• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/CommentDiagnostic.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
35 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
36 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
37 #include "clang/Parse/ParseDiagnostic.h"
38 #include "clang/Sema/CXXFieldCollector.h"
39 #include "clang/Sema/DeclSpec.h"
40 #include "clang/Sema/DelayedDiagnostic.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/Template.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/Triple.h"
49 #include <algorithm>
50 #include <cstring>
51 #include <functional>
52 using namespace clang;
53 using namespace sema;
54 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)55 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
56   if (OwnedType) {
57     Decl *Group[2] = { OwnedType, Ptr };
58     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
59   }
60 
61   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
62 }
63 
64 namespace {
65 
66 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
67  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)68   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
69                        bool AllowTemplates=false)
70       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71         AllowClassTemplates(AllowTemplates) {
72     WantExpressionKeywords = false;
73     WantCXXNamedCasts = false;
74     WantRemainingKeywords = false;
75   }
76 
ValidateCandidate(const TypoCorrection & candidate)77   bool ValidateCandidate(const TypoCorrection &candidate) override {
78     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
80       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
81       return (IsType || AllowedTemplate) &&
82              (AllowInvalidDecl || !ND->isInvalidDecl());
83     }
84     return !WantClassName && candidate.isKeyword();
85   }
86 
87  private:
88   bool AllowInvalidDecl;
89   bool WantClassName;
90   bool AllowClassTemplates;
91 };
92 
93 }
94 
95 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const96 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
97   switch (Kind) {
98   // FIXME: Take into account the current language when deciding whether a
99   // token kind is a valid type specifier
100   case tok::kw_short:
101   case tok::kw_long:
102   case tok::kw___int64:
103   case tok::kw___int128:
104   case tok::kw_signed:
105   case tok::kw_unsigned:
106   case tok::kw_void:
107   case tok::kw_char:
108   case tok::kw_int:
109   case tok::kw_half:
110   case tok::kw_float:
111   case tok::kw_double:
112   case tok::kw_wchar_t:
113   case tok::kw_bool:
114   case tok::kw___underlying_type:
115     return true;
116 
117   case tok::annot_typename:
118   case tok::kw_char16_t:
119   case tok::kw_char32_t:
120   case tok::kw_typeof:
121   case tok::annot_decltype:
122   case tok::kw_decltype:
123     return getLangOpts().CPlusPlus;
124 
125   default:
126     break;
127   }
128 
129   return false;
130 }
131 
132 namespace {
133 enum class UnqualifiedTypeNameLookupResult {
134   NotFound,
135   FoundNonType,
136   FoundType
137 };
138 } // namespace
139 
140 /// \brief Tries to perform unqualified lookup of the type decls in bases for
141 /// dependent class.
142 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
143 /// type decl, \a FoundType if only type decls are found.
144 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)145 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
146                                 SourceLocation NameLoc,
147                                 const CXXRecordDecl *RD) {
148   if (!RD->hasDefinition())
149     return UnqualifiedTypeNameLookupResult::NotFound;
150   // Look for type decls in base classes.
151   UnqualifiedTypeNameLookupResult FoundTypeDecl =
152       UnqualifiedTypeNameLookupResult::NotFound;
153   for (const auto &Base : RD->bases()) {
154     const CXXRecordDecl *BaseRD = nullptr;
155     if (auto *BaseTT = Base.getType()->getAs<TagType>())
156       BaseRD = BaseTT->getAsCXXRecordDecl();
157     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
158       // Look for type decls in dependent base classes that have known primary
159       // templates.
160       if (!TST || !TST->isDependentType())
161         continue;
162       auto *TD = TST->getTemplateName().getAsTemplateDecl();
163       if (!TD)
164         continue;
165       auto *BasePrimaryTemplate =
166           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
167       if (!BasePrimaryTemplate)
168         continue;
169       BaseRD = BasePrimaryTemplate;
170     }
171     if (BaseRD) {
172       for (NamedDecl *ND : BaseRD->lookup(&II)) {
173         if (!isa<TypeDecl>(ND))
174           return UnqualifiedTypeNameLookupResult::FoundNonType;
175         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
176       }
177       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
178         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
179         case UnqualifiedTypeNameLookupResult::FoundNonType:
180           return UnqualifiedTypeNameLookupResult::FoundNonType;
181         case UnqualifiedTypeNameLookupResult::FoundType:
182           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
183           break;
184         case UnqualifiedTypeNameLookupResult::NotFound:
185           break;
186         }
187       }
188     }
189   }
190 
191   return FoundTypeDecl;
192 }
193 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)194 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
195                                                       const IdentifierInfo &II,
196                                                       SourceLocation NameLoc) {
197   // Lookup in the parent class template context, if any.
198   const CXXRecordDecl *RD = nullptr;
199   UnqualifiedTypeNameLookupResult FoundTypeDecl =
200       UnqualifiedTypeNameLookupResult::NotFound;
201   for (DeclContext *DC = S.CurContext;
202        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
203        DC = DC->getParent()) {
204     // Look for type decls in dependent base classes that have known primary
205     // templates.
206     RD = dyn_cast<CXXRecordDecl>(DC);
207     if (RD && RD->getDescribedClassTemplate())
208       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
209   }
210   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
211     return ParsedType();
212 
213   // We found some types in dependent base classes.  Recover as if the user
214   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
215   // lookup during template instantiation.
216   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
217 
218   ASTContext &Context = S.Context;
219   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
220                                           cast<Type>(Context.getRecordType(RD)));
221   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
222 
223   CXXScopeSpec SS;
224   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
225 
226   TypeLocBuilder Builder;
227   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
228   DepTL.setNameLoc(NameLoc);
229   DepTL.setElaboratedKeywordLoc(SourceLocation());
230   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
231   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
232 }
233 
234 /// \brief If the identifier refers to a type name within this scope,
235 /// return the declaration of that type.
236 ///
237 /// This routine performs ordinary name lookup of the identifier II
238 /// within the given scope, with optional C++ scope specifier SS, to
239 /// determine whether the name refers to a type. If so, returns an
240 /// opaque pointer (actually a QualType) corresponding to that
241 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)242 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
243                              Scope *S, CXXScopeSpec *SS,
244                              bool isClassName, bool HasTrailingDot,
245                              ParsedType ObjectTypePtr,
246                              bool IsCtorOrDtorName,
247                              bool WantNontrivialTypeSourceInfo,
248                              IdentifierInfo **CorrectedII) {
249   // Determine where we will perform name lookup.
250   DeclContext *LookupCtx = nullptr;
251   if (ObjectTypePtr) {
252     QualType ObjectType = ObjectTypePtr.get();
253     if (ObjectType->isRecordType())
254       LookupCtx = computeDeclContext(ObjectType);
255   } else if (SS && SS->isNotEmpty()) {
256     LookupCtx = computeDeclContext(*SS, false);
257 
258     if (!LookupCtx) {
259       if (isDependentScopeSpecifier(*SS)) {
260         // C++ [temp.res]p3:
261         //   A qualified-id that refers to a type and in which the
262         //   nested-name-specifier depends on a template-parameter (14.6.2)
263         //   shall be prefixed by the keyword typename to indicate that the
264         //   qualified-id denotes a type, forming an
265         //   elaborated-type-specifier (7.1.5.3).
266         //
267         // We therefore do not perform any name lookup if the result would
268         // refer to a member of an unknown specialization.
269         if (!isClassName && !IsCtorOrDtorName)
270           return ParsedType();
271 
272         // We know from the grammar that this name refers to a type,
273         // so build a dependent node to describe the type.
274         if (WantNontrivialTypeSourceInfo)
275           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
276 
277         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
278         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
279                                        II, NameLoc);
280         return ParsedType::make(T);
281       }
282 
283       return ParsedType();
284     }
285 
286     if (!LookupCtx->isDependentContext() &&
287         RequireCompleteDeclContext(*SS, LookupCtx))
288       return ParsedType();
289   }
290 
291   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
292   // lookup for class-names.
293   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
294                                       LookupOrdinaryName;
295   LookupResult Result(*this, &II, NameLoc, Kind);
296   if (LookupCtx) {
297     // Perform "qualified" name lookup into the declaration context we
298     // computed, which is either the type of the base of a member access
299     // expression or the declaration context associated with a prior
300     // nested-name-specifier.
301     LookupQualifiedName(Result, LookupCtx);
302 
303     if (ObjectTypePtr && Result.empty()) {
304       // C++ [basic.lookup.classref]p3:
305       //   If the unqualified-id is ~type-name, the type-name is looked up
306       //   in the context of the entire postfix-expression. If the type T of
307       //   the object expression is of a class type C, the type-name is also
308       //   looked up in the scope of class C. At least one of the lookups shall
309       //   find a name that refers to (possibly cv-qualified) T.
310       LookupName(Result, S);
311     }
312   } else {
313     // Perform unqualified name lookup.
314     LookupName(Result, S);
315 
316     // For unqualified lookup in a class template in MSVC mode, look into
317     // dependent base classes where the primary class template is known.
318     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
319       if (ParsedType TypeInBase =
320               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
321         return TypeInBase;
322     }
323   }
324 
325   NamedDecl *IIDecl = nullptr;
326   switch (Result.getResultKind()) {
327   case LookupResult::NotFound:
328   case LookupResult::NotFoundInCurrentInstantiation:
329     if (CorrectedII) {
330       TypoCorrection Correction = CorrectTypo(
331           Result.getLookupNameInfo(), Kind, S, SS,
332           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
333           CTK_ErrorRecovery);
334       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
335       TemplateTy Template;
336       bool MemberOfUnknownSpecialization;
337       UnqualifiedId TemplateName;
338       TemplateName.setIdentifier(NewII, NameLoc);
339       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
340       CXXScopeSpec NewSS, *NewSSPtr = SS;
341       if (SS && NNS) {
342         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
343         NewSSPtr = &NewSS;
344       }
345       if (Correction && (NNS || NewII != &II) &&
346           // Ignore a correction to a template type as the to-be-corrected
347           // identifier is not a template (typo correction for template names
348           // is handled elsewhere).
349           !(getLangOpts().CPlusPlus && NewSSPtr &&
350             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
351                            false, Template, MemberOfUnknownSpecialization))) {
352         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
353                                     isClassName, HasTrailingDot, ObjectTypePtr,
354                                     IsCtorOrDtorName,
355                                     WantNontrivialTypeSourceInfo);
356         if (Ty) {
357           diagnoseTypo(Correction,
358                        PDiag(diag::err_unknown_type_or_class_name_suggest)
359                          << Result.getLookupName() << isClassName);
360           if (SS && NNS)
361             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
362           *CorrectedII = NewII;
363           return Ty;
364         }
365       }
366     }
367     // If typo correction failed or was not performed, fall through
368   case LookupResult::FoundOverloaded:
369   case LookupResult::FoundUnresolvedValue:
370     Result.suppressDiagnostics();
371     return ParsedType();
372 
373   case LookupResult::Ambiguous:
374     // Recover from type-hiding ambiguities by hiding the type.  We'll
375     // do the lookup again when looking for an object, and we can
376     // diagnose the error then.  If we don't do this, then the error
377     // about hiding the type will be immediately followed by an error
378     // that only makes sense if the identifier was treated like a type.
379     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
380       Result.suppressDiagnostics();
381       return ParsedType();
382     }
383 
384     // Look to see if we have a type anywhere in the list of results.
385     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
386          Res != ResEnd; ++Res) {
387       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
388         if (!IIDecl ||
389             (*Res)->getLocation().getRawEncoding() <
390               IIDecl->getLocation().getRawEncoding())
391           IIDecl = *Res;
392       }
393     }
394 
395     if (!IIDecl) {
396       // None of the entities we found is a type, so there is no way
397       // to even assume that the result is a type. In this case, don't
398       // complain about the ambiguity. The parser will either try to
399       // perform this lookup again (e.g., as an object name), which
400       // will produce the ambiguity, or will complain that it expected
401       // a type name.
402       Result.suppressDiagnostics();
403       return ParsedType();
404     }
405 
406     // We found a type within the ambiguous lookup; diagnose the
407     // ambiguity and then return that type. This might be the right
408     // answer, or it might not be, but it suppresses any attempt to
409     // perform the name lookup again.
410     break;
411 
412   case LookupResult::Found:
413     IIDecl = Result.getFoundDecl();
414     break;
415   }
416 
417   assert(IIDecl && "Didn't find decl");
418 
419   QualType T;
420   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
421     DiagnoseUseOfDecl(IIDecl, NameLoc);
422 
423     T = Context.getTypeDeclType(TD);
424     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
425 
426     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
427     // constructor or destructor name (in such a case, the scope specifier
428     // will be attached to the enclosing Expr or Decl node).
429     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
430       if (WantNontrivialTypeSourceInfo) {
431         // Construct a type with type-source information.
432         TypeLocBuilder Builder;
433         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
434 
435         T = getElaboratedType(ETK_None, *SS, T);
436         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
437         ElabTL.setElaboratedKeywordLoc(SourceLocation());
438         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
439         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
440       } else {
441         T = getElaboratedType(ETK_None, *SS, T);
442       }
443     }
444   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
445     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
446     if (!HasTrailingDot)
447       T = Context.getObjCInterfaceType(IDecl);
448   }
449 
450   if (T.isNull()) {
451     // If it's not plausibly a type, suppress diagnostics.
