1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "utils.h"
18
19 #include <inttypes.h>
20 #include <pthread.h>
21 #include <sys/stat.h>
22 #include <sys/syscall.h>
23 #include <sys/types.h>
24 #include <sys/wait.h>
25 #include <unistd.h>
26 #include <memory>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/stl_util.h"
31 #include "base/unix_file/fd_file.h"
32 #include "dex_file-inl.h"
33 #include "mirror/class-inl.h"
34 #include "mirror/class_loader.h"
35 #include "mirror/object-inl.h"
36 #include "mirror/object_array-inl.h"
37 #include "mirror/string.h"
38 #include "os.h"
39 #include "scoped_thread_state_change.h"
40 #include "utf-inl.h"
41
42 #if defined(__APPLE__)
43 #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED
44 #include <sys/syscall.h>
45 #endif
46
47 #include <backtrace/Backtrace.h> // For DumpNativeStack.
48
49 #if defined(__linux__)
50 #include <linux/unistd.h>
51 #endif
52
53 namespace art {
54
55 #if defined(__linux__)
56 static constexpr bool kUseAddr2line = !kIsTargetBuild;
57 #endif
58
GetTid()59 pid_t GetTid() {
60 #if defined(__APPLE__)
61 uint64_t owner;
62 CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6
63 return owner;
64 #elif defined(__BIONIC__)
65 return gettid();
66 #else
67 return syscall(__NR_gettid);
68 #endif
69 }
70
GetThreadName(pid_t tid)71 std::string GetThreadName(pid_t tid) {
72 std::string result;
73 if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
74 result.resize(result.size() - 1); // Lose the trailing '\n'.
75 } else {
76 result = "<unknown>";
77 }
78 return result;
79 }
80
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)81 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
82 #if defined(__APPLE__)
83 *stack_size = pthread_get_stacksize_np(thread);
84 void* stack_addr = pthread_get_stackaddr_np(thread);
85
86 // Check whether stack_addr is the base or end of the stack.
87 // (On Mac OS 10.7, it's the end.)
88 int stack_variable;
89 if (stack_addr > &stack_variable) {
90 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
91 } else {
92 *stack_base = stack_addr;
93 }
94
95 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
96 pthread_attr_t attributes;
97 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
98 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
99 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
100 #else
101 pthread_attr_t attributes;
102 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
103 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
104 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
105 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
106
107 #if defined(__GLIBC__)
108 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
109 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
110 // will be broken because we'll die long before we get close to 2GB.
111 bool is_main_thread = (::art::GetTid() == getpid());
112 if (is_main_thread) {
113 rlimit stack_limit;
114 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
115 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
116 }
117 if (stack_limit.rlim_cur == RLIM_INFINITY) {
118 size_t old_stack_size = *stack_size;
119
120 // Use the kernel default limit as our size, and adjust the base to match.
121 *stack_size = 8 * MB;
122 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
123
124 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
125 << " to " << PrettySize(*stack_size)
126 << " with base " << *stack_base;
127 }
128 }
129 #endif
130
131 #endif
132 }
133
ReadFileToString(const std::string & file_name,std::string * result)134 bool ReadFileToString(const std::string& file_name, std::string* result) {
135 File file;
136 if (!file.Open(file_name, O_RDONLY)) {
137 return false;
138 }
139
140 std::vector<char> buf(8 * KB);
141 while (true) {
142 int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size()));
143 if (n == -1) {
144 return false;
145 }
146 if (n == 0) {
147 return true;
148 }
149 result->append(&buf[0], n);
150 }
151 }
152
PrintFileToLog(const std::string & file_name,LogSeverity level)153 bool PrintFileToLog(const std::string& file_name, LogSeverity level) {
154 File file;
155 if (!file.Open(file_name, O_RDONLY)) {
156 return false;
157 }
158
159 constexpr size_t kBufSize = 256; // Small buffer. Avoid stack overflow and stack size warnings.
160 char buf[kBufSize + 1]; // +1 for terminator.
161 size_t filled_to = 0;
162 while (true) {
163 DCHECK_LT(filled_to, kBufSize);
164 int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to));
165 if (n <= 0) {
166 // Print the rest of the buffer, if it exists.
167 if (filled_to > 0) {
168 buf[filled_to] = 0;
169 LOG(level) << buf;
170 }
171 return n == 0;
172 }
173 // Scan for '\n'.
174 size_t i = filled_to;
175 bool found_newline = false;
176 for (; i < filled_to + n; ++i) {
177 if (buf[i] == '\n') {
178 // Found a line break, that's something to print now.
179 buf[i] = 0;
180 LOG(level) << buf;
181 // Copy the rest to the front.
182 if (i + 1 < filled_to + n) {
183 memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1);
184 filled_to = filled_to + n - i - 1;
185 } else {
186 filled_to = 0;
187 }
188 found_newline = true;
189 break;
190 }
191 }
192 if (found_newline) {
193 continue;
194 } else {
195 filled_to += n;
196 // Check if we must flush now.
197 if (filled_to == kBufSize) {
198 buf[kBufSize] = 0;
199 LOG(level) << buf;
200 filled_to = 0;
201 }
202 }
203 }
204 }
205
PrettyDescriptor(mirror::String * java_descriptor)206 std::string PrettyDescriptor(mirror::String* java_descriptor) {
207 if (java_descriptor == nullptr) {
208 return "null";
209 }
210 return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
211 }
212
PrettyDescriptor(mirror::Class * klass)213 std::string PrettyDescriptor(mirror::Class* klass) {
214 if (klass == nullptr) {
215 return "null";
216 }
217 std::string temp;
218 return PrettyDescriptor(klass->GetDescriptor(&temp));
219 }
220
PrettyDescriptor(const char * descriptor)221 std::string PrettyDescriptor(const char* descriptor) {
222 // Count the number of '['s to get the dimensionality.
