1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]. */
56
57 #include <openssl/cast.h>
58
59 #if defined(OPENSSL_WINDOWS)
60 #pragma warning(push, 3)
61 #include <intrin.h>
62 #pragma warning(pop)
63 #endif
64
65 #include "../macros.h"
66
67
CAST_ecb_encrypt(const uint8_t * in,uint8_t * out,const CAST_KEY * ks,int enc)68 void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
69 int enc) {
70 uint32_t d[2];
71
72 n2l(in, d[0]);
73 n2l(in, d[1]);
74 if (enc) {
75 CAST_encrypt(d, ks);
76 } else {
77 CAST_decrypt(d, ks);
78 }
79 l2n(d[0], out);
80 l2n(d[1], out);
81 }
82
83 extern const uint32_t CAST_S_table0[256];
84 extern const uint32_t CAST_S_table1[256];
85 extern const uint32_t CAST_S_table2[256];
86 extern const uint32_t CAST_S_table3[256];
87 extern const uint32_t CAST_S_table4[256];
88 extern const uint32_t CAST_S_table5[256];
89 extern const uint32_t CAST_S_table6[256];
90 extern const uint32_t CAST_S_table7[256];
91
92 #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
93 #define ROTL(a, n) (_lrotl(a, n))
94 #else
95 #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
96 #endif
97
98 #define E_CAST(n, key, L, R, OP1, OP2, OP3) \
99 { \
100 uint32_t a, b, c, d; \
101 t = (key[n * 2] OP1 R) & 0xffffffff; \
102 t = ROTL(t, (key[n * 2 + 1])); \
103 a = CAST_S_table0[(t >> 8) & 0xff]; \
104 b = CAST_S_table1[(t)&0xff]; \
105 c = CAST_S_table2[(t >> 24) & 0xff]; \
106 d = CAST_S_table3[(t >> 16) & 0xff]; \
107 L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
108 }
109
CAST_encrypt(uint32_t * data,const CAST_KEY * key)110 void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
111 uint32_t l, r, t;
112 const uint32_t *k;
113
114 k = &key->data[0];
115 l = data[0];
116 r = data[1];
117
118 E_CAST(0, k, l, r, +, ^, -);
119 E_CAST(1, k, r, l, ^, -, +);
120 E_CAST(2, k, l, r, -, +, ^);
121 E_CAST(3, k, r, l, +, ^, -);
122 E_CAST(4, k, l, r, ^, -, +);
123 E_CAST(5, k, r, l, -, +, ^);
124 E_CAST(6, k, l, r, +, ^, -);
125 E_CAST(7, k, r, l, ^, -, +);
126 E_CAST(8, k, l, r, -, +, ^);
127 E_CAST(9, k, r, l, +, ^, -);
128 E_CAST(10, k, l, r, ^, -, +);
129 E_CAST(11, k, r, l, -, +, ^);
130
131 if (!key->short_key) {
132 E_CAST(12, k, l, r, +, ^, -);
133 E_CAST(13, k, r, l, ^, -, +);
134 E_CAST(14, k, l, r, -, +, ^);
135 E_CAST(15, k, r, l, +, ^, -);
136 }
137
138 data[1] = l & 0xffffffffL;
139 data[0] = r & 0xffffffffL;
140 }
141
CAST_decrypt(uint32_t * data,const CAST_KEY * key)142 void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
143 uint32_t l, r, t;
144 const uint32_t *k;
145
146 k = &key->data[0];
147 l = data[0];
148 r = data[1];
149
150 if (!key->short_key) {
151 E_CAST(15, k, l, r, +, ^, -);
152 E_CAST(14, k, r, l, -, +, ^);
153 E_CAST(13, k, l, r, ^, -, +);
154 E_CAST(12, k, r, l, +, ^, -);
155 }
156
157 E_CAST(11, k, l, r, -, +, ^);
158 E_CAST(10, k, r, l, ^, -, +);
159 E_CAST(9, k, l, r, +, ^, -);
160 E_CAST(8, k, r, l, -, +, ^);
161 E_CAST(7, k, l, r, ^, -, +);
162 E_CAST(6, k, r, l, +, ^, -);
163 E_CAST(5, k, l, r, -, +, ^);
164 E_CAST(4, k, r, l, ^, -, +);
165 E_CAST(3, k, l, r, +, ^, -);
166 E_CAST(2, k, r, l, -, +, ^);
167 E_CAST(1, k, l, r, ^, -, +);
168 E_CAST(0, k, r, l, +, ^, -);
169
170 data[1] = l & 0xffffffffL;
171 data[0] = r & 0xffffffffL;
172 }
173