452     Result.suppressDiagnostics();
453     return ParsedType();
454   }
455   return ParsedType::make(T);
456 }
457 
458 // Builds a fake NNS for the given decl context.
459 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)460 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
461   for (;; DC = DC->getLookupParent()) {
462     DC = DC->getPrimaryContext();
463     auto *ND = dyn_cast<NamespaceDecl>(DC);
464     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
465       return NestedNameSpecifier::Create(Context, nullptr, ND);
466     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
467       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
468                                          RD->getTypeForDecl());
469     else if (isa<TranslationUnitDecl>(DC))
470       return NestedNameSpecifier::GlobalSpecifier(Context);
471   }
472   llvm_unreachable("something isn't in TU scope?");
473 }
474 
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)475 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
476                                                 SourceLocation NameLoc) {
477   // Accepting an undeclared identifier as a default argument for a template
478   // type parameter is a Microsoft extension.
479   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
480 
481   // Build a fake DependentNameType that will perform lookup into CurContext at
482   // instantiation time.  The name specifier isn't dependent, so template
483   // instantiation won't transform it.  It will retry the lookup, however.
484   NestedNameSpecifier *NNS =
485       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
486   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
487 
488   // Build type location information.  We synthesized the qualifier, so we have
489   // to build a fake NestedNameSpecifierLoc.
490   NestedNameSpecifierLocBuilder NNSLocBuilder;
491   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
492   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
493 
494   TypeLocBuilder Builder;
495   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
496   DepTL.setNameLoc(NameLoc);
497   DepTL.setElaboratedKeywordLoc(SourceLocation());
498   DepTL.setQualifierLoc(QualifierLoc);
499   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
500 }
501 
502 /// isTagName() - This method is called *for error recovery purposes only*
503 /// to determine if the specified name is a valid tag name ("struct foo").  If
504 /// so, this returns the TST for the tag corresponding to it (TST_enum,
505 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
506 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)507 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
508   // Do a tag name lookup in this scope.
509   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
510   LookupName(R, S, false);
511   R.suppressDiagnostics();
512   if (R.getResultKind() == LookupResult::Found)
513     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
514       switch (TD->getTagKind()) {
515       case TTK_Struct: return DeclSpec::TST_struct;
516       case TTK_Interface: return DeclSpec::TST_interface;
517       case TTK_Union:  return DeclSpec::TST_union;
518       case TTK_Class:  return DeclSpec::TST_class;
519       case TTK_Enum:   return DeclSpec::TST_enum;
520       }
521     }
522 
523   return DeclSpec::TST_unspecified;
524 }
525 
526 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
527 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
528 /// then downgrade the missing typename error to a warning.
529 /// This is needed for MSVC compatibility; Example:
530 /// @code
531 /// template<class T> class A {
532 /// public:
533 ///   typedef int TYPE;
534 /// };
535 /// template<class T> class B : public A<T> {
536 /// public:
537 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
538 /// };
539 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)540 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
541   if (CurContext->isRecord()) {
542     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
543       return true;
544 
545     const Type *Ty = SS->getScopeRep()->getAsType();
546 
547     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
548     for (const auto &Base : RD->bases())
549       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
550         return true;
551     return S->isFunctionPrototypeScope();
552   }
553   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
554 }
555 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)556 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
557                                    SourceLocation IILoc,
558                                    Scope *S,
559                                    CXXScopeSpec *SS,
560                                    ParsedType &SuggestedType,
561                                    bool AllowClassTemplates) {
562   // We don't have anything to suggest (yet).
563   SuggestedType = ParsedType();
564 
565   // There may have been a typo in the name of the type. Look up typo
566   // results, in case we have something that we can suggest.
567   if (TypoCorrection Corrected =
568           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
569                       llvm::make_unique<TypeNameValidatorCCC>(
570                           false, false, AllowClassTemplates),
571                       CTK_ErrorRecovery)) {
572     if (Corrected.isKeyword()) {
573       // We corrected to a keyword.
574       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
575       II = Corrected.getCorrectionAsIdentifierInfo();
576     } else {
577       // We found a similarly-named type or interface; suggest that.
578       if (!SS || !SS->isSet()) {
579         diagnoseTypo(Corrected,
580                      PDiag(diag::err_unknown_typename_suggest) << II);
581       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
582         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
583         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
584                                 II->getName().equals(CorrectedStr);
585         diagnoseTypo(Corrected,
586                      PDiag(diag::err_unknown_nested_typename_suggest)
587                        << II << DC << DroppedSpecifier << SS->getRange());
588       } else {
589         llvm_unreachable("could not have corrected a typo here");
590       }
591 
592       CXXScopeSpec tmpSS;
593       if (Corrected.getCorrectionSpecifier())
594         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
595                           SourceRange(IILoc));
596       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
597                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
598                                   false, ParsedType(),
599                                   /*IsCtorOrDtorName=*/false,
600                                   /*NonTrivialTypeSourceInfo=*/true);
601     }
602     return;
603   }
604 
605   if (getLangOpts().CPlusPlus) {
606     // See if II is a class template that the user forgot to pass arguments to.
607     UnqualifiedId Name;
608     Name.setIdentifier(II, IILoc);
609     CXXScopeSpec EmptySS;
610     TemplateTy TemplateResult;
611     bool MemberOfUnknownSpecialization;
612     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
613                        Name, ParsedType(), true, TemplateResult,
614                        MemberOfUnknownSpecialization) == TNK_Type_template) {
615       TemplateName TplName = TemplateResult.get();
616       Diag(IILoc, diag::err_template_missing_args) << TplName;
617       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
618         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
619           << TplDecl->getTemplateParameters()->getSourceRange();
620       }
621       return;
622     }
623   }
624 
625   // FIXME: Should we move the logic that tries to recover from a missing tag
626   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
627 
628   if (!SS || (!SS->isSet() && !SS->isInvalid()))
629     Diag(IILoc, diag::err_unknown_typename) << II;
630   else if (DeclContext *DC = computeDeclContext(*SS, false))
631     Diag(IILoc, diag::err_typename_nested_not_found)
632       << II << DC << SS->getRange();
633   else if (isDependentScopeSpecifier(*SS)) {
634     unsigned DiagID = diag::err_typename_missing;
635     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
636       DiagID = diag::ext_typename_missing;
637 
638     Diag(SS->getRange().getBegin(), DiagID)
639       << SS->getScopeRep() << II->getName()
640       << SourceRange(SS->getRange().getBegin(), IILoc)
641       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
642     SuggestedType = ActOnTypenameType(S, SourceLocation(),
643                                       *SS, *II, IILoc).get();
644   } else {
645     assert(SS && SS->isInvalid() &&
646            "Invalid scope specifier has already been diagnosed");
647   }
648 }
649 
650 /// \brief Determine whether the given result set contains either a type name
651 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)652 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
653   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
654                        NextToken.is(tok::less);
655 
656   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
657     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
658       return true;
659 
660     if (CheckTemplate && isa<TemplateDecl>(*I))
661       return true;
662   }
663 
664   return false;
665 }
666 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)667 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
668                                     Scope *S, CXXScopeSpec &SS,
669                                     IdentifierInfo *&Name,
670                                     SourceLocation NameLoc) {
671   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
672   SemaRef.LookupParsedName(R, S, &SS);
673   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
674     StringRef FixItTagName;
675     switch (Tag->getTagKind()) {
676       case TTK_Class:
677         FixItTagName = "class ";
678         break;
679 
680       case TTK_Enum:
681         FixItTagName = "enum ";
682         break;
683 
684       case TTK_Struct:
685         FixItTagName = "struct ";
686         break;
687 
688       case TTK_Interface:
689         FixItTagName = "__interface ";
690         break;
691 
692       case TTK_Union:
693         FixItTagName = "union ";
694         break;
695     }
696 
697     StringRef TagName = FixItTagName.drop_back();
698     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
699       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
700       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
701 
702     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
703          I != IEnd; ++I)
704       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
705         << Name << TagName;
706 
707     // Replace lookup results with just the tag decl.
708     Result.clear(Sema::LookupTagName);
709     SemaRef.LookupParsedName(Result, S, &SS);
710     return true;
711   }
712 
713   return false;
714 }
715 
716 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)717 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
718                                   QualType T, SourceLocation NameLoc) {
719   ASTContext &Context = S.Context;
720 
721   TypeLocBuilder Builder;
722   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
723 
724   T = S.getElaboratedType(ETK_None, SS, T);
725   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
726   ElabTL.setElaboratedKeywordLoc(SourceLocation());
727   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
728   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
729 }
730 
731 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)732 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
733                    SourceLocation NameLoc, const Token &NextToken,
734                    bool IsAddressOfOperand,
735                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
736   DeclarationNameInfo NameInfo(Name, NameLoc);
737   ObjCMethodDecl *CurMethod = getCurMethodDecl();
738 
739   if (NextToken.is(tok::coloncolon)) {
740     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
741                                 QualType(), false, SS, nullptr, false);
742   }
743 
744   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
745   LookupParsedName(Result, S, &SS, !CurMethod);
746 
747   // For unqualified lookup in a class template in MSVC mode, look into
748   // dependent base classes where the primary class template is known.
749   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
750     if (ParsedType TypeInBase =
751             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
752       return TypeInBase;
753   }
754 
755   // Perform lookup for Objective-C instance variables (including automatically
756   // synthesized instance variables), if we're in an Objective-C method.
757   // FIXME: This lookup really, really needs to be folded in to the normal
758   // unqualified lookup mechanism.
759   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
760     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
761     if (E.get() || E.isInvalid())
762       return E;
763   }
764 
765   bool SecondTry = false;
766   bool IsFilteredTemplateName = false;
767 
768 Corrected:
769   switch (Result.getResultKind()) {
770   case LookupResult::NotFound:
771     // If an unqualified-id is followed by a '(', then we have a function
772     // call.
773     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
774       // In C++, this is an ADL-only call.
775       // FIXME: Reference?
776       if (getLangOpts().CPlusPlus)
777         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
778 
779       // C90 6.3.2.2:
780       //   If the expression that precedes the parenthesized argument list in a
781       //   function call consists solely of an identifier, and if no
782       //   declaration is visible for this identifier, the identifier is
783       //   implicitly declared exactly as if, in the innermost block containing
784       //   the function call, the declaration
785       //
786       //     extern int identifier ();
787       //
788       //   appeared.
789       //
790       // We also allow this in C99 as an extension.
791       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
792         Result.addDecl(D);
793         Result.resolveKind();
794         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
795       }
796     }
797 
798     // In C, we first see whether there is a tag type by the same name, in
799     // which case it's likely that the user just forget to write "enum",
800     // "struct", or "union".
801     if (!getLangOpts().CPlusPlus && !SecondTry &&
802         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
803       break;
804     }
805 
806     // Perform typo correction to determine if there is another name that is
807     // close to this name.
808     if (!SecondTry && CCC) {
809       SecondTry = true;
810       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
811                                                  Result.getLookupKind(), S,
812                                                  &SS, std::move(CCC),
813                                                  CTK_ErrorRecovery)) {
814         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
815         unsigned QualifiedDiag = diag::err_no_member_suggest;
816 
817         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
818         NamedDecl *UnderlyingFirstDecl
819           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
820         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
821             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
822           UnqualifiedDiag = diag::err_no_template_suggest;
823           QualifiedDiag = diag::err_no_member_template_suggest;
824         } else if (UnderlyingFirstDecl &&
825                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
826                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
827                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
828           UnqualifiedDiag = diag::err_unknown_typename_suggest;
829           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
830         }
831 
832         if (SS.isEmpty()) {
833           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
834         } else {// FIXME: is this even reachable? Test it.
835           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
836           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
837                                   Name->getName().equals(CorrectedStr);
838           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
839                                     << Name << computeDeclContext(SS, false)
840                                     << DroppedSpecifier << SS.getRange());
841         }
842 
843         // Update the name, so that the caller has the new name.
844         Name = Corrected.getCorrectionAsIdentifierInfo();
845 
846         // Typo correction corrected to a keyword.
847         if (Corrected.isKeyword())
848           return Name;
849 
850         // Also update the LookupResult...
851         // FIXME: This should probably go away at some point
852         Result.clear();
853         Result.setLookupName(Corrected.getCorrection());
854         if (FirstDecl)
855           Result.addDecl(FirstDecl);
856 
857         // If we found an Objective-C instance variable, let
858         // LookupInObjCMethod build the appropriate expression to
859         // reference the ivar.
860         // FIXME: This is a gross hack.
861         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
862           Result.clear();
863           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
864           return E;
865         }
866 
867         goto Corrected;
868       }
869     }
870 
871     // We failed to correct; just fall through and let the parser deal with it.
872     Result.suppressDiagnostics();
873     return NameClassification::Unknown();
874 
875   case LookupResult::NotFoundInCurrentInstantiation: {
876     // We performed name lookup into the current instantiation, and there were
877     // dependent bases, so we treat this result the same way as any other
878     // dependent nested-name-specifier.