223 const char* c = descriptor;
224 size_t dim = 0;
225 while (*c == '[') {
226 dim++;
227 c++;
228 }
229
230 // Reference or primitive?
231 if (*c == 'L') {
232 // "[[La/b/C;" -> "a.b.C[][]".
233 c++; // Skip the 'L'.
234 } else {
235 // "[[B" -> "byte[][]".
236 // To make life easier, we make primitives look like unqualified
237 // reference types.
238 switch (*c) {
239 case 'B': c = "byte;"; break;
240 case 'C': c = "char;"; break;
241 case 'D': c = "double;"; break;
242 case 'F': c = "float;"; break;
243 case 'I': c = "int;"; break;
244 case 'J': c = "long;"; break;
245 case 'S': c = "short;"; break;
246 case 'Z': c = "boolean;"; break;
247 case 'V': c = "void;"; break; // Used when decoding return types.
248 default: return descriptor;
249 }
250 }
251
252 // At this point, 'c' is a string of the form "fully/qualified/Type;"
253 // or "primitive;". Rewrite the type with '.' instead of '/':
254 std::string result;
255 const char* p = c;
256 while (*p != ';') {
257 char ch = *p++;
258 if (ch == '/') {
259 ch = '.';
260 }
261 result.push_back(ch);
262 }
263 // ...and replace the semicolon with 'dim' "[]" pairs:
264 for (size_t i = 0; i < dim; ++i) {
265 result += "[]";
266 }
267 return result;
268 }
269
PrettyField(ArtField * f,bool with_type)270 std::string PrettyField(ArtField* f, bool with_type) {
271 if (f == nullptr) {
272 return "null";
273 }
274 std::string result;
275 if (with_type) {
276 result += PrettyDescriptor(f->GetTypeDescriptor());
277 result += ' ';
278 }
279 std::string temp;
280 result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp));
281 result += '.';
282 result += f->GetName();
283 return result;
284 }
285
PrettyField(uint32_t field_idx,const DexFile & dex_file,bool with_type)286 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
287 if (field_idx >= dex_file.NumFieldIds()) {
288 return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
289 }
290 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
291 std::string result;
292 if (with_type) {
293 result += dex_file.GetFieldTypeDescriptor(field_id);
294 result += ' ';
295 }
296 result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
297 result += '.';
298 result += dex_file.GetFieldName(field_id);
299 return result;
300 }
301
PrettyType(uint32_t type_idx,const DexFile & dex_file)302 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
303 if (type_idx >= dex_file.NumTypeIds()) {
304 return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
305 }
306 const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
307 return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
308 }
309
PrettyArguments(const char * signature)310 std::string PrettyArguments(const char* signature) {
311 std::string result;
312 result += '(';
313 CHECK_EQ(*signature, '(');
314 ++signature; // Skip the '('.
315 while (*signature != ')') {
316 size_t argument_length = 0;
317 while (signature[argument_length] == '[') {
318 ++argument_length;
319 }
320 if (signature[argument_length] == 'L') {
321 argument_length = (strchr(signature, ';') - signature + 1);
322 } else {
323 ++argument_length;
324 }
325 {
326 std::string argument_descriptor(signature, argument_length);
327 result += PrettyDescriptor(argument_descriptor.c_str());
328 }
329 if (signature[argument_length] != ')') {
330 result += ", ";
331 }
332 signature += argument_length;
333 }
334 CHECK_EQ(*signature, ')');
335 ++signature; // Skip the ')'.
336 result += ')';
337 return result;
338 }
339
PrettyReturnType(const char * signature)340 std::string PrettyReturnType(const char* signature) {
341 const char* return_type = strchr(signature, ')');
342 CHECK(return_type != nullptr);
343 ++return_type; // Skip ')'.
344 return PrettyDescriptor(return_type);
345 }
346
PrettyMethod(ArtMethod * m,bool with_signature)347 std::string PrettyMethod(ArtMethod* m, bool with_signature) {
348 if (m == nullptr) {
349 return "null";
350 }
351 if (!m->IsRuntimeMethod()) {
352 m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize());
353 }
354 std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
355 result += '.';
356 result += m->GetName();
357 if (UNLIKELY(m->IsFastNative())) {
358 result += "!";
359 }
360 if (with_signature) {
361 const Signature signature = m->GetSignature();
362 std::string sig_as_string(signature.ToString());
363 if (signature == Signature::NoSignature()) {
364 return result + sig_as_string;
365 }
366 result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
367 PrettyArguments(sig_as_string.c_str());
368 }
369 return result;
370 }
371
PrettyMethod(uint32_t method_idx,const DexFile & dex_file,bool with_signature)372 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
373 if (method_idx >= dex_file.NumMethodIds()) {
374 return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
375 }
376 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
377 std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
378 result += '.';
379 result += dex_file.GetMethodName(method_id);
380 if (with_signature) {
381 const Signature signature = dex_file.GetMethodSignature(method_id);
382 std::string sig_as_string(signature.ToString());
383 if (signature == Signature::NoSignature()) {
384 return result + sig_as_string;
385 }
386 result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
387 PrettyArguments(sig_as_string.c_str());
388 }
389 return result;
390 }
391
PrettyTypeOf(mirror::Object * obj)392 std::string PrettyTypeOf(mirror::Object* obj) {
393 if (obj == nullptr) {
394 return "null";
395 }
396 if (obj->GetClass() == nullptr) {
397 return "(raw)";
398 }
399 std::string temp;
400 std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
401 if (obj->IsClass()) {
402 result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
403 }
404 return result;
405 }
406
PrettyClass(mirror::Class * c)407 std::string PrettyClass(mirror::Class* c) {
408 if (c == nullptr) {
409 return "null";
410 }
411 std::string result;
412 result += "java.lang.Class<";
413 result += PrettyDescriptor(c);
414 result += ">";
415 return result;
416 }
417
PrettyClassAndClassLoader(mirror::Class * c)418 std::string PrettyClassAndClassLoader(mirror::Class* c) {
419 if (c == nullptr) {
420 return "null";
421 }
422 std::string result;
423 result += "java.lang.Class<";
424 result += PrettyDescriptor(c);
425 result += ",";
426 result += PrettyTypeOf(c->GetClassLoader());
427 // TODO: add an identifying hash value for the loader
428 result += ">";
429 return result;
430 }
431
PrettyJavaAccessFlags(uint32_t access_flags)432 std::string PrettyJavaAccessFlags(uint32_t access_flags) {
433 std::string result;
434 if ((access_flags & kAccPublic) != 0) {
435 result += "public ";
436 }
437 if ((access_flags & kAccProtected) != 0) {
438 result += "protected ";
439 }
440 if ((access_flags & kAccPrivate) != 0) {
441 result += "private ";
442 }
443 if ((access_flags & kAccFinal) != 0) {
444 result += "final ";
445 }
446 if ((access_flags & kAccStatic) != 0) {
447 result += "static ";
448 }
449 if ((access_flags & kAccTransient) != 0) {
450 result += "transient ";
451 }
452 if ((access_flags & kAccVolatile) != 0) {
453 result += "volatile ";
454 }
455 if ((access_flags & kAccSynchronized) != 0) {
456 result += "synchronized ";
457 }
458 return result;
459 }
460
PrettySize(int64_t byte_count)461 std::string PrettySize(int64_t byte_count) {
462 // The byte thresholds at which we display amounts. A byte count is displayed
463 // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
464 static const int64_t kUnitThresholds[] = {
465 0, // B up to...
