_t reg = 0; reg < num_regs; ++reg) {
2301 if (TestBitmap(reg, reg_bitmap)) {
2302 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2303 if (ref != nullptr) {
2304 mirror::Object* new_ref = ref;
2305 visitor_(&new_ref, reg, this);
2306 if (new_ref != ref) {
2307 shadow_frame->SetVRegReference(reg, new_ref);
2308 }
2309 }
2310 }
2311 }
2312 }
2313 }
2314
2315 private:
VisitQuickFrame()2316 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2317 auto* cur_quick_frame = GetCurrentQuickFrame();
2318 DCHECK(cur_quick_frame != nullptr);
2319 auto* m = *cur_quick_frame;
2320
2321 // Process register map (which native and runtime methods don't have)
2322 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2323 if (m->IsOptimized(sizeof(void*))) {
2324 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
2325 reinterpret_cast<uintptr_t>(cur_quick_frame));
2326 Runtime* runtime = Runtime::Current();
2327 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2328 uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
2329 CodeInfo code_info = m->GetOptimizedCodeInfo();
2330 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
2331 MemoryRegion mask = map.GetStackMask(code_info);
2332 // Visit stack entries that hold pointers.
2333 for (size_t i = 0; i < mask.size_in_bits(); ++i) {
2334 if (mask.LoadBit(i)) {
2335 auto* ref_addr = vreg_base + i;
2336 mirror::Object* ref = ref_addr->AsMirrorPtr();
2337 if (ref != nullptr) {
2338 mirror::Object* new_ref = ref;
2339 visitor_(&new_ref, -1, this);
2340 if (ref != new_ref) {
2341 ref_addr->Assign(new_ref);
2342 }
2343 }
2344 }
2345 }
2346 // Visit callee-save registers that hold pointers.
2347 uint32_t register_mask = map.GetRegisterMask(code_info);
2348 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
2349 if (register_mask & (1 << i)) {
2350 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
2351 if (*ref_addr != nullptr) {
2352 visitor_(ref_addr, -1, this);
2353 }
2354 }
2355 }
2356 } else {
2357 const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
2358 CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2359 const DexFile::CodeItem* code_item = m->GetCodeItem();
2360 // Can't be null or how would we compile its instructions?
2361 DCHECK(code_item != nullptr) << PrettyMethod(m);
2362 NativePcOffsetToReferenceMap map(native_gc_map);
2363 size_t num_regs = std::min(map.RegWidth() * 8,
2364 static_cast<size_t>(code_item->registers_size_));
2365 if (num_regs > 0) {
2366 Runtime* runtime = Runtime::Current();
2367 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2368 uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
2369 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2370 DCHECK(reg_bitmap != nullptr);
2371 const void* code_pointer = ArtMethod::EntryPointToCodePointer(entry_point);
2372 const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
2373 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2374 // For all dex registers in the bitmap
2375 DCHECK(cur_quick_frame != nullptr);
2376 for (size_t reg = 0; reg < num_regs; ++reg) {
2377 // Does this register hold a reference?
2378 if (TestBitmap(reg, reg_bitmap)) {
2379 uint32_t vmap_offset;
2380 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2381 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2382 kReferenceVReg);
2383 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2384 mirror::Object** ref_addr =
2385 reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2386 if (*ref_addr != nullptr) {
2387 visitor_(ref_addr, reg, this);
2388 }
2389 } else {
2390 StackReference<mirror::Object>* ref_addr =
2391 reinterpret_cast<StackReference<mirror::Object>*>(GetVRegAddrFromQuickCode(
2392 cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2393 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2394 mirror::Object* ref = ref_addr->AsMirrorPtr();
2395 if (ref != nullptr) {
2396 mirror::Object* new_ref = ref;
2397 visitor_(&new_ref, reg, this);
2398 if (ref != new_ref) {
2399 ref_addr->Assign(new_ref);
2400 }
2401 }
2402 }
2403 }
2404 }
2405 }
2406 }
2407 }
2408 }
2409
2410 // Visitor for when we visit a root.