879 
880     // C++ [temp.res]p2:
881     //   A name used in a template declaration or definition and that is
882     //   dependent on a template-parameter is assumed not to name a type
883     //   unless the applicable name lookup finds a type name or the name is
884     //   qualified by the keyword typename.
885     //
886     // FIXME: If the next token is '<', we might want to ask the parser to
887     // perform some heroics to see if we actually have a
888     // template-argument-list, which would indicate a missing 'template'
889     // keyword here.
890     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
891                                       NameInfo, IsAddressOfOperand,
892                                       /*TemplateArgs=*/nullptr);
893   }
894 
895   case LookupResult::Found:
896   case LookupResult::FoundOverloaded:
897   case LookupResult::FoundUnresolvedValue:
898     break;
899 
900   case LookupResult::Ambiguous:
901     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
902         hasAnyAcceptableTemplateNames(Result)) {
903       // C++ [temp.local]p3:
904       //   A lookup that finds an injected-class-name (10.2) can result in an
905       //   ambiguity in certain cases (for example, if it is found in more than
906       //   one base class). If all of the injected-class-names that are found
907       //   refer to specializations of the same class template, and if the name
908       //   is followed by a template-argument-list, the reference refers to the
909       //   class template itself and not a specialization thereof, and is not
910       //   ambiguous.
911       //
912       // This filtering can make an ambiguous result into an unambiguous one,
913       // so try again after filtering out template names.
914       FilterAcceptableTemplateNames(Result);
915       if (!Result.isAmbiguous()) {
916         IsFilteredTemplateName = true;
917         break;
918       }
919     }
920 
921     // Diagnose the ambiguity and return an error.
922     return NameClassification::Error();
923   }
924 
925   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
926       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
927     // C++ [temp.names]p3:
928     //   After name lookup (3.4) finds that a name is a template-name or that
929     //   an operator-function-id or a literal- operator-id refers to a set of
930     //   overloaded functions any member of which is a function template if
931     //   this is followed by a <, the < is always taken as the delimiter of a
932     //   template-argument-list and never as the less-than operator.
933     if (!IsFilteredTemplateName)
934       FilterAcceptableTemplateNames(Result);
935 
936     if (!Result.empty()) {
937       bool IsFunctionTemplate;
938       bool IsVarTemplate;
939       TemplateName Template;
940       if (Result.end() - Result.begin() > 1) {
941         IsFunctionTemplate = true;
942         Template = Context.getOverloadedTemplateName(Result.begin(),
943                                                      Result.end());
944       } else {
945         TemplateDecl *TD
946           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
947         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
948         IsVarTemplate = isa<VarTemplateDecl>(TD);
949 
950         if (SS.isSet() && !SS.isInvalid())
951           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
952                                                     /*TemplateKeyword=*/false,
953                                                       TD);
954         else
955           Template = TemplateName(TD);
956       }
957 
958       if (IsFunctionTemplate) {
959         // Function templates always go through overload resolution, at which
960         // point we'll perform the various checks (e.g., accessibility) we need
961         // to based on which function we selected.
962         Result.suppressDiagnostics();
963 
964         return NameClassification::FunctionTemplate(Template);
965       }
966 
967       return IsVarTemplate ? NameClassification::VarTemplate(Template)
968                            : NameClassification::TypeTemplate(Template);
969     }
970   }
971 
972   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
973   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
974     DiagnoseUseOfDecl(Type, NameLoc);
975     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
976     QualType T = Context.getTypeDeclType(Type);
977     if (SS.isNotEmpty())
978       return buildNestedType(*this, SS, T, NameLoc);
979     return ParsedType::make(T);
980   }
981 
982   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
983   if (!Class) {
984     // FIXME: It's unfortunate that we don't have a Type node for handling this.
985     if (ObjCCompatibleAliasDecl *Alias =
986             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
987       Class = Alias->getClassInterface();
988   }
989 
990   if (Class) {
991     DiagnoseUseOfDecl(Class, NameLoc);
992 
993     if (NextToken.is(tok::period)) {
994       // Interface. <something> is parsed as a property reference expression.
995       // Just return "unknown" as a fall-through for now.
996       Result.suppressDiagnostics();
997       return NameClassification::Unknown();
998     }
999 
1000     QualType T = Context.getObjCInterfaceType(Class);
1001     return ParsedType::make(T);
1002   }
1003 
1004   // We can have a type template here if we're classifying a template argument.
1005   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1006     return NameClassification::TypeTemplate(
1007         TemplateName(cast<TemplateDecl>(FirstDecl)));
1008 
1009   // Check for a tag type hidden by a non-type decl in a few cases where it
1010   // seems likely a type is wanted instead of the non-type that was found.
1011   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
1012   if ((NextToken.is(tok::identifier) ||
1013        (NextIsOp &&
1014         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1015       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1016     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1017     DiagnoseUseOfDecl(Type, NameLoc);
1018     QualType T = Context.getTypeDeclType(Type);
1019     if (SS.isNotEmpty())
1020       return buildNestedType(*this, SS, T, NameLoc);
1021     return ParsedType::make(T);
1022   }
1023 
1024   if (FirstDecl->isCXXClassMember())
1025     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1026                                            nullptr);
1027 
1028   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1029   return BuildDeclarationNameExpr(SS, Result, ADL);
1030 }
1031 
1032 // Determines the context to return to after temporarily entering a
1033 // context.  This depends in an unnecessarily complicated way on the
1034 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)1035 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1036 
1037   // Functions defined inline within classes aren't parsed until we've
1038   // finished parsing the top-level class, so the top-level class is
1039   // the context we'll need to return to.
1040   // A Lambda call operator whose parent is a class must not be treated
1041   // as an inline member function.  A Lambda can be used legally
1042   // either as an in-class member initializer or a default argument.  These
1043   // are parsed once the class has been marked complete and so the containing
1044   // context would be the nested class (when the lambda is defined in one);
1045   // If the class is not complete, then the lambda is being used in an
1046   // ill-formed fashion (such as to specify the width of a bit-field, or
1047   // in an array-bound) - in which case we still want to return the
1048   // lexically containing DC (which could be a nested class).
1049   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1050     DC = DC->getLexicalParent();
1051 
1052     // A function not defined within a class will always return to its
1053     // lexical context.
1054     if (!isa<CXXRecordDecl>(DC))
1055       return DC;
1056 
1057     // A C++ inline method/friend is parsed *after* the topmost class
1058     // it was declared in is fully parsed ("complete");  the topmost
1059     // class is the context we need to return to.
1060     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1061       DC = RD;
1062 
1063     // Return the declaration context of the topmost class the inline method is
1064     // declared in.
1065     return DC;
1066   }
1067 
1068   return DC->getLexicalParent();
1069 }
1070 
PushDeclContext(Scope * S,DeclContext * DC)1071 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1072   assert(getContainingDC(DC) == CurContext &&
1073       "The next DeclContext should be lexically contained in the current one.");
1074   CurContext = DC;
1075   S->setEntity(DC);
1076 }
1077 
PopDeclContext()1078 void Sema::PopDeclContext() {
1079   assert(CurContext && "DeclContext imbalance!");
1080 
1081   CurContext = getContainingDC(CurContext);
1082   assert(CurContext && "Popped translation unit!");
1083 }
1084 
1085 /// EnterDeclaratorContext - Used when we must lookup names in the context
1086 /// of a declarator's nested name specifier.
1087 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1088 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1089   // C++0x [basic.lookup.unqual]p13:
1090   //   A name used in the definition of a static data member of class
1091   //   X (after the qualified-id of the static member) is looked up as
1092   //   if the name was used in a member function of X.
1093   // C++0x [basic.lookup.unqual]p14:
1094   //   If a variable member of a namespace is defined outside of the
1095   //   scope of its namespace then any name used in the definition of
1096   //   the variable member (after the declarator-id) is looked up as
1097   //   if the definition of the variable member occurred in its
1098   //   namespace.
1099   // Both of these imply that we should push a scope whose context
1100   // is the semantic context of the declaration.  We can't use
1101   // PushDeclContext here because that context is not necessarily
1102   // lexically contained in the current context.  Fortunately,
1103   // the containing scope should have the appropriate information.
1104 
1105   assert(!S->getEntity() && "scope already has entity");
1106 
1107 #ifndef NDEBUG
1108   Scope *Ancestor = S->getParent();
1109   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1110   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1111 #endif
1112 
1113   CurContext = DC;
1114   S->setEntity(DC);
1115 }
1116 
ExitDeclaratorContext(Scope * S)1117 void Sema::ExitDeclaratorContext(Scope *S) {
1118   assert(S->getEntity() == CurContext && "Context imbalance!");
1119 
1120   // Switch back to the lexical context.  The safety of this is
1121   // enforced by an assert in EnterDeclaratorContext.
1122   Scope *Ancestor = S->getParent();
1123   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1124   CurContext = Ancestor->getEntity();
1125 
1126   // We don't need to do anything with the scope, which is going to
1127   // disappear.
1128 }
1129 
1130 
ActOnReenterFunctionContext(Scope * S,Decl * D)1131 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1132   // We assume that the caller has already called
1133   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1134   FunctionDecl *FD = D->getAsFunction();
1135   if (!FD)
1136     return;
1137 
1138   // Same implementation as PushDeclContext, but enters the context
1139   // from the lexical parent, rather than the top-level class.
1140   assert(CurContext == FD->getLexicalParent() &&
1141     "The next DeclContext should be lexically contained in the current one.");
1142   CurContext = FD;
1143   S->setEntity(CurContext);
1144 
1145   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1146     ParmVarDecl *Param = FD->getParamDecl(P);
1147     // If the parameter has an identifier, then add it to the scope
1148     if (Param->getIdentifier()) {
1149       S->AddDecl(Param);
1150       IdResolver.AddDecl(Param);
1151     }
1152   }
1153 }
1154 
1155 
ActOnExitFunctionContext()1156 void Sema::ActOnExitFunctionContext() {
1157   // Same implementation as PopDeclContext, but returns to the lexical parent,
1158   // rather than the top-level class.
1159   assert(CurContext && "DeclContext imbalance!");
1160   CurContext = CurContext->getLexicalParent();
1161   assert(CurContext && "Popped translation unit!");
1162 }
1163 
1164 
1165 /// \brief Determine whether we allow overloading of the function
1166 /// PrevDecl with another declaration.
1167 ///
1168 /// This routine determines whether overloading is possible, not
1169 /// whether some new function is actually an overload. It will return
1170 /// true in C++ (where we can always provide overloads) or, as an
1171 /// extension, in C when the previous function is already an
1172 /// overloaded function declaration or has the "overloadable"
1173 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1174 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1175                                        ASTContext &Context) {
1176   if (Context.getLangOpts().CPlusPlus)
1177     return true;
1178 
1179   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1180     return true;
1181 
1182   return (Previous.getResultKind() == LookupResult::Found
1183           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1184 }
1185 
1186 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1187 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1188   // Move up the scope chain until we find the nearest enclosing
1189   // non-transparent context. The declaration will be introduced into this
1190   // scope.
1191   while (S->getEntity() && S->getEntity()->isTransparentContext())
1192     S = S->getParent();
1193 
1194   // Add scoped declarations into their context, so that they can be
1195   // found later. Declarations without a context won't be inserted
1196   // into any context.
1197   if (AddToContext)
1198     CurContext->addDecl(D);
1199 
1200   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1201   // are function-local declarations.
1202   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1203       !D->getDeclContext()->getRedeclContext()->Equals(
1204         D->getLexicalDeclContext()->getRedeclContext()) &&
1205       !D->getLexicalDeclContext()->isFunctionOrMethod())
1206     return;
1207 
1208   // Template instantiations should also not be pushed into scope.
1209   if (isa<FunctionDecl>(D) &&
1210       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1211     return;
1212 
1213   // If this replaces anything in the current scope,
1214   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1215                                IEnd = IdResolver.end();
1216   for (; I != IEnd; ++I) {
1217     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1218       S->RemoveDecl(*I);
1219       IdResolver.RemoveDecl(*I);
1220 
1221       // Should only need to replace one decl.
1222       break;
1223     }
1224   }
1225 
1226   S->AddDecl(D);
1227 
1228   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1229     // Implicitly-generated labels may end up getting generated in an order that
1230     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1231     // the label at the appropriate place in the identifier chain.