466 3*1024, // KB up to...
467 2*1024*1024, // MB up to...
468 1024*1024*1024 // GB from here.
469 };
470 static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
471 static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
472 const char* negative_str = "";
473 if (byte_count < 0) {
474 negative_str = "-";
475 byte_count = -byte_count;
476 }
477 int i = arraysize(kUnitThresholds);
478 while (--i > 0) {
479 if (byte_count >= kUnitThresholds[i]) {
480 break;
481 }
482 }
483 return StringPrintf("%s%" PRId64 "%s",
484 negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
485 }
486
PrintableChar(uint16_t ch)487 std::string PrintableChar(uint16_t ch) {
488 std::string result;
489 result += '\'';
490 if (NeedsEscaping(ch)) {
491 StringAppendF(&result, "\\u%04x", ch);
492 } else {
493 result += ch;
494 }
495 result += '\'';
496 return result;
497 }
498
PrintableString(const char * utf)499 std::string PrintableString(const char* utf) {
500 std::string result;
501 result += '"';
502 const char* p = utf;
503 size_t char_count = CountModifiedUtf8Chars(p);
504 for (size_t i = 0; i < char_count; ++i) {
505 uint32_t ch = GetUtf16FromUtf8(&p);
506 if (ch == '\\') {
507 result += "\\\\";
508 } else if (ch == '\n') {
509 result += "\\n";
510 } else if (ch == '\r') {
511 result += "\\r";
512 } else if (ch == '\t') {
513 result += "\\t";
514 } else {
515 const uint16_t leading = GetLeadingUtf16Char(ch);
516
517 if (NeedsEscaping(leading)) {
518 StringAppendF(&result, "\\u%04x", leading);
519 } else {
520 result += leading;
521 }
522
523 const uint32_t trailing = GetTrailingUtf16Char(ch);
524 if (trailing != 0) {
525 // All high surrogates will need escaping.
526 StringAppendF(&result, "\\u%04x", trailing);
527 }
528 }
529 }
530 result += '"';
531 return result;
532 }
533
534 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)535 std::string MangleForJni(const std::string& s) {
536 std::string result;
537 size_t char_count = CountModifiedUtf8Chars(s.c_str());
538 const char* cp = &s[0];
539 for (size_t i = 0; i < char_count; ++i) {
540 uint32_t ch = GetUtf16FromUtf8(&cp);
541 if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
542 result.push_back(ch);
543 } else if (ch == '.' || ch == '/') {
544 result += "_";
545 } else if (ch == '_') {
546 result += "_1";
547 } else if (ch == ';') {
548 result += "_2";
549 } else if (ch == '[') {
550 result += "_3";
551 } else {
552 const uint16_t leading = GetLeadingUtf16Char(ch);
553 const uint32_t trailing = GetTrailingUtf16Char(ch);
554
555 StringAppendF(&result, "_0%04x", leading);
556 if (trailing != 0) {
557 StringAppendF(&result, "_0%04x", trailing);
558 }
559 }
560 }
561 return result;
562 }
563
DotToDescriptor(const char * class_name)564 std::string DotToDescriptor(const char* class_name) {
565 std::string descriptor(class_name);
566 std::replace(descriptor.begin(), descriptor.end(), '.', '/');
567 if (descriptor.length() > 0 && descriptor[0] != '[') {
568 descriptor = "L" + descriptor + ";";
569 }
570 return descriptor;
571 }
572
DescriptorToDot(const char * descriptor)573 std::string DescriptorToDot(const char* descriptor) {
574 size_t length = strlen(descriptor);
575 if (length > 1) {
576 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
577 // Descriptors have the leading 'L' and trailing ';' stripped.
578 std::string result(descriptor + 1, length - 2);
579 std::replace(result.begin(), result.end(), '/', '.');
580 return result;
581 } else {
582 // For arrays the 'L' and ';' remain intact.
583 std::string result(descriptor);
584 std::replace(result.begin(), result.end(), '/', '.');
585 return result;
586 }
587 }
588 // Do nothing for non-class/array descriptors.