CAST_cbc_encrypt(const uint8_t * in,uint8_t * out,long length,const CAST_KEY * ks,uint8_t * iv,int enc)174 void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length,
175 const CAST_KEY *ks, uint8_t *iv, int enc) {
176 uint32_t tin0, tin1;
177 uint32_t tout0, tout1, xor0, xor1;
178 long l = length;
179 uint32_t tin[2];
180
181 if (enc) {
182 n2l(iv, tout0);
183 n2l(iv, tout1);
184 iv -= 8;
185 for (l -= 8; l >= 0; l -= 8) {
186 n2l(in, tin0);
187 n2l(in, tin1);
188 tin0 ^= tout0;
189 tin1 ^= tout1;
190 tin[0] = tin0;
191 tin[1] = tin1;
192 CAST_encrypt(tin, ks);
193 tout0 = tin[0];
194 tout1 = tin[1];
195 l2n(tout0, out);
196 l2n(tout1, out);
197 }
198 if (l != -8) {
199 n2ln(in, tin0, tin1, l + 8);
200 tin0 ^= tout0;
201 tin1 ^= tout1;
202 tin[0] = tin0;
203 tin[1] = tin1;
204 CAST_encrypt(tin, ks);
205 tout0 = tin[0];
206 tout1 = tin[1];
207 l2n(tout0, out);
208 l2n(tout1, out);
209 }
210 l2n(tout0, iv);
211 l2n(tout1, iv);
212 } else {
213 n2l(iv, xor0);
214 n2l(iv, xor1);
215 iv -= 8;
216 for (l -= 8; l >= 0; l -= 8) {
217 n2l(in, tin0);
218 n2l(in, tin1);
219 tin[0] = tin0;
220 tin[1] = tin1;
221 CAST_decrypt(tin, ks);
222 tout0 = tin[0] ^ xor0;
223 tout1 = tin[1] ^ xor1;
224 l2n(tout0, out);
225 l2n(tout1, out);
226 xor0 = tin0;
227 xor1 = tin1;
228 }
229 if (l != -8) {
230 n2l(in, tin0);
231 n2l(in, tin1);
232 tin[0] = tin0;
233 tin[1] = tin1;
234 CAST_decrypt(tin, ks);
235 tout0 = tin[0] ^ xor0;
236 tout1 = tin[1] ^ xor1;
237 l2nn(tout0, tout1, out, l + 8);
238 xor0 = tin0;
239 xor1 = tin1;
240 }
241 l2n(xor0, iv);
242 l2n(xor1, iv);
243 }
244 tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
245 tin[0] = tin[1] = 0;
246 }
247
248 #define CAST_exp(l, A, a, n) \
249 A[n / 4] = l; \
250 a[n + 3] = (l)&0xff; \
251 a[n + 2] = (l >> 8) & 0xff; \
252 a[n + 1] = (l >> 16) & 0xff; \
253 a[n + 0] = (l >> 24) & 0xff;
254 #define S4 CAST_S_table4
255 #define S5 CAST_S_table5
256 #define S6 CAST_S_table6
257 #define S7 CAST_S_table7
258
CAST_set_key(CAST_KEY * key,size_t len,const uint8_t * data)259 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
260 uint32_t x[16];
261 uint32_t z[16];
262 uint32_t k[32];
263 uint32_t X[4], Z[4];
264 uint32_t l, *K;
265 size_t i;
266
267 for (i = 0; i < 16; i++) {
268 x[i] = 0;
269 }
270
271 if (len > 16) {
272 len = 16;
273 }
274
275 for (i = 0; i < len; i++) {
276 x[i] = data[i];
277 }
278
279 if (len <= 10) {
280 key->short_key = 1;
281 } else {
282 key->short_key = 0;
283 }
284
285 K = &k[0];
286 X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
287 X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
288 X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
289 X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
290
291 for (;;) {
292 l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
293 CAST_exp(l, Z, z, 0);
294 l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
295 CAST_exp(l, Z, z, 4);
296 l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
297 CAST_exp(l, Z, z, 8);
298 l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
299 CAST_exp(l, Z, z, 12);
300
301 K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
302 K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
303 K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
304 K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
305