1232     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1233       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1234       if (IDC == CurContext) {
1235         if (!S->isDeclScope(*I))
1236           continue;
1237       } else if (IDC->Encloses(CurContext))
1238         break;
1239     }
1240 
1241     IdResolver.InsertDeclAfter(I, D);
1242   } else {
1243     IdResolver.AddDecl(D);
1244   }
1245 }
1246 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1247 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1248   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1249     TUScope->AddDecl(D);
1250 }
1251 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1252 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1253                          bool AllowInlineNamespace) {
1254   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1255 }
1256 
getScopeForDeclContext(Scope * S,DeclContext * DC)1257 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1258   DeclContext *TargetDC = DC->getPrimaryContext();
1259   do {
1260     if (DeclContext *ScopeDC = S->getEntity())
1261       if (ScopeDC->getPrimaryContext() == TargetDC)
1262         return S;
1263   } while ((S = S->getParent()));
1264 
1265   return nullptr;
1266 }
1267 
1268 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1269                                             DeclContext*,
1270                                             ASTContext&);
1271 
1272 /// Filters out lookup results that don't fall within the given scope
1273 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1274 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1275                                 bool ConsiderLinkage,
1276                                 bool AllowInlineNamespace) {
1277   LookupResult::Filter F = R.makeFilter();
1278   while (F.hasNext()) {
1279     NamedDecl *D = F.next();
1280 
1281     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1282       continue;
1283 
1284     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1285       continue;
1286 
1287     F.erase();
1288   }
1289 
1290   F.done();
1291 }
1292 
isUsingDecl(NamedDecl * D)1293 static bool isUsingDecl(NamedDecl *D) {
1294   return isa<UsingShadowDecl>(D) ||
1295          isa<UnresolvedUsingTypenameDecl>(D) ||
1296          isa<UnresolvedUsingValueDecl>(D);
1297 }
1298 
1299 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1300 static void RemoveUsingDecls(LookupResult &R) {
1301   LookupResult::Filter F = R.makeFilter();
1302   while (F.hasNext())
1303     if (isUsingDecl(F.next()))
1304       F.erase();
1305 
1306   F.done();
1307 }
1308 
1309 /// \brief Check for this common pattern:
1310 /// @code
1311 /// class S {
1312 ///   S(const S&); // DO NOT IMPLEMENT
1313 ///   void operator=(const S&); // DO NOT IMPLEMENT
1314 /// };
1315 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1316 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1317   // FIXME: Should check for private access too but access is set after we get
1318   // the decl here.
1319   if (D->doesThisDeclarationHaveABody())
1320     return false;
1321 
1322   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1323     return CD->isCopyConstructor();
1324   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1325     return Method->isCopyAssignmentOperator();
1326   return false;
1327 }
1328 
1329 // We need this to handle
1330 //
1331 // typedef struct {
1332 //   void *foo() { return 0; }
1333 // } A;
1334 //
1335 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1336 // for example. If 'A', foo will have external linkage. If we have '*A',
1337 // foo will have no linkage. Since we can't know until we get to the end
1338 // of the typedef, this function finds out if D might have non-external linkage.
1339 // Callers should verify at the end of the TU if it D has external linkage or
1340 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1341 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1342   const DeclContext *DC = D->getDeclContext();
1343   while (!DC->isTranslationUnit()) {
1344     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1345       if (!RD->hasNameForLinkage())
1346         return true;
1347     }
1348     DC = DC->getParent();
1349   }
1350 
1351   return !D->isExternallyVisible();
1352 }
1353 
1354 // FIXME: This needs to be refactored; some other isInMainFile users want
1355 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1356 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1357   if (S.TUKind != TU_Complete)
1358     return false;
1359   return S.SourceMgr.isInMainFile(Loc);
1360 }
1361 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1362 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1363   assert(D);
1364 
1365   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1366     return false;
1367 
1368   // Ignore all entities declared within templates, and out-of-line definitions
1369   // of members of class templates.
1370   if (D->getDeclContext()->isDependentContext() ||
1371       D->getLexicalDeclContext()->isDependentContext())
1372     return false;
1373 
1374   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1375     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1376       return false;
1377 
1378     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1379       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1380         return false;
1381     } else {
1382       // 'static inline' functions are defined in headers; don't warn.
1383       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1384         return false;
1385     }
1386 
1387     if (FD->doesThisDeclarationHaveABody() &&
1388         Context.DeclMustBeEmitted(FD))
1389       return false;
1390   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1391     // Constants and utility variables are defined in headers with internal
1392     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1393     // like "inline".)
1394     if (!isMainFileLoc(*this, VD->getLocation()))
1395       return false;
1396 
1397     if (Context.DeclMustBeEmitted(VD))
1398       return false;
1399 
1400     if (VD->isStaticDataMember() &&
1401         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1402       return false;
1403   } else {
1404     return false;
1405   }
1406 
1407   // Only warn for unused decls internal to the translation unit.
1408   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1409   // for inline functions defined in the main source file, for instance.
1410   return mightHaveNonExternalLinkage(D);
1411 }
1412 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1413 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1414   if (!D)
1415     return;
1416 
1417   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1418     const FunctionDecl *First = FD->getFirstDecl();
1419     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1420       return; // First should already be in the vector.
1421   }
1422 
1423   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1424     const VarDecl *First = VD->getFirstDecl();
1425     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1426       return; // First should already be in the vector.
1427   }
1428 
1429   if (ShouldWarnIfUnusedFileScopedDecl(D))
1430     UnusedFileScopedDecls.push_back(D);
1431 }
1432 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1433 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1434   if (D->isInvalidDecl())
1435     return false;
1436 
1437   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1438       D->hasAttr<ObjCPreciseLifetimeAttr>())
1439     return false;
1440 
1441   if (isa<LabelDecl>(D))
1442     return true;
1443 
1444   // Except for labels, we only care about unused decls that are local to
1445   // functions.
1446   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1447   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1448     // For dependent types, the diagnostic is deferred.
1449     WithinFunction =
1450         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1451   if (!WithinFunction)
1452     return false;
1453 
1454   if (isa<TypedefNameDecl>(D))
1455     return true;
1456 
1457   // White-list anything that isn't a local variable.
1458   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1459     return false;
1460 
1461   // Types of valid local variables should be complete, so this should succeed.
1462   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1463 
1464     // White-list anything with an __attribute__((unused)) type.
1465     QualType Ty = VD->getType();
1466 
1467     // Only look at the outermost level of typedef.
1468     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1469       if (TT->getDecl()->hasAttr<UnusedAttr>())
1470         return false;
1471     }
1472 
1473     // If we failed to complete the type for some reason, or if the type is
1474     // dependent, don't diagnose the variable.
1475     if (Ty->isIncompleteType() || Ty->isDependentType())
1476       return false;
1477 
1478     if (const TagType *TT = Ty->getAs<TagType>()) {
1479       const TagDecl *Tag = TT->getDecl();
1480       if (Tag->hasAttr<UnusedAttr>())
1481         return false;
1482 
1483       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1484         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1485           return false;
1486 
1487         if (const Expr *Init = VD->getInit()) {
1488           if (const ExprWithCleanups *Cleanups =
1489                   dyn_cast<ExprWithCleanups>(Init))
1490             Init = Cleanups->getSubExpr();
1491           const CXXConstructExpr *Construct =
1492             dyn_cast<CXXConstructExpr>(Init);
1493           if (Construct && !Construct->isElidable()) {
1494             CXXConstructorDecl *CD = Construct->getConstructor();
1495             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1496               return false;
1497           }
1498         }
1499       }
1500     }
1501 
1502     // TODO: __attribute__((unused)) templates?
1503   }
1504 
1505   return true;
1506 }
1507 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1508 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1509                                      FixItHint &Hint) {
1510   if (isa<LabelDecl>(D)) {
1511     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1512                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1513     if (AfterColon.isInvalid())
1514       return;
1515     Hint = FixItHint::CreateRemoval(CharSourceRange::
1516                                     getCharRange(D->getLocStart(), AfterColon));
1517   }
1518   return;
1519 }
1520 
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1521 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1522   if (D->getTypeForDecl()->isDependentType())
1523     return;
1524 
1525   for (auto *TmpD : D->decls()) {
1526     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1527       DiagnoseUnusedDecl(T);
1528     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1529       DiagnoseUnusedNestedTypedefs(R);
1530   }
1531 }
1532 
1533 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1534 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1535 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1536   if (!ShouldDiagnoseUnusedDecl(D))
1537     return;
1538 
1539   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1540     // typedefs can be referenced later on, so the diagnostics are emitted
1541     // at end-of-translation-unit.
1542     UnusedLocalTypedefNameCandidates.insert(TD);
1543     return;
1544   }
1545 
1546   FixItHint Hint;
1547   GenerateFixForUnusedDecl(D, Context, Hint);
1548 
1549   unsigned DiagID;
1550   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1551     DiagID = diag::warn_unused_exception_param;
1552   else if (isa<LabelDecl>(D))
1553     DiagID = diag::warn_unused_label;
1554   else
1555     DiagID = diag::warn_unused_variable;
1556 
1557   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1558 }
1559 
CheckPoppedLabel(LabelDecl * L,Sema & S)1560 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1561   // Verify that we have no forward references left.  If so, there was a goto
1562   // or address of a label taken, but no definition of it.  Label fwd
1563   // definitions are indicated with a null substmt which is also not a resolved
1564   // MS inline assembly label name.
1565   bool Diagnose = false;
1566   if (L->isMSAsmLabel())
1567     Diagnose = !L->isResolvedMSAsmLabel();
1568   else
1569     Diagnose = L->getStmt() == nullptr;
1570   if (Diagnose)
1571     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1572 }
1573 
ActOnPopScope(SourceLocation Loc,Scope * S)1574 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1575   S->mergeNRVOIntoParent();
1576 
1577   if (S->decl_empty()) return;
1578   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1579          "Scope shouldn't contain decls!");
1580 
1581   for (auto *TmpD : S->decls()) {
1582     assert(TmpD && "This decl didn't get pushed??");
1583 
1584     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1585     NamedDecl *D = cast<NamedDecl>(TmpD);
1586 
1587     if (!D->getDeclName()) continue;
1588 
1589     // Diagnose unused variables in this scope.
1590     if (!S->hasUnrecoverableErrorOccurred()) {
1591       DiagnoseUnusedDecl(D);
1592       if (const auto *RD = dyn_cast<RecordDecl>(D))
1593         DiagnoseUnusedNestedTypedefs(RD);
1594     }
1595 
1596     // If this was a forward reference to a label, verify it was defined.
1597     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1598       CheckPoppedLabel(LD, *this);
1599 
1600     // Remove this name from our lexical scope.
1601     IdResolver.RemoveDecl(D);
1602   }
1603 }
1604 
1605 /// \brief Look for an Objective-C class in the translation unit.
1606 ///
1607 /// \param Id The name of the Objective-C class we're looking for. If
1608 /// typo-correction fixes this name, the Id will be updated
1609 /// to the fixed name.
1610 ///
1611 /// \param IdLoc The location of the name in the translation unit.
1612 ///
1613 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1614 /// if there is no class with the given name.
1615 ///
1616 /// \returns The declaration of the named Objective-C class, or NULL if the
1617 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1618 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1619                                               SourceLocation IdLoc,
1620                                               bool DoTypoCorrection) {
1621   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1622   // creation from this context.
1623   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1624 
1625   if (!IDecl && DoTypoCorrection) {
1626     // Perform typo correction at the given location, but only if we
1627     // find an Objective-C class name.
1628     if (TypoCorrection C = CorrectTypo(
1629             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1630             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1631             CTK_ErrorRecovery)) {
1632       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1633       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1634       Id = IDecl->getIdentifier();
1635     }
1636   }
1637   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1638   // This routine must always return a class definition, if any.