589 return descriptor;
590 }
591
DescriptorToName(const char * descriptor)592 std::string DescriptorToName(const char* descriptor) {
593 size_t length = strlen(descriptor);
594 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
595 std::string result(descriptor + 1, length - 2);
596 return result;
597 }
598 return descriptor;
599 }
600
JniShortName(ArtMethod * m)601 std::string JniShortName(ArtMethod* m) {
602 std::string class_name(m->GetDeclaringClassDescriptor());
603 // Remove the leading 'L' and trailing ';'...
604 CHECK_EQ(class_name[0], 'L') << class_name;
605 CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
606 class_name.erase(0, 1);
607 class_name.erase(class_name.size() - 1, 1);
608
609 std::string method_name(m->GetName());
610
611 std::string short_name;
612 short_name += "Java_";
613 short_name += MangleForJni(class_name);
614 short_name += "_";
615 short_name += MangleForJni(method_name);
616 return short_name;
617 }
618
JniLongName(ArtMethod * m)619 std::string JniLongName(ArtMethod* m) {
620 std::string long_name;
621 long_name += JniShortName(m);
622 long_name += "__";
623
624 std::string signature(m->GetSignature().ToString());
625 signature.erase(0, 1);
626 signature.erase(signature.begin() + signature.find(')'), signature.end());
627
628 long_name += MangleForJni(signature);
629
630 return long_name;
631 }
632
633 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
634 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
635 0x00000000, // 00..1f low control characters; nothing valid
636 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
637 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
638 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
639 };
640
641 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)642 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
643 /*
644 * It's a multibyte encoded character. Decode it and analyze. We
645 * accept anything that isn't (a) an improperly encoded low value,
646 * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
647 * control character, or (e) a high space, layout, or special
648 * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
649 * U+fff0..U+ffff). This is all specified in the dex format
650 * document.
651 */
652
653 const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
654 const uint16_t leading = GetLeadingUtf16Char(pair);
655
656 // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
657 // No further checks are necessary because 4 byte sequences span code
658 // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
659 // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
660 // the surrogate halves are valid and well formed in this instance.
661 if (GetTrailingUtf16Char(pair) != 0) {
662 return true;
663 }
664
665
666 // We've encountered a one, two or three byte UTF-8 sequence. The
667 // three byte UTF-8 sequence could be one half of a surrogate pair.
668 switch (leading >> 8) {
669 case 0x00:
670 // It's only valid if it's above the ISO-8859-1 high space (0xa0).
671 return (leading > 0x00a0);
672 case 0xd8:
673 case 0xd9:
674 case 0xda:
675 case 0xdb:
676 {
677 // We found a three byte sequence encoding one half of a surrogate.
678 // Look for the other half.
679 const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
680 const uint16_t trailing = GetLeadingUtf16Char(pair2);
681
682 return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
683 }
684 case 0xdc:
685 case 0xdd:
686 case 0xde:
687 case 0xdf:
688 // It's a trailing surrogate, which is not valid at this point.
689 return false;
690 case 0x20:
691 case 0xff:
692 // It's in the range that has spaces, controls, and specials.
693 switch (leading & 0xfff8) {
694 case 0x2000:
695 case 0x2008:
696 case 0x2028:
697 case 0xfff0:
698 case 0xfff8:
699 return false;
700 }
701 return true;
702 default:
703 return true;
704 }
705
706 UNREACHABLE();
707 }
708
709 /* Return whether the pointed-at modified-UTF-8 encoded character is
710 * valid as part of a member name, updating the pointer to point past
711 * the consumed character. This will consume two encoded UTF-16 code
712 * points if the character is encoded as a surrogate pair. Also, if
713 * this function returns false, then the given pointer may only have
714 * been partially advanced.
715 */
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)716 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
717 uint8_t c = (uint8_t) **pUtf8Ptr;
718 if (LIKELY(c <= 0x7f)) {
719 // It's low-ascii, so check the table.
720 uint32_t wordIdx = c >> 5;
721 uint32_t bitIdx = c & 0x1f;
722 (*pUtf8Ptr)++;
723 return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
724 }
725
726 // It's a multibyte encoded character. Call a non-inline function
727 // for the heavy lifting.
728 return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
729 }
730
IsValidMemberName(const char * s)731 bool IsValidMemberName(const char* s) {
732 bool angle_name = false;
733
734 switch (*s) {
735 case '\0':
736 // The empty string is not a valid name.
737 return false;
738 case '<':
739 angle_name = true;
740 s++;
741 break;
742 }
743
744 while (true) {
745 switch (*s) {
746 case '\0':
747 return !angle_name;
748 case '>':
749 return angle_name && s[1] == '\0';
750 }
751
752 if (!IsValidPartOfMemberNameUtf8(&s)) {
753 return false;
754 }
755 }
756 }
757
758 enum ClassNameType { kName, kDescriptor };
759 template<ClassNameType kType, char kSeparator>
IsValidClassName(const char * s)760 static bool IsValidClassName(const char* s) {
761 int arrayCount = 0;
762 while (*s == '[') {
763 arrayCount++;
764 s++;
765 }
766
767 if (arrayCount > 255) {
768 // Arrays may have no more than 255 dimensions.
769 return false;
770 }
771
772 ClassNameType type = kType;
773 if (type != kDescriptor && arrayCount != 0) {
774 /*
775 * If we're looking at an array of some sort, then it doesn't
776 * matter if what is being asked for is a class name; the
777 * format looks the same as a type descriptor in that case, so
778 * treat it as such.
779 */
780 type = kDescriptor;
781 }
782
783 if (type == kDescriptor) {
784 /*
785 * We are looking for a descriptor. Either validate it as a
786 * single-character primitive type, or continue on to check the
787 * embedded class name (bracketed by "L" and ";").