306 l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
307 CAST_exp(l, X, x, 0);
308 l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
309 CAST_exp(l, X, x, 4);
310 l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
311 CAST_exp(l, X, x, 8);
312 l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
313 CAST_exp(l, X, x, 12);
314
315 K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
316 K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
317 K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
318 K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
319
320 l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
321 CAST_exp(l, Z, z, 0);
322 l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
323 CAST_exp(l, Z, z, 4);
324 l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
325 CAST_exp(l, Z, z, 8);
326 l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
327 CAST_exp(l, Z, z, 12);
328
329 K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
330 K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
331 K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
332 K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
333
334 l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
335 CAST_exp(l, X, x, 0);
336 l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
337 CAST_exp(l, X, x, 4);
338 l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
339 CAST_exp(l, X, x, 8);
340 l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
341 CAST_exp(l, X, x, 12);
342
343 K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
344 K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
345 K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
346 K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
347 if (K != k) {
348 break;
349 }
350 K += 16;
351 }
352
353 for (i = 0; i < 16; i++) {
354 key->data[i * 2] = k[i];
355 key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
356 }
357 }
358
359 /* The input and output encrypted as though 64bit cfb mode is being used. The
360 * extra state information to record how much of the 64bit block we have used
361 * is contained in *num. */
CAST_cfb64_encrypt(const uint8_t * in,uint8_t * out,long length,const CAST_KEY * schedule,uint8_t * ivec,int * num,int enc)362 void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length,
363 const CAST_KEY *schedule, uint8_t *ivec, int *num,
364 int enc) {
365 uint32_t v0, v1, t;
366 int n = *num;
367 long l = length;
368 uint32_t ti[2];
369 uint8_t *iv, c, cc;
370
371 iv = ivec;
372 if (enc) {
373 while (l--) {
374 if (n == 0) {
375 n2l(iv, v0);
376 ti[0] = v0;
377 n2l(iv, v1);
378 ti[1] = v1;
379 CAST_encrypt((uint32_t *)ti, schedule);
380 iv = ivec;
381 t = ti[0];
382 l2n(t, iv);
383 t = ti[1];
384 l2n(t, iv);
385 iv = ivec;
386 }
387 c = *(in++) ^ iv[n];
388 *(out++) = c;
389 iv[n] = c;
390 n = (n + 1) & 0x07;
391 }
392 } else {
393 while (l--) {
394 if (n == 0) {
395 n2l(iv, v0);
396 ti[0] = v0;
397 n2l(iv, v1);
398 ti[1] = v1;
399 CAST_encrypt((uint32_t *)ti, schedule);
400 iv = ivec;
401 t = ti[0];
402 l2n(t, iv);
403 t = ti[1];
404 l2n(t, iv);
405 iv = ivec;
406 }
407 cc = *(in++);
408 c = iv[n];
409 iv[n] = cc;
410 *(out++) = c ^ cc;
411 n = (n + 1) & 0x07;
412 }
413 }
414 v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
415 *num = n;
416 }
417