1639   if (Def && Def->getDefinition())
1640       Def = Def->getDefinition();
1641   return Def;
1642 }
1643 
1644 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1645 /// from S, where a non-field would be declared. This routine copes
1646 /// with the difference between C and C++ scoping rules in structs and
1647 /// unions. For example, the following code is well-formed in C but
1648 /// ill-formed in C++:
1649 /// @code
1650 /// struct S6 {
1651 ///   enum { BAR } e;
1652 /// };
1653 ///
1654 /// void test_S6() {
1655 ///   struct S6 a;
1656 ///   a.e = BAR;
1657 /// }
1658 /// @endcode
1659 /// For the declaration of BAR, this routine will return a different
1660 /// scope. The scope S will be the scope of the unnamed enumeration
1661 /// within S6. In C++, this routine will return the scope associated
1662 /// with S6, because the enumeration's scope is a transparent
1663 /// context but structures can contain non-field names. In C, this
1664 /// routine will return the translation unit scope, since the
1665 /// enumeration's scope is a transparent context and structures cannot
1666 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1667 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1668   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1669          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1670          (S->isClassScope() && !getLangOpts().CPlusPlus))
1671     S = S->getParent();
1672   return S;
1673 }
1674 
1675 /// \brief Looks up the declaration of "struct objc_super" and
1676 /// saves it for later use in building builtin declaration of
1677 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1678 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1679 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1680                                         IdentifierInfo *II) {
1681   if (!II->isStr("objc_msgSendSuper"))
1682     return;
1683   ASTContext &Context = ThisSema.Context;
1684 
1685   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1686                       SourceLocation(), Sema::LookupTagName);
1687   ThisSema.LookupName(Result, S);
1688   if (Result.getResultKind() == LookupResult::Found)
1689     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1690       Context.setObjCSuperType(Context.getTagDeclType(TD));
1691 }
1692 
getHeaderName(ASTContext::GetBuiltinTypeError Error)1693 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1694   switch (Error) {
1695   case ASTContext::GE_None:
1696     return "";
1697   case ASTContext::GE_Missing_stdio:
1698     return "stdio.h";
1699   case ASTContext::GE_Missing_setjmp:
1700     return "setjmp.h";
1701   case ASTContext::GE_Missing_ucontext:
1702     return "ucontext.h";
1703   }
1704   llvm_unreachable("unhandled error kind");
1705 }
1706 
1707 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1708 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1709 /// if we're creating this built-in in anticipation of redeclaring the
1710 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1711 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1712                                      Scope *S, bool ForRedeclaration,
1713                                      SourceLocation Loc) {
1714   LookupPredefedObjCSuperType(*this, S, II);
1715 
1716   ASTContext::GetBuiltinTypeError Error;
1717   QualType R = Context.GetBuiltinType(ID, Error);
1718   if (Error) {
1719     if (ForRedeclaration)
1720       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1721           << getHeaderName(Error)
1722           << Context.BuiltinInfo.GetName(ID);
1723     return nullptr;
1724   }
1725 
1726   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1727     Diag(Loc, diag::ext_implicit_lib_function_decl)
1728       << Context.BuiltinInfo.GetName(ID)
1729       << R;
1730     if (Context.BuiltinInfo.getHeaderName(ID) &&
1731         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1732       Diag(Loc, diag::note_include_header_or_declare)
1733           << Context.BuiltinInfo.getHeaderName(ID)
1734           << Context.BuiltinInfo.GetName(ID);
1735   }
1736 
1737   DeclContext *Parent = Context.getTranslationUnitDecl();
1738   if (getLangOpts().CPlusPlus) {
1739     LinkageSpecDecl *CLinkageDecl =
1740         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1741                                 LinkageSpecDecl::lang_c, false);
1742     CLinkageDecl->setImplicit();
1743     Parent->addDecl(CLinkageDecl);
1744     Parent = CLinkageDecl;
1745   }
1746 
1747   FunctionDecl *New = FunctionDecl::Create(Context,
1748                                            Parent,
1749                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1750                                            SC_Extern,
1751                                            false,
1752                                            /*hasPrototype=*/true);
1753   New->setImplicit();
1754 
1755   // Create Decl objects for each parameter, adding them to the
1756   // FunctionDecl.
1757   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1758     SmallVector<ParmVarDecl*, 16> Params;
1759     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1760       ParmVarDecl *parm =
1761           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1762                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1763                               SC_None, nullptr);
1764       parm->setScopeInfo(0, i);
1765       Params.push_back(parm);
1766     }
1767     New->setParams(Params);
1768   }
1769 
1770   AddKnownFunctionAttributes(New);
1771   RegisterLocallyScopedExternCDecl(New, S);
1772 
1773   // TUScope is the translation-unit scope to insert this function into.
1774   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1775   // relate Scopes to DeclContexts, and probably eliminate CurContext
1776   // entirely, but we're not there yet.
1777   DeclContext *SavedContext = CurContext;
1778   CurContext = Parent;
1779   PushOnScopeChains(New, TUScope);
1780   CurContext = SavedContext;
1781   return New;
1782 }
1783 
1784 /// \brief Filter out any previous declarations that the given declaration
1785 /// should not consider because they are not permitted to conflict, e.g.,
1786 /// because they come from hidden sub-modules and do not refer to the same
1787 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1788 static void filterNonConflictingPreviousDecls(ASTContext &context,
1789                                               NamedDecl *decl,
1790                                               LookupResult &previous){
1791   // This is only interesting when modules are enabled.
1792   if (!context.getLangOpts().Modules)
1793     return;
1794 
1795   // Empty sets are uninteresting.
1796   if (previous.empty())
1797     return;
1798 
1799   LookupResult::Filter filter = previous.makeFilter();
1800   while (filter.hasNext()) {
1801     NamedDecl *old = filter.next();
1802 
1803     // Non-hidden declarations are never ignored.
1804     if (!old->isHidden())
1805       continue;
1806 
1807     if (!old->isExternallyVisible())
1808       filter.erase();
1809   }
1810 
1811   filter.done();
1812 }
1813 
1814 /// Typedef declarations don't have linkage, but they still denote the same
1815 /// entity if their types are the same.
1816 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1817 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(ASTContext & Context,TypedefNameDecl * Decl,LookupResult & Previous)1818 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context,
1819                                                      TypedefNameDecl *Decl,
1820                                                      LookupResult &Previous) {
1821   // This is only interesting when modules are enabled.
1822   if (!Context.getLangOpts().Modules)
1823     return;
1824 
1825   // Empty sets are uninteresting.
1826   if (Previous.empty())
1827     return;
1828 
1829   LookupResult::Filter Filter = Previous.makeFilter();
1830   while (Filter.hasNext()) {
1831     NamedDecl *Old = Filter.next();
1832 
1833     // Non-hidden declarations are never ignored.
1834     if (!Old->isHidden())
1835       continue;
1836 
1837     // Declarations of the same entity are not ignored, even if they have
1838     // different linkages.
1839     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1840       if (Context.hasSameType(OldTD->getUnderlyingType(),
1841                               Decl->getUnderlyingType()))
1842         continue;
1843 
1844       // If both declarations give a tag declaration a typedef name for linkage
1845       // purposes, then they declare the same entity.
1846       if (OldTD->getAnonDeclWithTypedefName() &&
1847           Decl->getAnonDeclWithTypedefName())
1848         continue;
1849     }
1850 
1851     if (!Old->isExternallyVisible())
1852       Filter.erase();
1853   }
1854 
1855   Filter.done();
1856 }
1857 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1858 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1859   QualType OldType;
1860   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1861     OldType = OldTypedef->getUnderlyingType();
1862   else
1863     OldType = Context.getTypeDeclType(Old);
1864   QualType NewType = New->getUnderlyingType();
1865 
1866   if (NewType->isVariablyModifiedType()) {
1867     // Must not redefine a typedef with a variably-modified type.
1868     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1869     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1870       << Kind << NewType;
1871     if (Old->getLocation().isValid())
1872       Diag(Old->getLocation(), diag::note_previous_definition);
1873     New->setInvalidDecl();
1874     return true;
1875   }
1876 
1877   if (OldType != NewType &&
1878       !OldType->isDependentType() &&
1879       !NewType->isDependentType() &&
1880       !Context.hasSameType(OldType, NewType)) {
1881     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1882     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1883       << Kind << NewType << OldType;
1884     if (Old->getLocation().isValid())
1885       Diag(Old->getLocation(), diag::note_previous_definition);
1886     New->setInvalidDecl();
1887     return true;
1888   }
1889   return false;
1890 }
1891 
1892 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1893 /// same name and scope as a previous declaration 'Old'.  Figure out
1894 /// how to resolve this situation, merging decls or emitting
1895 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1896 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1897 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1898   // If the new decl is known invalid already, don't bother doing any
1899   // merging checks.
1900   if (New->isInvalidDecl()) return;
1901 
1902   // Allow multiple definitions for ObjC built-in typedefs.
1903   // FIXME: Verify the underlying types are equivalent!
1904   if (getLangOpts().ObjC1) {
1905     const IdentifierInfo *TypeID = New->getIdentifier();
1906     switch (TypeID->getLength()) {
1907     default: break;
1908     case 2:
1909       {
1910         if (!TypeID->isStr("id"))
1911           break;
1912         QualType T = New->getUnderlyingType();
1913         if (!T->isPointerType())
1914           break;
1915         if (!T->isVoidPointerType()) {
1916           QualType PT = T->getAs<PointerType>()->getPointeeType();
1917           if (!PT->isStructureType())
1918             break;
1919         }
1920         Context.setObjCIdRedefinitionType(T);
1921         // Install the built-in type for 'id', ignoring the current definition.
1922         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1923         return;
1924       }
1925     case 5:
1926       if (!TypeID->isStr("Class"))
1927         break;
1928       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1929       // Install the built-in type for 'Class', ignoring the current definition.
1930       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1931       return;
1932     case 3:
1933       if (!TypeID->isStr("SEL"))
1934         break;
1935       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1936       // Install the built-in type for 'SEL', ignoring the current definition.
1937       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1938       return;
1939     }
1940     // Fall through - the typedef name was not a builtin type.
1941   }
1942 
1943   // Verify the old decl was also a type.
1944   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1945   if (!Old) {
1946     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1947       << New->getDeclName();
1948 
1949     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1950     if (OldD->getLocation().isValid())
1951       Diag(OldD->getLocation(), diag::note_previous_definition);
1952 
1953     return New->setInvalidDecl();
1954   }
1955 
1956   // If the old declaration is invalid, just give up here.
1957   if (Old->isInvalidDecl())
1958     return New->setInvalidDecl();
1959 
1960   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1961     auto *OldTag = OldTD->getAnonDeclWithTypedefName();
1962     auto *NewTag = New->getAnonDeclWithTypedefName();
1963     NamedDecl *Hidden = nullptr;
1964     if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1965         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1966         !hasVisibleDefinition(OldTag, &Hidden)) {
1967       // There is a definition of this tag, but it is not visible. Use it
1968       // instead of our tag.
1969       New->setTypeForDecl(OldTD->getTypeForDecl());
1970       if (OldTD->isModed())
1971         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1972                                     OldTD->getUnderlyingType());
1973       else
1974         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1975 
1976       // Make the old tag definition visible.
1977       if (auto *Listener = getASTMutationListener())
1978         Listener->RedefinedHiddenDefinition(Hidden, NewTag->getLocation());
1979       Hidden->setHidden(false);
1980     }
1981   }
1982 
1983   // If the typedef types are not identical, reject them in all languages and
1984   // with any extensions enabled.
1985   if (isIncompatibleTypedef(Old, New))
1986     return;
1987 
1988   // The types match.  Link up the redeclaration chain and merge attributes if
1989   // the old declaration was a typedef.
1990   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1991     New->setPreviousDecl(Typedef);
1992     mergeDeclAttributes(New, Old);
1993   }
1994 
1995   if (getLangOpts().MicrosoftExt)
1996     return;
1997 
1998   if (getLangOpts().CPlusPlus) {
1999     // C++ [dcl.typedef]p2:
2000     //   In a given non-class scope, a typedef specifier can be used to
2001     //   redefine the name of any type declared in that scope to refer
2002     //   to the type to which it already refers.
2003     if (!isa<CXXRecordDecl>(CurContext))
2004       return;
2005 
2006     // C++0x [dcl.typedef]p4:
2007     //   In a given class scope, a typedef specifier can be used to redefine
2008     //   any class-name declared in that scope that is not also a typedef-name
2009     //   to refer to the type to which it already refers.
2010     //
2011     // This wording came in via DR424, which was a correction to the
2012     // wording in DR56, which accidentally banned code like:
2013     //
2014     //   struct S {
2015     //     typedef struct A { } A;
2016     //   };
2017     //
2018     // in the C++03 standard. We implement the C++0x semantics, which
2019     // allow the above but disallow
2020     //
2021     //   struct S {
2022     //     typedef int I;
2023     //     typedef int I;
2024     //   };
2025     //
2026     // since that was the intent of DR56.
2027     if (!isa<TypedefNameDecl>(Old))
2028       return;
2029 
2030     Diag(New->getLocation(), diag::err_redefinition)
2031       << New->getDeclName();
2032     Diag(Old->getLocation(), diag::note_previous_definition);
2033     return New->setInvalidDecl();
2034   }
2035 
2036   // Modules always permit redefinition of typedefs, as does C11.
2037   if (getLangOpts().Modules || getLangOpts().C11)
2038     return;
2039 
2040   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2041   // is normally mapped to an error, but can be controlled with
2042   // -Wtypedef-redefinition.  If either the original or the redefinition is
2043   // in a system header, don't emit this for compatibility with GCC.
2044   if (getDiagnostics().getSuppressSystemWarnings() &&
2045       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2046        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2047     return;
2048 
2049   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2050     << New->getDeclName();
2051   Diag(Old->getLocation(), diag::note_previous_definition);
2052 }
2053 
2054 /// DeclhasAttr - returns true if decl Declaration already has the target
2055 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2056 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2057   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2058   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2059   for (const auto *i : D->attrs())
2060     if (i->getKind() == A->getKind()) {
2061       if (Ann) {
2062         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2063           return true;
2064         continue;
2065       }
2066       // FIXME: Don't hardcode this check
2067       if (OA && isa<OwnershipAttr>(i))
2068         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2069       return true;
2070     }
2071 
2072   return false;
2073 }
2074 
isAttributeTargetADefinition(Decl * D)2075 static bool isAttributeTargetADefinition(Decl *D) {
2076   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2077     return VD->isThisDeclarationADefinition();
2078   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2079     return TD->isCompleteDefinition() || TD->isBeingDefined();
2080   return true;
2081 }
2082 
2083 /// Merge alignment attributes from \p Old to \p New, taking into account the
2084 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2085 ///
2086 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2087 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2088   // Look for alignas attributes on Old, and pick out whichever attribute
2089   // specifies the strictest alignment requirement.