788 */
789 switch (*(s++)) {
790 case 'B':
791 case 'C':
792 case 'D':
793 case 'F':
794 case 'I':
795 case 'J':
796 case 'S':
797 case 'Z':
798 // These are all single-character descriptors for primitive types.
799 return (*s == '\0');
800 case 'V':
801 // Non-array void is valid, but you can't have an array of void.
802 return (arrayCount == 0) && (*s == '\0');
803 case 'L':
804 // Class name: Break out and continue below.
805 break;
806 default:
807 // Oddball descriptor character.
808 return false;
809 }
810 }
811
812 /*
813 * We just consumed the 'L' that introduces a class name as part
814 * of a type descriptor, or we are looking for an unadorned class
815 * name.
816 */
817
818 bool sepOrFirst = true; // first character or just encountered a separator.
819 for (;;) {
820 uint8_t c = (uint8_t) *s;
821 switch (c) {
822 case '\0':
823 /*
824 * Premature end for a type descriptor, but valid for
825 * a class name as long as we haven't encountered an
826 * empty component (including the degenerate case of
827 * the empty string "").
828 */
829 return (type == kName) && !sepOrFirst;
830 case ';':
831 /*
832 * Invalid character for a class name, but the
833 * legitimate end of a type descriptor. In the latter
834 * case, make sure that this is the end of the string
835 * and that it doesn't end with an empty component
836 * (including the degenerate case of "L;").
837 */
838 return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
839 case '/':
840 case '.':
841 if (c != kSeparator) {
842 // The wrong separator character.
843 return false;
844 }
845 if (sepOrFirst) {
846 // Separator at start or two separators in a row.
847 return false;
848 }
849 sepOrFirst = true;
850 s++;
851 break;
852 default:
853 if (!IsValidPartOfMemberNameUtf8(&s)) {
854 return false;
855 }
856 sepOrFirst = false;
857 break;
858 }
859 }
860 }
861
IsValidBinaryClassName(const char * s)862 bool IsValidBinaryClassName(const char* s) {
863 return IsValidClassName<kName, '.'>(s);
864 }
865
IsValidJniClassName(const char * s)866 bool IsValidJniClassName(const char* s) {
867 return IsValidClassName<kName, '/'>(s);
868 }
869
IsValidDescriptor(const char * s)870 bool IsValidDescriptor(const char* s) {
871 return IsValidClassName<kDescriptor, '/'>(s);
872 }
873
Split(const std::string & s,char separator,std::vector<std::string> * result)874 void Split(const std::string& s, char separator, std::vector<std::string>* result) {
875 const char* p = s.data();
876 const char* end = p + s.size();
877 while (p != end) {
878 if (*p == separator) {
879 ++p;
880 } else {
881 const char* start = p;
882 while (++p != end && *p != separator) {
883 // Skip to the next occurrence of the separator.
884 }
885 result->push_back(std::string(start, p - start));
886 }
887 }
888 }
889
Trim(const std::string & s)890 std::string Trim(const std::string& s) {
891 std::string result;
892 unsigned int start_index = 0;
893 unsigned int end_index = s.size() - 1;
894
895 // Skip initial whitespace.
896 while (start_index < s.size()) {
897 if (!isspace(s[start_index])) {
898 break;
899 }
900 start_index++;
901 }
902
903 // Skip terminating whitespace.
904 while (end_index >= start_index) {
905 if (!isspace(s[end_index])) {
906 break;
907 }
908 end_index--;
909 }
910
911 // All spaces, no beef.
912 if (end_index < start_index) {
913 return "";
914 }
915 // Start_index is the first non-space, end_index is the last one.
916 return s.substr(start_index, end_index - start_index + 1);
917 }
918
919 template <typename StringT>
Join(const std::vector<StringT> & strings,char separator)920 std::string Join(const std::vector<StringT>& strings, char separator) {
921 if (strings.empty()) {
922 return "";
923 }
924
925 std::string result(strings[0]);
926 for (size_t i = 1; i < strings.size(); ++i) {
927 result += separator;
928 result += strings[i];
929 }
930 return result;
931 }
932
933 // Explicit instantiations.
934 template std::string Join<std::string>(const std::vector<std::string>& strings, char separator);
935 template std::string Join<const char*>(const std::vector<const char*>& strings, char separator);
936
StartsWith(const std::string & s,const char * prefix)937 bool StartsWith(const std::string& s, const char* prefix) {
938 return s.compare(0, strlen(prefix), prefix) == 0;
939 }
940
EndsWith(const std::string & s,const char * suffix)941 bool EndsWith(const std::string& s, const char* suffix) {
942 size_t suffix_length = strlen(suffix);
943 size_t string_length = s.size();
944 if (suffix_length > string_length) {
945 return false;
946 }
947 size_t offset = string_length - suffix_length;
948 return s.compare(offset, suffix_length, suffix) == 0;
949 }
950
SetThreadName(const char * thread_name)951 void SetThreadName(const char* thread_name) {
952 int hasAt = 0;
953 int hasDot = 0;
954 const char* s = thread_name;
955 while (*s) {
956 if (*s == '.') {
957 hasDot = 1;
958 } else if (*s == '@') {
959 hasAt = 1;
960 }
961 s++;
962 }
963 int len = s - thread_name;
964 if (len < 15 || hasAt || !hasDot) {
965 s = thread_name;
966 } else {
967 s = thread_name + len - 15;
968 }
969 #if defined(__linux__)
970 // pthread_setname_np fails rather than truncating long strings.
971 char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel.
972 strncpy(buf, s, sizeof(buf)-1);
973 buf[sizeof(buf)-1] = '\0';
974 errno = pthread_setname_np(pthread_self(), buf);
975 if (errno != 0) {
976 PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
977 }
978 #else // __APPLE__
979 pthread_setname_np(thread_name);
980 #endif
981 }
982
GetTaskStats(pid_t tid,char * state,int * utime,int * stime,int * task_cpu)983 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
984 *utime = *stime = *task_cpu = 0;
985 std::string stats;
986 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
987 return;
988 }
989 // Skip the command, which may contain spaces.