2411 RootVisitor& visitor_;
2412 };
2413
2414 class RootCallbackVisitor {
2415 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)2416 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
2417
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2418 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
2419 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2420 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2421 }
2422
2423 private:
2424 RootVisitor* const visitor_;
2425 const uint32_t tid_;
2426 };
2427
VisitRoots(RootVisitor * visitor)2428 void Thread::VisitRoots(RootVisitor* visitor) {
2429 const uint32_t thread_id = GetThreadId();
2430 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
2431 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2432 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
2433 RootInfo(kRootNativeStack, thread_id));
2434 }
2435 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
2436 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
2437 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
2438 HandleScopeVisitRoots(visitor, thread_id);
2439 if (tlsPtr_.debug_invoke_req != nullptr) {
2440 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
2441 }
2442 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
2443 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2444 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2445 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
2446 record != nullptr;
2447 record = record->GetLink()) {
2448 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
2449 shadow_frame != nullptr;
2450 shadow_frame = shadow_frame->GetLink()) {
2451 mapper.VisitShadowFrame(shadow_frame);
2452 }
2453 }
2454 }
2455 if (tlsPtr_.deoptimization_return_value_stack != nullptr) {
2456 for (DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
2457 record != nullptr;
2458 record = record->GetLink()) {
2459 if (record->IsReference()) {
2460 visitor->VisitRootIfNonNull(record->GetGCRoot(),
2461 RootInfo(kRootThreadObject, thread_id));
2462 }
2463 }
2464 }
2465 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
2466 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
2467 }
2468 // Visit roots on this thread's stack
2469 Context* context = GetLongJumpContext();
2470 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2471 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2472 mapper.WalkStack();
2473 ReleaseLongJumpContext(context);
2474 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2475 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
2476 }
2477 }
2478
2479 class VerifyRootVisitor : public SingleRootVisitor {
2480 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)2481 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
2482 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2483 VerifyObject(root);
2484 }
2485 };
2486
VerifyStackImpl()2487 void Thread::VerifyStackImpl() {
2488 VerifyRootVisitor visitor;
2489 std::unique_ptr<Context> context(Context::Create());
2490 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
2491 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
2492 mapper.WalkStack();
2493 }
2494
2495 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2496 void Thread::SetStackEndForStackOverflow() {
2497 // During stack overflow we allow use of the full stack.
2498 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2499 // However, we seem to have already extended to use the full stack.
2500 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2501 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2502 DumpStack(LOG(ERROR));
2503 LOG(FATAL) << "Recursive stack overflow.";
2504 }
2505
2506 tlsPtr_.stack_end = tlsPtr_.stack_begin;
2507
2508 // Remove the stack overflow protection if is it set up.
2509 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2510 if (implicit_stack_check) {
2511 if (!UnprotectStack()) {
2512 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2513 }
2514 }
2515 }
2516
SetTlab(uint8_t * start,uint8_t * end)2517 void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2518 DCHECK_LE(start, end);
2519 tlsPtr_.thread_local_start = start;
2520 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
2521 tlsPtr_.thread_local_end = end;
2522 tlsPtr_.thread_local_objects = 0;
2523 }
2524
HasTlab() const2525 bool Thread::HasTlab() const {
2526 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2527 if (has_tlab) {
2528 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2529 } else {
2530 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2531 }
2532 return has_tlab;
2533 }
2534
operator <<(std::ostream & os,const Thread & thread)2535 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2536 thread.ShortDump(os);
2537 return os;
2538 }
2539
ProtectStack()2540 void Thread::ProtectStack() {
2541 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2542 VLOG(threads) << "Protecting stack at " << pregion;
2543 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2544 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2545 "Reason: "
2546 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
2547 }
2548 }
2549
UnprotectStack()2550 bool Thread::UnprotectStack() {
2551 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2552 VLOG(threads) << "Unprotecting stack at " << pregion;
2553 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2554 }
2555
ActivateSingleStepControl(SingleStepControl * ssc)2556 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
2557 CHECK(Dbg::IsDebuggerActive());
2558 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
2559 CHECK(ssc != nullptr);
2560 tlsPtr_.single_step_control = ssc;
2561 }
2562
DeactivateSingleStepControl()2563 void Thread::DeactivateSingleStepControl() {
2564 CHECK(Dbg::IsDebuggerActive());
2565 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
2566 SingleStepControl* ssc = GetSingleStepControl();
2567 tlsPtr_.single_step_control = nullptr;
2568 delete ssc;
2569 }
2570
SetDebugInvokeReq(DebugInvokeReq * req)2571 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
2572 CHECK(Dbg::IsDebuggerActive());
2573 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
2574 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
2575 CHECK(req != nullptr);
2576 tlsPtr_.debug_invoke_req = req;
2577 }
2578
ClearDebugInvokeReq()2579 void Thread::ClearDebugInvokeReq() {
2580 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
2581 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
2582 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
2583 tlsPtr_.debug_invoke_req = nullptr;
2584 delete req;
2585 }
2586
PushVerifier(verifier::MethodVerifier * verifier)2587 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
2588 verifier->link_ = tlsPtr_.method_verifier;
2589 tlsPtr_.method_verifier = verifier;
2590 }
2591
PopVerifier(verifier::MethodVerifier * verifier)2592 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
2593 CHECK_EQ(tlsPtr_.method_verifier, verifier);
2594 tlsPtr_.method_verifier = verifier->link_;
2595 }
2596
2597 } // namespace art
2598