2090   AlignedAttr *OldAlignasAttr = nullptr;
2091   AlignedAttr *OldStrictestAlignAttr = nullptr;
2092   unsigned OldAlign = 0;
2093   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2094     // FIXME: We have no way of representing inherited dependent alignments
2095     // in a case like:
2096     //   template<int A, int B> struct alignas(A) X;
2097     //   template<int A, int B> struct alignas(B) X {};
2098     // For now, we just ignore any alignas attributes which are not on the
2099     // definition in such a case.
2100     if (I->isAlignmentDependent())
2101       return false;
2102 
2103     if (I->isAlignas())
2104       OldAlignasAttr = I;
2105 
2106     unsigned Align = I->getAlignment(S.Context);
2107     if (Align > OldAlign) {
2108       OldAlign = Align;
2109       OldStrictestAlignAttr = I;
2110     }
2111   }
2112 
2113   // Look for alignas attributes on New.
2114   AlignedAttr *NewAlignasAttr = nullptr;
2115   unsigned NewAlign = 0;
2116   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2117     if (I->isAlignmentDependent())
2118       return false;
2119 
2120     if (I->isAlignas())
2121       NewAlignasAttr = I;
2122 
2123     unsigned Align = I->getAlignment(S.Context);
2124     if (Align > NewAlign)
2125       NewAlign = Align;
2126   }
2127 
2128   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2129     // Both declarations have 'alignas' attributes. We require them to match.
2130     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2131     // fall short. (If two declarations both have alignas, they must both match
2132     // every definition, and so must match each other if there is a definition.)
2133 
2134     // If either declaration only contains 'alignas(0)' specifiers, then it
2135     // specifies the natural alignment for the type.
2136     if (OldAlign == 0 || NewAlign == 0) {
2137       QualType Ty;
2138       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2139         Ty = VD->getType();
2140       else
2141         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2142 
2143       if (OldAlign == 0)
2144         OldAlign = S.Context.getTypeAlign(Ty);
2145       if (NewAlign == 0)
2146         NewAlign = S.Context.getTypeAlign(Ty);
2147     }
2148 
2149     if (OldAlign != NewAlign) {
2150       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2151         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2152         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2153       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2154     }
2155   }
2156 
2157   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2158     // C++11 [dcl.align]p6:
2159     //   if any declaration of an entity has an alignment-specifier,
2160     //   every defining declaration of that entity shall specify an
2161     //   equivalent alignment.
2162     // C11 6.7.5/7:
2163     //   If the definition of an object does not have an alignment
2164     //   specifier, any other declaration of that object shall also
2165     //   have no alignment specifier.
2166     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2167       << OldAlignasAttr;
2168     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2169       << OldAlignasAttr;
2170   }
2171 
2172   bool AnyAdded = false;
2173 
2174   // Ensure we have an attribute representing the strictest alignment.
2175   if (OldAlign > NewAlign) {
2176     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2177     Clone->setInherited(true);
2178     New->addAttr(Clone);
2179     AnyAdded = true;
2180   }
2181 
2182   // Ensure we have an alignas attribute if the old declaration had one.
2183   if (OldAlignasAttr && !NewAlignasAttr &&
2184       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2185     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2186     Clone->setInherited(true);
2187     New->addAttr(Clone);
2188     AnyAdded = true;
2189   }
2190 
2191   return AnyAdded;
2192 }
2193 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,bool Override)2194 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2195                                const InheritableAttr *Attr, bool Override) {
2196   InheritableAttr *NewAttr = nullptr;
2197   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2198   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2199     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2200                                       AA->getIntroduced(), AA->getDeprecated(),
2201                                       AA->getObsoleted(), AA->getUnavailable(),
2202                                       AA->getMessage(), Override,
2203                                       AttrSpellingListIndex);
2204   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2205     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2206                                     AttrSpellingListIndex);
2207   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2208     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2209                                         AttrSpellingListIndex);
2210   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2211     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2212                                    AttrSpellingListIndex);
2213   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2214     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2215                                    AttrSpellingListIndex);
2216   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2217     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2218                                 FA->getFormatIdx(), FA->getFirstArg(),
2219                                 AttrSpellingListIndex);
2220   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2221     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2222                                  AttrSpellingListIndex);
2223   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2224     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2225                                        AttrSpellingListIndex,
2226                                        IA->getSemanticSpelling());
2227   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2228     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2229                                       &S.Context.Idents.get(AA->getSpelling()),
2230                                       AttrSpellingListIndex);
2231   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2232     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2233   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2234     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2235   else if (isa<AlignedAttr>(Attr))
2236     // AlignedAttrs are handled separately, because we need to handle all
2237     // such attributes on a declaration at the same time.
2238     NewAttr = nullptr;
2239   else if (isa<DeprecatedAttr>(Attr) && Override)
2240     NewAttr = nullptr;
2241   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2242     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2243 
2244   if (NewAttr) {
2245     NewAttr->setInherited(true);
2246     D->addAttr(NewAttr);
2247     return true;
2248   }
2249 
2250   return false;
2251 }
2252 
getDefinition(const Decl * D)2253 static const Decl *getDefinition(const Decl *D) {
2254   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2255     return TD->getDefinition();
2256   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2257     const VarDecl *Def = VD->getDefinition();
2258     if (Def)
2259       return Def;
2260     return VD->getActingDefinition();
2261   }
2262   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2263     const FunctionDecl* Def;
2264     if (FD->isDefined(Def))
2265       return Def;
2266   }
2267   return nullptr;
2268 }
2269 
hasAttribute(const Decl * D,attr::Kind Kind)2270 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2271   for (const auto *Attribute : D->attrs())
2272     if (Attribute->getKind() == Kind)
2273       return true;
2274   return false;
2275 }
2276 
2277 /// checkNewAttributesAfterDef - If we already have a definition, check that
2278 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2279 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2280   if (!New->hasAttrs())
2281     return;
2282 
2283   const Decl *Def = getDefinition(Old);
2284   if (!Def || Def == New)
2285     return;
2286 
2287   AttrVec &NewAttributes = New->getAttrs();
2288   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2289     const Attr *NewAttribute = NewAttributes[I];
2290 
2291     if (isa<AliasAttr>(NewAttribute)) {
2292       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2293         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2294       else {
2295         VarDecl *VD = cast<VarDecl>(New);
2296         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2297                                 VarDecl::TentativeDefinition
2298                             ? diag::err_alias_after_tentative
2299                             : diag::err_redefinition;
2300         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2301         S.Diag(Def->getLocation(), diag::note_previous_definition);
2302         VD->setInvalidDecl();
2303       }
2304       ++I;
2305       continue;
2306     }
2307 
2308     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2309       // Tentative definitions are only interesting for the alias check above.
2310       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2311         ++I;
2312         continue;
2313       }
2314     }
2315 
2316     if (hasAttribute(Def, NewAttribute->getKind())) {
2317       ++I;
2318       continue; // regular attr merging will take care of validating this.
2319     }
2320 
2321     if (isa<C11NoReturnAttr>(NewAttribute)) {
2322       // C's _Noreturn is allowed to be added to a function after it is defined.
2323       ++I;
2324       continue;
2325     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2326       if (AA->isAlignas()) {
2327         // C++11 [dcl.align]p6:
2328         //   if any declaration of an entity has an alignment-specifier,
2329         //   every defining declaration of that entity shall specify an
2330         //   equivalent alignment.
2331         // C11 6.7.5/7:
2332         //   If the definition of an object does not have an alignment
2333         //   specifier, any other declaration of that object shall also
2334         //   have no alignment specifier.
2335         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2336           << AA;
2337         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2338           << AA;
2339         NewAttributes.erase(NewAttributes.begin() + I);
2340         --E;
2341         continue;
2342       }
2343     }
2344 
2345     S.Diag(NewAttribute->getLocation(),
2346            diag::warn_attribute_precede_definition);
2347     S.Diag(Def->getLocation(), diag::note_previous_definition);
2348     NewAttributes.erase(NewAttributes.begin() + I);
2349     --E;
2350   }
2351 }
2352 
2353 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2354 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2355                                AvailabilityMergeKind AMK) {
2356   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2357     UsedAttr *NewAttr = OldAttr->clone(Context);
2358     NewAttr->setInherited(true);
2359     New->addAttr(NewAttr);
2360   }
2361 
2362   if (!Old->hasAttrs() && !New->hasAttrs())
2363     return;
2364 
2365   // attributes declared post-definition are currently ignored
2366   checkNewAttributesAfterDef(*this, New, Old);
2367 
2368   if (!Old->hasAttrs())
2369     return;
2370 
2371   bool foundAny = New->hasAttrs();
2372 
2373   // Ensure that any moving of objects within the allocated map is done before
2374   // we process them.
2375   if (!foundAny) New->setAttrs(AttrVec());
2376 
2377   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2378     bool Override = false;
2379     // Ignore deprecated/unavailable/availability attributes if requested.
2380     if (isa<DeprecatedAttr>(I) ||
2381         isa<UnavailableAttr>(I) ||
2382         isa<AvailabilityAttr>(I)) {
2383       switch (AMK) {
2384       case AMK_None:
2385         continue;
2386 
2387       case AMK_Redeclaration:
2388         break;
2389 
2390       case AMK_Override:
2391         Override = true;
2392         break;
2393       }
2394     }
2395 
2396     // Already handled.
2397     if (isa<UsedAttr>(I))
2398       continue;
2399 
2400     if (mergeDeclAttribute(*this, New, I, Override))
2401       foundAny = true;
2402   }
2403 
2404   if (mergeAlignedAttrs(*this, New, Old))
2405     foundAny = true;
2406 
2407   if (!foundAny) New->dropAttrs();
2408 }
2409 
2410 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2411 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2412 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2413                                      const ParmVarDecl *oldDecl,
2414                                      Sema &S) {
2415   // C++11 [dcl.attr.depend]p2:
2416   //   The first declaration of a function shall specify the
2417   //   carries_dependency attribute for its declarator-id if any declaration
2418   //   of the function specifies the carries_dependency attribute.
2419   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2420   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2421     S.Diag(CDA->getLocation(),
2422            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2423     // Find the first declaration of the parameter.
2424     // FIXME: Should we build redeclaration chains for function parameters?
2425     const FunctionDecl *FirstFD =
2426       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2427     const ParmVarDecl *FirstVD =
2428       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2429     S.Diag(FirstVD->getLocation(),
2430            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2431   }
2432 
2433   if (!oldDecl->hasAttrs())
2434     return;
2435 
2436   bool foundAny = newDecl->hasAttrs();
2437 
2438   // Ensure that any moving of objects within the allocated map is
2439   // done before we process them.
2440   if (!foundAny) newDecl->setAttrs(AttrVec());
2441 
2442   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2443     if (!DeclHasAttr(newDecl, I)) {
2444       InheritableAttr *newAttr =
2445         cast<InheritableParamAttr>(I->clone(S.Context));
2446       newAttr->setInherited(true);
2447       newDecl->addAttr(newAttr);
2448       foundAny = true;
2449     }
2450   }
2451 
2452   if (!foundAny) newDecl->dropAttrs();
2453 }
2454 
2455 namespace {
2456 
2457 /// Used in MergeFunctionDecl to keep track of function parameters in
2458 /// C.
2459 struct GNUCompatibleParamWarning {
2460   ParmVarDecl *OldParm;
2461   ParmVarDecl *NewParm;
2462   QualType PromotedType;
2463 };
2464 
2465 }
2466 
2467 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2468 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2469   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2470     if (Ctor->isDefaultConstructor())
2471       return Sema::CXXDefaultConstructor;
2472 
2473     if (Ctor->isCopyConstructor())
2474       return Sema::CXXCopyConstructor;
2475 
2476     if (Ctor->isMoveConstructor())
2477       return Sema::CXXMoveConstructor;
2478   } else if (isa<CXXDestructorDecl>(MD)) {
2479     return Sema::CXXDestructor;
2480   } else if (MD->isCopyAssignmentOperator()) {
2481     return Sema::CXXCopyAssignment;
2482   } else if (MD->isMoveAssignmentOperator()) {
2483     return Sema::CXXMoveAssignment;
2484   }
2485 
2486   return Sema::CXXInvalid;
2487 }
2488 
2489 // Determine whether the previous declaration was a definition, implicit
2490 // declaration, or a declaration.
2491 template <typename T>
2492 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2493 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2494   diag::kind PrevDiag;
2495   SourceLocation OldLocation = Old->getLocation();
2496   if (Old->isThisDeclarationADefinition())
2497     PrevDiag = diag::note_previous_definition;
2498   else if (Old->isImplicit()) {
2499     PrevDiag = diag::note_previous_implicit_declaration;
2500     if (OldLocation.isInvalid())
2501       OldLocation = New->getLocation();
2502   } else
2503     PrevDiag = diag::note_previous_declaration;
2504   return std::make_pair(PrevDiag, OldLocation);
2505 }
2506 
2507 /// canRedefineFunction - checks if a function can be redefined. Currently,
2508 /// only extern inline functions can be redefined, and even then only in
2509 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2510 static bool canRedefineFunction(const FunctionDecl *FD,
2511                                 const LangOptions& LangOpts) {
2512   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2513           !LangOpts.CPlusPlus &&
2514           FD->isInlineSpecified() &&
2515           FD->getStorageClass() == SC_Extern);
2516 }
2517 
getCallingConvAttributedType(QualType T) const2518 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2519   const AttributedType *AT = T->getAs<AttributedType>();
2520   while (AT && !AT->isCallingConv())
2521     AT = AT->getModifiedType()->getAs<AttributedType>();
2522   return AT;
2523 }
2524 
2525 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2526 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2527   const DeclContext *DC = Old->getDeclContext();
2528   if (DC->isRecord())
2529     return false;
2530 
2531   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2532   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2533     return true;
2534   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2535     return true;
2536   return false;
2537 }
2538 
2539 /// MergeFunctionDecl - We just parsed a function 'New' from
2540 /// declarator D which has the same name and scope as a previous
2541 /// declaration 'Old'.  Figure out how to resolve this situation,
2542 /// merging decls or emitting diagnostics as appropriate.