990 stats = stats.substr(stats.find(')') + 2);
991 // Extract the three fields we care about.
992 std::vector<std::string> fields;
993 Split(stats, ' ', &fields);
994 *state = fields[0][0];
995 *utime = strtoull(fields[11].c_str(), nullptr, 10);
996 *stime = strtoull(fields[12].c_str(), nullptr, 10);
997 *task_cpu = strtoull(fields[36].c_str(), nullptr, 10);
998 }
999
GetSchedulerGroupName(pid_t tid)1000 std::string GetSchedulerGroupName(pid_t tid) {
1001 // /proc/<pid>/cgroup looks like this:
1002 // 2:devices:/
1003 // 1:cpuacct,cpu:/
1004 // We want the third field from the line whose second field contains the "cpu" token.
1005 std::string cgroup_file;
1006 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1007 return "";
1008 }
1009 std::vector<std::string> cgroup_lines;
1010 Split(cgroup_file, '\n', &cgroup_lines);
1011 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1012 std::vector<std::string> cgroup_fields;
1013 Split(cgroup_lines[i], ':', &cgroup_fields);
1014 std::vector<std::string> cgroups;
1015 Split(cgroup_fields[1], ',', &cgroups);
1016 for (size_t j = 0; j < cgroups.size(); ++j) {
1017 if (cgroups[j] == "cpu") {
1018 return cgroup_fields[2].substr(1); // Skip the leading slash.
1019 }
1020 }
1021 }
1022 return "";
1023 }
1024
1025 #if defined(__linux__)
1026
1027 ALWAYS_INLINE
WritePrefix(std::ostream * os,const char * prefix,bool odd)1028 static inline void WritePrefix(std::ostream* os, const char* prefix, bool odd) {
1029 if (prefix != nullptr) {
1030 *os << prefix;
1031 }
1032 *os << " ";
1033 if (!odd) {
1034 *os << " ";
1035 }
1036 }
1037
RunCommand(std::string cmd,std::ostream * os,const char * prefix)1038 static bool RunCommand(std::string cmd, std::ostream* os, const char* prefix) {
1039 FILE* stream = popen(cmd.c_str(), "r");
1040 if (stream) {
1041 if (os != nullptr) {
1042 bool odd_line = true; // We indent them differently.
1043 bool wrote_prefix = false; // Have we already written a prefix?
1044 constexpr size_t kMaxBuffer = 128; // Relatively small buffer. Should be OK as we're on an
1045 // alt stack, but just to be sure...
1046 char buffer[kMaxBuffer];
1047 while (!feof(stream)) {
1048 if (fgets(buffer, kMaxBuffer, stream) != nullptr) {
1049 // Split on newlines.
1050 char* tmp = buffer;
1051 for (;;) {
1052 char* new_line = strchr(tmp, '\n');
1053 if (new_line == nullptr) {
1054 // Print the rest.
1055 if (*tmp != 0) {
1056 if (!wrote_prefix) {
1057 WritePrefix(os, prefix, odd_line);
1058 }
1059 wrote_prefix = true;
1060 *os << tmp;
1061 }
1062 break;
1063 }
1064 if (!wrote_prefix) {
1065 WritePrefix(os, prefix, odd_line);
1066 }
1067 char saved = *(new_line + 1);
1068 *(new_line + 1) = 0;
1069 *os << tmp;
1070 *(new_line + 1) = saved;
1071 tmp = new_line + 1;
1072 odd_line = !odd_line;
1073 wrote_prefix = false;
1074 }
1075 }
1076 }
1077 }
1078 pclose(stream);
1079 return true;
1080 } else {
1081 return false;
1082 }
1083 }
1084
Addr2line(const std::string & map_src,uintptr_t offset,std::ostream & os,const char * prefix)1085 static void Addr2line(const std::string& map_src, uintptr_t offset, std::ostream& os,
1086 const char* prefix) {
1087 std::string cmdline(StringPrintf("addr2line --functions --inlines --demangle -e %s %zx",
1088 map_src.c_str(), offset));
1089 RunCommand(cmdline.c_str(), &os, prefix);
1090 }
1091 #endif
1092
DumpNativeStack(std::ostream & os,pid_t tid,const char * prefix,ArtMethod * current_method,void * ucontext_ptr)1093 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
1094 ArtMethod* current_method, void* ucontext_ptr) {
1095 #if __linux__
1096 // b/18119146
1097 if (RUNNING_ON_VALGRIND != 0) {
1098 return;
1099 }
1100
1101 std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
1102 if (!backtrace->Unwind(0, reinterpret_cast<ucontext*>(ucontext_ptr))) {
1103 os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
1104 return;
1105 } else if (backtrace->NumFrames() == 0) {
1106 os << prefix << "(no native stack frames for thread " << tid << ")\n";
1107 return;
1108 }
1109
1110 // Check whether we have and should use addr2line.
1111 bool use_addr2line;
1112 if (kUseAddr2line) {
1113 // Try to run it to see whether we have it. Push an argument so that it doesn't assume a.out
1114 // and print to stderr.
1115 use_addr2line = (gAborting > 0) && RunCommand("addr2line -h", nullptr, nullptr);
1116 } else {
1117 use_addr2line = false;
1118 }
1119
1120 for (Backtrace::const_iterator it = backtrace->begin();
1121 it != backtrace->end(); ++it) {
1122 // We produce output like this:
1123 // ] #00 pc 000075bb8 /system/lib/libc.so (unwind_backtrace_thread+536)
1124 // In order for parsing tools to continue to function, the stack dump
1125 // format must at least adhere to this format:
1126 // #XX pc <RELATIVE_ADDR> <FULL_PATH_TO_SHARED_LIBRARY> ...
1127 // The parsers require a single space before and after pc, and two spaces
1128 // after the <RELATIVE_ADDR>. There can be any prefix data before the
1129 // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
1130 os << prefix << StringPrintf("#%02zu pc ", it->num);
1131 bool try_addr2line = false;
1132 if (!BacktraceMap::IsValid(it->map)) {
1133 os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " ???"
1134 : "%08" PRIxPTR " ???",
1135 it->pc);
1136 } else {
1137 os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " "
1138 : "%08" PRIxPTR " ",
1139 BacktraceMap::GetRelativePc(it->map, it->pc));
1140 os << it->map.name;
1141 os << " (";
1142 if (!it->func_name.empty()) {
1143 os << it->func_name;
1144 if (it->func_offset != 0) {
1145 os << "+" << it->func_offset;
1146 }
1147 try_addr2line = true;
1148 } else if (
1149 current_method != nullptr && Locks::mutator_lock_->IsSharedHeld(Thread::Current()) &&
1150 current_method->PcIsWithinQuickCode(it->pc)) {
1151 const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
1152 os << JniLongName(current_method) << "+"
1153 << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
1154 } else {
1155 os << "???";
1156 }
1157 os << ")";
1158 }
1159 os << "\n";
1160 if (try_addr2line && use_addr2line) {
1161 Addr2line(it->map.name, it->pc - it->map.start, os, prefix);
1162 }
1163 }
1164 #else
1165 UNUSED(os, tid, prefix, current_method, ucontext_ptr);
1166 #endif
1167 }
1168
1169 #if defined(__APPLE__)
1170
1171 // TODO: is there any way to get the kernel stack on Mac OS?
DumpKernelStack(std::ostream &,pid_t,const char *,bool)1172 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1173
1174 #else
1175
DumpKernelStack(std::ostream & os,pid_t tid,const char * prefix,bool include_count)1176 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1177 if (tid == GetTid()) {
1178 // There's no point showing that we're reading our stack out of /proc!
1179 return;
1180 }
1181
1182 std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1183 std::string kernel_stack;
1184 if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1185 os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1186 return;
1187 }
1188
1189 std::vector<std::string> kernel_stack_frames;
1190 Split(kernel_stack, '\n', &kernel_stack_frames);
1191 // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1192 // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1193 kernel_stack_frames.pop_back();
1194 for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1195 // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
1196 // into "futex_wait_queue_me+0xcd/0x110".
1197 const char* text = kernel_stack_frames[i].c_str();
1198 const char* close_bracket = strchr(text, ']');
1199 if (close_bracket != nullptr) {
1200 text = close_bracket + 2;
1201 }
1202 os << prefix;
1203 if (include_count) {
1204 os << StringPrintf("#%02zd ", i);
1205 }
1206 os << text << "\n";
1207 }
1208 }
1209
1210 #endif
1211
GetAndroidRoot()1212 const char* GetAndroidRoot() {
1213 const char* android_root = getenv("ANDROID_ROOT");
1214 if (android_root == nullptr) {
1215 if (OS::DirectoryExists("/system")) {
1216 android_root = "/system";
1217 } else {
1218 LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1219 return "";
1220 }
1221 }
1222 if (!OS::DirectoryExists(android_root)) {
1223 LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1224 return "";
1225 }
1226 return android_root;
1227 }
1228
GetAndroidData()1229 const char* GetAndroidData() {
1230 std::string error_msg;
1231 const char* dir = GetAndroidDataSafe(&error_msg);
1232 if (dir != nullptr) {
1233 return dir;
1234 } else {
1235 LOG(FATAL) << error_msg;
1236 return "";
1237 }
1238 }
1239
GetAndroidDataSafe(std::string * error_msg)1240 const char* GetAndroidDataSafe(std::string* error_msg) {
1241 const char* android_data = getenv("ANDROID_DATA");
1242 if (android_data == nullptr) {
1243 if (OS::DirectoryExists("/data")) {
1244 android_data = "/data";
1245 } else {
1246 *error_msg = "ANDROID_DATA not set and /data does not exist";
1247 return nullptr;
1248 }
1249 }
1250 if (!OS::DirectoryExists(android_data)) {
1251 *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
1252 return nullptr;
1253 }
1254 return android_data;
1255 }
1256
GetDalvikCache(const char * subdir,const bool create_if_absent,std::string * dalvik_cache,bool * have_android_data,bool * dalvik_cache_exists,bool * is_global_cache)1257 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
1258 bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
1259 CHECK(subdir != nullptr);
1260 std::string error_msg;
1261 const char* android_data = GetAndroidDataSafe(&error_msg);
1262 if (android_data == nullptr) {
1263 *have_android_data = false;
1264 *dalvik_cache_exists = false;
1265 *is_global_cache = false;
1266 return;
1267 } else {
1268 *have_android_data = true;
1269 }
1270 const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1271 *dalvik_cache = dalvik_cache_root + subdir;
1272 *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
1273 *is_global_cache = strcmp(android_data, "/data") == 0;
1274 if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
1275 // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1276 *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
1277 (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
1278 }
1279 }
1280
GetDalvikCacheImpl(const char * subdir,const bool create_if_absent,const bool abort_on_error)1281 static std::string GetDalvikCacheImpl(const char* subdir,
1282 const bool create_if_absent,
1283 const bool abort_on_error) {
1284 CHECK(subdir != nullptr);
1285 const char* android_data = GetAndroidData();
1286 const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1287 const std::string dalvik_cache = dalvik_cache_root + subdir;
1288 if (!OS::DirectoryExists(dalvik_cache.c_str())) {
1289 if (!create_if_absent) {
1290 // TODO: Check callers. Traditional behavior is to not to abort, even when abort_on_error.