2543 ///
2544 /// In C++, New and Old must be declarations that are not
2545 /// overloaded. Use IsOverload to determine whether New and Old are
2546 /// overloaded, and to select the Old declaration that New should be
2547 /// merged with.
2548 ///
2549 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2550 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2551                              Scope *S, bool MergeTypeWithOld) {
2552   // Verify the old decl was also a function.
2553   FunctionDecl *Old = OldD->getAsFunction();
2554   if (!Old) {
2555     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2556       if (New->getFriendObjectKind()) {
2557         Diag(New->getLocation(), diag::err_using_decl_friend);
2558         Diag(Shadow->getTargetDecl()->getLocation(),
2559              diag::note_using_decl_target);
2560         Diag(Shadow->getUsingDecl()->getLocation(),
2561              diag::note_using_decl) << 0;
2562         return true;
2563       }
2564 
2565       // C++11 [namespace.udecl]p14:
2566       //   If a function declaration in namespace scope or block scope has the
2567       //   same name and the same parameter-type-list as a function introduced
2568       //   by a using-declaration, and the declarations do not declare the same
2569       //   function, the program is ill-formed.
2570 
2571       // Check whether the two declarations might declare the same function.
2572       Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2573       if (Old &&
2574           !Old->getDeclContext()->getRedeclContext()->Equals(
2575               New->getDeclContext()->getRedeclContext()) &&
2576           !(Old->isExternC() && New->isExternC()))
2577         Old = nullptr;
2578 
2579       if (!Old) {
2580         Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2581         Diag(Shadow->getTargetDecl()->getLocation(),
2582              diag::note_using_decl_target);
2583         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2584         return true;
2585       }
2586       OldD = Old;
2587     } else {
2588       Diag(New->getLocation(), diag::err_redefinition_different_kind)
2589         << New->getDeclName();
2590       Diag(OldD->getLocation(), diag::note_previous_definition);
2591       return true;
2592     }
2593   }
2594 
2595   // If the old declaration is invalid, just give up here.
2596   if (Old->isInvalidDecl())
2597     return true;
2598 
2599   diag::kind PrevDiag;
2600   SourceLocation OldLocation;
2601   std::tie(PrevDiag, OldLocation) =
2602       getNoteDiagForInvalidRedeclaration(Old, New);
2603 
2604   // Don't complain about this if we're in GNU89 mode and the old function
2605   // is an extern inline function.
2606   // Don't complain about specializations. They are not supposed to have
2607   // storage classes.
2608   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2609       New->getStorageClass() == SC_Static &&
2610       Old->hasExternalFormalLinkage() &&
2611       !New->getTemplateSpecializationInfo() &&
2612       !canRedefineFunction(Old, getLangOpts())) {
2613     if (getLangOpts().MicrosoftExt) {
2614       Diag(New->getLocation(), diag::ext_static_non_static) << New;
2615       Diag(OldLocation, PrevDiag);
2616     } else {
2617       Diag(New->getLocation(), diag::err_static_non_static) << New;
2618       Diag(OldLocation, PrevDiag);
2619       return true;
2620     }
2621   }
2622 
2623 
2624   // If a function is first declared with a calling convention, but is later
2625   // declared or defined without one, all following decls assume the calling
2626   // convention of the first.
2627   //
2628   // It's OK if a function is first declared without a calling convention,
2629   // but is later declared or defined with the default calling convention.
2630   //
2631   // To test if either decl has an explicit calling convention, we look for
2632   // AttributedType sugar nodes on the type as written.  If they are missing or
2633   // were canonicalized away, we assume the calling convention was implicit.
2634   //
2635   // Note also that we DO NOT return at this point, because we still have
2636   // other tests to run.
2637   QualType OldQType = Context.getCanonicalType(Old->getType());
2638   QualType NewQType = Context.getCanonicalType(New->getType());
2639   const FunctionType *OldType = cast<FunctionType>(OldQType);
2640   const FunctionType *NewType = cast<FunctionType>(NewQType);
2641   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2642   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2643   bool RequiresAdjustment = false;
2644 
2645   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2646     FunctionDecl *First = Old->getFirstDecl();
2647     const FunctionType *FT =
2648         First->getType().getCanonicalType()->castAs<FunctionType>();
2649     FunctionType::ExtInfo FI = FT->getExtInfo();
2650     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2651     if (!NewCCExplicit) {
2652       // Inherit the CC from the previous declaration if it was specified
2653       // there but not here.
2654       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2655       RequiresAdjustment = true;
2656     } else {
2657       // Calling conventions aren't compatible, so complain.
2658       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2659       Diag(New->getLocation(), diag::err_cconv_change)
2660         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2661         << !FirstCCExplicit
2662         << (!FirstCCExplicit ? "" :
2663             FunctionType::getNameForCallConv(FI.getCC()));
2664 
2665       // Put the note on the first decl, since it is the one that matters.
2666       Diag(First->getLocation(), diag::note_previous_declaration);
2667       return true;
2668     }
2669   }
2670 
2671   // FIXME: diagnose the other way around?
2672   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2673     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2674     RequiresAdjustment = true;
2675   }
2676 
2677   // Merge regparm attribute.
2678   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2679       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2680     if (NewTypeInfo.getHasRegParm()) {
2681       Diag(New->getLocation(), diag::err_regparm_mismatch)
2682         << NewType->getRegParmType()
2683         << OldType->getRegParmType();
2684       Diag(OldLocation, diag::note_previous_declaration);
2685       return true;
2686     }
2687 
2688     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2689     RequiresAdjustment = true;
2690   }
2691 
2692   // Merge ns_returns_retained attribute.
2693   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2694     if (NewTypeInfo.getProducesResult()) {
2695       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2696       Diag(OldLocation, diag::note_previous_declaration);
2697       return true;
2698     }
2699 
2700     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2701     RequiresAdjustment = true;
2702   }
2703 
2704   if (RequiresAdjustment) {
2705     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2706     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2707     New->setType(QualType(AdjustedType, 0));
2708     NewQType = Context.getCanonicalType(New->getType());
2709     NewType = cast<FunctionType>(NewQType);
2710   }
2711 
2712   // If this redeclaration makes the function inline, we may need to add it to
2713   // UndefinedButUsed.
2714   if (!Old->isInlined() && New->isInlined() &&
2715       !New->hasAttr<GNUInlineAttr>() &&
2716       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2717       Old->isUsed(false) &&
2718       !Old->isDefined() && !New->isThisDeclarationADefinition())
2719     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2720                                            SourceLocation()));
2721 
2722   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2723   // about it.
2724   if (New->hasAttr<GNUInlineAttr>() &&
2725       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2726     UndefinedButUsed.erase(Old->getCanonicalDecl());
2727   }
2728 
2729   if (getLangOpts().CPlusPlus) {
2730     // (C++98 13.1p2):
2731     //   Certain function declarations cannot be overloaded:
2732     //     -- Function declarations that differ only in the return type
2733     //        cannot be overloaded.
2734 
2735     // Go back to the type source info to compare the declared return types,
2736     // per C++1y [dcl.type.auto]p13:
2737     //   Redeclarations or specializations of a function or function template
2738     //   with a declared return type that uses a placeholder type shall also
2739     //   use that placeholder, not a deduced type.
2740     QualType OldDeclaredReturnType =
2741         (Old->getTypeSourceInfo()
2742              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2743              : OldType)->getReturnType();
2744     QualType NewDeclaredReturnType =
2745         (New->getTypeSourceInfo()
2746              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2747              : NewType)->getReturnType();
2748     QualType ResQT;
2749     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2750         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2751           New->isLocalExternDecl())) {
2752       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2753           OldDeclaredReturnType->isObjCObjectPointerType())
2754         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2755       if (ResQT.isNull()) {
2756         if (New->isCXXClassMember() && New->isOutOfLine())
2757           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2758               << New << New->getReturnTypeSourceRange();
2759         else
2760           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2761               << New->getReturnTypeSourceRange();
2762         Diag(OldLocation, PrevDiag) << Old << Old->getType()
2763                                     << Old->getReturnTypeSourceRange();
2764         return true;
2765       }
2766       else
2767         NewQType = ResQT;
2768     }
2769 
2770     QualType OldReturnType = OldType->getReturnType();
2771     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2772     if (OldReturnType != NewReturnType) {
2773       // If this function has a deduced return type and has already been
2774       // defined, copy the deduced value from the old declaration.
2775       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2776       if (OldAT && OldAT->isDeduced()) {
2777         New->setType(
2778             SubstAutoType(New->getType(),
2779                           OldAT->isDependentType() ? Context.DependentTy
2780                                                    : OldAT->getDeducedType()));
2781         NewQType = Context.getCanonicalType(
2782             SubstAutoType(NewQType,
2783                           OldAT->isDependentType() ? Context.DependentTy
2784                                                    : OldAT->getDeducedType()));
2785       }
2786     }
2787 
2788     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2789     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2790     if (OldMethod && NewMethod) {
2791       // Preserve triviality.
2792       NewMethod->setTrivial(OldMethod->isTrivial());
2793 
2794       // MSVC allows explicit template specialization at class scope:
2795       // 2 CXXMethodDecls referring to the same function will be injected.
2796       // We don't want a redeclaration error.
2797       bool IsClassScopeExplicitSpecialization =
2798                               OldMethod->isFunctionTemplateSpecialization() &&
2799                               NewMethod->isFunctionTemplateSpecialization();
2800       bool isFriend = NewMethod->getFriendObjectKind();
2801 
2802       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2803           !IsClassScopeExplicitSpecialization) {
2804         //    -- Member function declarations with the same name and the
2805         //       same parameter types cannot be overloaded if any of them
2806         //       is a static member function declaration.
2807         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2808           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2809           Diag(OldLocation, PrevDiag) << Old << Old->getType();
2810           return true;
2811         }
2812 
2813         // C++ [class.mem]p1:
2814         //   [...] A member shall not be declared twice in the
2815         //   member-specification, except that a nested class or member
2816         //   class template can be declared and then later defined.
2817         if (ActiveTemplateInstantiations.empty()) {
2818           unsigned NewDiag;
2819           if (isa<CXXConstructorDecl>(OldMethod))
2820             NewDiag = diag::err_constructor_redeclared;
2821           else if (isa<CXXDestructorDecl>(NewMethod))
2822             NewDiag = diag::err_destructor_redeclared;
2823           else if (isa<CXXConversionDecl>(NewMethod))
2824             NewDiag = diag::err_conv_function_redeclared;
2825           else
2826             NewDiag = diag::err_member_redeclared;
2827 
2828           Diag(New->getLocation(), NewDiag);
2829         } else {
2830           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2831             << New << New->getType();
2832         }
2833         Diag(OldLocation, PrevDiag) << Old << Old->getType();
2834         return true;
2835 
2836       // Complain if this is an explicit declaration of a special
2837       // member that was initially declared implicitly.
2838       //
2839       // As an exception, it's okay to befriend such methods in order
2840       // to permit the implicit constructor/destructor/operator calls.
2841       } else if (OldMethod->isImplicit()) {
2842         if (isFriend) {
2843           NewMethod->setImplicit();
2844         } else {
2845           Diag(NewMethod->getLocation(),
2846                diag::err_definition_of_implicitly_declared_member)
2847             << New << getSpecialMember(OldMethod);
2848           return true;
2849         }
2850       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2851         Diag(NewMethod->getLocation(),
2852              diag::err_definition_of_explicitly_defaulted_member)
2853           << getSpecialMember(OldMethod);
2854         return true;
2855       }
2856     }
2857 
2858     // C++11 [dcl.attr.noreturn]p1:
2859     //   The first declaration of a function shall specify the noreturn
2860     //   attribute if any declaration of that function specifies the noreturn
2861     //   attribute.
2862     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2863     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2864       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2865       Diag(Old->getFirstDecl()->getLocation(),
2866            diag::note_noreturn_missing_first_decl);
2867     }
2868 
2869     // C++11 [dcl.attr.depend]p2:
2870     //   The first declaration of a function shall specify the
2871     //   carries_dependency attribute for its declarator-id if any declaration
2872     //   of the function specifies the carries_dependency attribute.
2873     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2874     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2875       Diag(CDA->getLocation(),
2876            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2877       Diag(Old->getFirstDecl()->getLocation(),
2878            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2879     }
2880 
2881     // (C++98 8.3.5p3):
2882     //   All declarations for a function shall agree exactly in both the
2883     //   return type and the parameter-type-list.