1291 return "";
1292 }
1293
1294 // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1295 if (strcmp(android_data, "/data") == 0) {
1296 if (abort_on_error) {
1297 LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache
1298 << ", cannot create /data dalvik-cache.";
1299 UNREACHABLE();
1300 }
1301 return "";
1302 }
1303
1304 int result = mkdir(dalvik_cache_root.c_str(), 0700);
1305 if (result != 0 && errno != EEXIST) {
1306 if (abort_on_error) {
1307 PLOG(FATAL) << "Failed to create dalvik-cache root directory " << dalvik_cache_root;
1308 UNREACHABLE();
1309 }
1310 return "";
1311 }
1312
1313 result = mkdir(dalvik_cache.c_str(), 0700);
1314 if (result != 0) {
1315 if (abort_on_error) {
1316 PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1317 UNREACHABLE();
1318 }
1319 return "";
1320 }
1321 }
1322 return dalvik_cache;
1323 }
1324
GetDalvikCache(const char * subdir,const bool create_if_absent)1325 std::string GetDalvikCache(const char* subdir, const bool create_if_absent) {
1326 return GetDalvikCacheImpl(subdir, create_if_absent, false);
1327 }
1328
GetDalvikCacheOrDie(const char * subdir,const bool create_if_absent)1329 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
1330 return GetDalvikCacheImpl(subdir, create_if_absent, true);
1331 }
1332
GetDalvikCacheFilename(const char * location,const char * cache_location,std::string * filename,std::string * error_msg)1333 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
1334 std::string* filename, std::string* error_msg) {
1335 if (location[0] != '/') {
1336 *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
1337 return false;
1338 }
1339 std::string cache_file(&location[1]); // skip leading slash
1340 if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
1341 cache_file += "/";
1342 cache_file += DexFile::kClassesDex;
1343 }
1344 std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1345 *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
1346 return true;
1347 }
1348
GetDalvikCacheFilenameOrDie(const char * location,const char * cache_location)1349 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
1350 std::string ret;
1351 std::string error_msg;
1352 if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
1353 LOG(FATAL) << error_msg;
1354 }
1355 return ret;
1356 }
1357
InsertIsaDirectory(const InstructionSet isa,std::string * filename)1358 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
1359 // in = /foo/bar/baz
1360 // out = /foo/bar/<isa>/baz
1361 size_t pos = filename->rfind('/');
1362 CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
1363 filename->insert(pos, "/", 1);
1364 filename->insert(pos + 1, GetInstructionSetString(isa));
1365 }
1366
GetSystemImageFilename(const char * location,const InstructionSet isa)1367 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
1368 // location = /system/framework/boot.art
1369 // filename = /system/framework/<isa>/boot.art
1370 std::string filename(location);
1371 InsertIsaDirectory(isa, &filename);
1372 return filename;
1373 }
1374
IsZipMagic(uint32_t magic)1375 bool IsZipMagic(uint32_t magic) {
1376 return (('P' == ((magic >> 0) & 0xff)) &&
1377 ('K' == ((magic >> 8) & 0xff)));
1378 }
1379
IsDexMagic(uint32_t magic)1380 bool IsDexMagic(uint32_t magic) {
1381 return DexFile::IsMagicValid(reinterpret_cast<const uint8_t*>(&magic));
1382 }
1383
IsOatMagic(uint32_t magic)1384 bool IsOatMagic(uint32_t magic) {
1385 return (memcmp(reinterpret_cast<const uint8_t*>(magic),
1386 OatHeader::kOatMagic,
1387 sizeof(OatHeader::kOatMagic)) == 0);
1388 }
1389
Exec(std::vector<std::string> & arg_vector,std::string * error_msg)1390 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
1391 const std::string command_line(Join(arg_vector, ' '));
1392
1393 CHECK_GE(arg_vector.size(), 1U) << command_line;
1394
1395 // Convert the args to char pointers.
1396 const char* program = arg_vector[0].c_str();
1397 std::vector<char*> args;
1398 for (size_t i = 0; i < arg_vector.size(); ++i) {
1399 const std::string& arg = arg_vector[i];
1400 char* arg_str = const_cast<char*>(arg.c_str());
1401 CHECK(arg_str != nullptr) << i;
1402 args.push_back(arg_str);
1403 }
1404 args.push_back(nullptr);
1405
1406 // fork and exec
1407 pid_t pid = fork();
1408 if (pid == 0) {
1409 // no allocation allowed between fork and exec
1410
1411 // change process groups, so we don't get reaped by ProcessManager
1412 setpgid(0, 0);
1413
1414 execv(program, &args[0]);
1415
1416 PLOG(ERROR) << "Failed to execv(" << command_line << ")";
1417 exit(1);
1418 } else {
1419 if (pid == -1) {
1420 *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
1421 command_line.c_str(), strerror(errno));
1422 return false;
1423 }
1424
1425 // wait for subprocess to finish
1426 int status;
1427 pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
1428 if (got_pid != pid) {
1429 *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
1430 "wanted %d, got %d: %s",
1431 command_line.c_str(), pid, got_pid, strerror(errno));
1432 return false;
1433 }
1434 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
1435 *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
1436 command_line.c_str());
1437 return false;
1438 }
1439 }
1440 return true;
1441 }
1442
EncodeUnsignedLeb128(uint32_t data,std::vector<uint8_t> * dst)1443 void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* dst) {
1444 Leb128Encoder(dst).PushBackUnsigned(data);
1445 }
1446
EncodeSignedLeb128(int32_t data,std::vector<uint8_t> * dst)1447 void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* dst) {
1448 Leb128Encoder(dst).PushBackSigned(data);
1449 }
1450
PrettyDescriptor(Primitive::Type type)1451 std::string PrettyDescriptor(Primitive::Type type) {
1452 return PrettyDescriptor(Primitive::Descriptor(type));
1453 }
1454
1455 } // namespace art
1456