2884     // We also want to respect all the extended bits except noreturn.
2885 
2886     // noreturn should now match unless the old type info didn't have it.
2887     QualType OldQTypeForComparison = OldQType;
2888     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2889       assert(OldQType == QualType(OldType, 0));
2890       const FunctionType *OldTypeForComparison
2891         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2892       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2893       assert(OldQTypeForComparison.isCanonical());
2894     }
2895 
2896     if (haveIncompatibleLanguageLinkages(Old, New)) {
2897       // As a special case, retain the language linkage from previous
2898       // declarations of a friend function as an extension.
2899       //
2900       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2901       // and is useful because there's otherwise no way to specify language
2902       // linkage within class scope.
2903       //
2904       // Check cautiously as the friend object kind isn't yet complete.
2905       if (New->getFriendObjectKind() != Decl::FOK_None) {
2906         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2907         Diag(OldLocation, PrevDiag);
2908       } else {
2909         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2910         Diag(OldLocation, PrevDiag);
2911         return true;
2912       }
2913     }
2914 
2915     if (OldQTypeForComparison == NewQType)
2916       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2917 
2918     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2919         New->isLocalExternDecl()) {
2920       // It's OK if we couldn't merge types for a local function declaraton
2921       // if either the old or new type is dependent. We'll merge the types
2922       // when we instantiate the function.
2923       return false;
2924     }
2925 
2926     // Fall through for conflicting redeclarations and redefinitions.
2927   }
2928 
2929   // C: Function types need to be compatible, not identical. This handles
2930   // duplicate function decls like "void f(int); void f(enum X);" properly.
2931   if (!getLangOpts().CPlusPlus &&
2932       Context.typesAreCompatible(OldQType, NewQType)) {
2933     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2934     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2935     const FunctionProtoType *OldProto = nullptr;
2936     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2937         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2938       // The old declaration provided a function prototype, but the
2939       // new declaration does not. Merge in the prototype.
2940       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2941       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2942       NewQType =
2943           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2944                                   OldProto->getExtProtoInfo());
2945       New->setType(NewQType);
2946       New->setHasInheritedPrototype();
2947 
2948       // Synthesize parameters with the same types.
2949       SmallVector<ParmVarDecl*, 16> Params;
2950       for (const auto &ParamType : OldProto->param_types()) {
2951         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2952                                                  SourceLocation(), nullptr,
2953                                                  ParamType, /*TInfo=*/nullptr,
2954                                                  SC_None, nullptr);
2955         Param->setScopeInfo(0, Params.size());
2956         Param->setImplicit();
2957         Params.push_back(Param);
2958       }
2959 
2960       New->setParams(Params);
2961     }
2962 
2963     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2964   }
2965 
2966   // GNU C permits a K&R definition to follow a prototype declaration
2967   // if the declared types of the parameters in the K&R definition
2968   // match the types in the prototype declaration, even when the
2969   // promoted types of the parameters from the K&R definition differ
2970   // from the types in the prototype. GCC then keeps the types from
2971   // the prototype.
2972   //
2973   // If a variadic prototype is followed by a non-variadic K&R definition,
2974   // the K&R definition becomes variadic.  This is sort of an edge case, but
2975   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2976   // C99 6.9.1p8.
2977   if (!getLangOpts().CPlusPlus &&
2978       Old->hasPrototype() && !New->hasPrototype() &&
2979       New->getType()->getAs<FunctionProtoType>() &&
2980       Old->getNumParams() == New->getNumParams()) {
2981     SmallVector<QualType, 16> ArgTypes;
2982     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2983     const FunctionProtoType *OldProto
2984       = Old->getType()->getAs<FunctionProtoType>();
2985     const FunctionProtoType *NewProto
2986       = New->getType()->getAs<FunctionProtoType>();
2987 
2988     // Determine whether this is the GNU C extension.
2989     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2990                                                NewProto->getReturnType());
2991     bool LooseCompatible = !MergedReturn.isNull();
2992     for (unsigned Idx = 0, End = Old->getNumParams();
2993          LooseCompatible && Idx != End; ++Idx) {
2994       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2995       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2996       if (Context.typesAreCompatible(OldParm->getType(),
2997                                      NewProto->getParamType(Idx))) {
2998         ArgTypes.push_back(NewParm->getType());
2999       } else if (Context.typesAreCompatible(OldParm->getType(),
3000                                             NewParm->getType(),
3001                                             /*CompareUnqualified=*/true)) {
3002         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3003                                            NewProto->getParamType(Idx) };
3004         Warnings.push_back(Warn);
3005         ArgTypes.push_back(NewParm->getType());
3006       } else
3007         LooseCompatible = false;
3008     }
3009 
3010     if (LooseCompatible) {
3011       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3012         Diag(Warnings[Warn].NewParm->getLocation(),
3013              diag::ext_param_promoted_not_compatible_with_prototype)
3014           << Warnings[Warn].PromotedType
3015           << Warnings[Warn].OldParm->getType();
3016         if (Warnings[Warn].OldParm->getLocation().isValid())
3017           Diag(Warnings[Warn].OldParm->getLocation(),
3018                diag::note_previous_declaration);
3019       }
3020 
3021       if (MergeTypeWithOld)
3022         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3023                                              OldProto->getExtProtoInfo()));
3024       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3025     }
3026 
3027     // Fall through to diagnose conflicting types.
3028   }
3029 
3030   // A function that has already been declared has been redeclared or
3031   // defined with a different type; show an appropriate diagnostic.
3032 
3033   // If the previous declaration was an implicitly-generated builtin
3034   // declaration, then at the very least we should use a specialized note.
3035   unsigned BuiltinID;
3036   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3037     // If it's actually a library-defined builtin function like 'malloc'
3038     // or 'printf', just warn about the incompatible redeclaration.
3039     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3040       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3041       Diag(OldLocation, diag::note_previous_builtin_declaration)
3042         << Old << Old->getType();
3043 
3044       // If this is a global redeclaration, just forget hereafter
3045       // about the "builtin-ness" of the function.
3046       //
3047       // Doing this for local extern declarations is problematic.  If
3048       // the builtin declaration remains visible, a second invalid
3049       // local declaration will produce a hard error; if it doesn't
3050       // remain visible, a single bogus local redeclaration (which is
3051       // actually only a warning) could break all the downstream code.
3052       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3053         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
3054 
3055       return false;
3056     }
3057 
3058     PrevDiag = diag::note_previous_builtin_declaration;
3059   }
3060 
3061   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3062   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3063   return true;
3064 }
3065 
3066 /// \brief Completes the merge of two function declarations that are
3067 /// known to be compatible.
3068 ///
3069 /// This routine handles the merging of attributes and other
3070 /// properties of function declarations from the old declaration to
3071 /// the new declaration, once we know that New is in fact a
3072 /// redeclaration of Old.
3073 ///
3074 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3075 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3076                                         Scope *S, bool MergeTypeWithOld) {
3077   // Merge the attributes
3078   mergeDeclAttributes(New, Old);
3079 
3080   // Merge "pure" flag.
3081   if (Old->isPure())
3082     New->setPure();
3083 
3084   // Merge "used" flag.
3085   if (Old->getMostRecentDecl()->isUsed(false))
3086     New->setIsUsed();
3087 
3088   // Merge attributes from the parameters.  These can mismatch with K&R
3089   // declarations.
3090   if (New->getNumParams() == Old->getNumParams())
3091     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
3092       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
3093                                *this);
3094 
3095   if (getLangOpts().CPlusPlus)
3096     return MergeCXXFunctionDecl(New, Old, S);
3097 
3098   // Merge the function types so the we get the composite types for the return
3099   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3100   // was visible.
3101   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3102   if (!Merged.isNull() && MergeTypeWithOld)
3103     New->setType(Merged);
3104 
3105   return false;
3106 }
3107 
3108 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3109 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3110                                 ObjCMethodDecl *oldMethod) {
3111 
3112   // Merge the attributes, including deprecated/unavailable
3113   AvailabilityMergeKind MergeKind =
3114     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3115                                                    : AMK_Override;
3116   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3117 
3118   // Merge attributes from the parameters.
3119   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3120                                        oe = oldMethod->param_end();
3121   for (ObjCMethodDecl::param_iterator
3122          ni = newMethod->param_begin(), ne = newMethod->param_end();
3123        ni != ne && oi != oe; ++ni, ++oi)
3124     mergeParamDeclAttributes(*ni, *oi, *this);
3125 
3126   CheckObjCMethodOverride(newMethod, oldMethod);
3127 }
3128 
3129 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3130 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3131 /// emitting diagnostics as appropriate.
3132 ///
3133 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3134 /// to here in AddInitializerToDecl. We can't check them before the initializer
3135 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3136 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3137                              bool MergeTypeWithOld) {
3138   if (New->isInvalidDecl() || Old->isInvalidDecl())
3139     return;
3140 
3141   QualType MergedT;
3142   if (getLangOpts().CPlusPlus) {
3143     if (New->getType()->isUndeducedType()) {
3144       // We don't know what the new type is until the initializer is attached.
3145       return;
3146     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3147       // These could still be something that needs exception specs checked.
3148       return MergeVarDeclExceptionSpecs(New, Old);
3149     }
3150     // C++ [basic.link]p10:
3151     //   [...] the types specified by all declarations referring to a given
3152     //   object or function shall be identical, except that declarations for an
3153     //   array object can specify array types that differ by the presence or
3154     //   absence of a major array bound (8.3.4).
3155     else if (Old->getType()->isIncompleteArrayType() &&
3156              New->getType()->isArrayType()) {
3157       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3158       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3159       if (Context.hasSameType(OldArray->getElementType(),
3160                               NewArray->getElementType()))
3161         MergedT = New->getType();
3162     } else if (Old->getType()->isArrayType() &&
3163                New->getType()->isIncompleteArrayType()) {
3164       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3165       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3166       if (Context.hasSameType(OldArray->getElementType(),
3167                               NewArray->getElementType()))
3168         MergedT = Old->getType();
3169     } else if (New->getType()->isObjCObjectPointerType() &&
3170                Old->getType()->isObjCObjectPointerType()) {
3171       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3172                                               Old->getType());
3173     }
3174   } else {
3175     // C 6.2.7p2:
3176     //   All declarations that refer to the same object or function shall have
3177     //   compatible type.
3178     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3179   }
3180   if (MergedT.isNull()) {
3181     // It's OK if we couldn't merge types if either type is dependent, for a
3182     // block-scope variable. In other cases (static data members of class
3183     // templates, variable templates, ...), we require the types to be
3184     // equivalent.
3185     // FIXME: The C++ standard doesn't say anything about this.
3186     if ((New->getType()->isDependentType() ||
3187          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3188       // If the old type was dependent, we can't merge with it, so the new type
3189       // becomes dependent for now. We'll reproduce the original type when we
3190       // instantiate the TypeSourceInfo for the variable.
3191       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3192         New->setType(Context.DependentTy);
3193       return;
3194     }
3195 
3196     // FIXME: Even if this merging succeeds, some other non-visible declaration
3197     // of this variable might have an incompatible type. For instance:
3198     //
3199     //   extern int arr[];
3200     //   void f() { extern int arr[2]; }
3201     //   void g() { extern int arr[3]; }
3202     //
3203     // Neither C nor C++ requires a diagnostic for this, but we should still try
3204     // to diagnose it.
3205     Diag(New->getLocation(), diag::err_redefinition_different_type)
3206       << New->getDeclName() << New->getType() << Old->getType();
3207     Diag(Old->getLocation(), diag::note_previous_definition);
3208     return New->setInvalidDecl();
3209   }
3210 
3211   // Don't actually update the type on the new declaration if the old
3212   // declaration was an extern declaration in a different scope.
3213   if (MergeTypeWithOld)
3214     New->setType(MergedT);
3215 }
3216 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3217 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3218                                   LookupResult &Previous) {
3219   // C11 6.2.7p4:
3220   //   For an identifier with internal or external linkage declared
3221   //   in a scope in which a prior declaration of that identifier is
3222   //   visible, if the prior declaration specifies internal or
3223   //   external linkage, the type of the identifier at the later
3224   //   declaration becomes the composite type.
3225   //
3226   // If the variable isn't visible, we do not merge with its type.
3227   if (Previous.isShadowed())
3228     return false;
3229 
3230   if (S.getLangOpts().CPlusPlus) {
3231     // C++11 [dcl.array]p3:
3232     //   If there is a preceding declaration of the entity in the same
3233     //   scope in which the bound was specified, an omitted array bound
3234     //   is taken to be the same as in that earlier declaration.
3235     return NewVD->isPreviousDeclInSameBlockScope() ||
3236            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3237             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3238   } else {
3239     // If the old declaration was function-local, don't merge with its
3240     // type unless we're in the same function.
3241     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3242            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3243   }
3244 }
3245 
3246 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3247 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3248 /// situation, merging decls or emitting diagnostics as appropriate.
3249 ///
3250 /// Tentative definition rules (C99 6.9.2p2) are checked by
3251 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3252 /// definitions here, since the initializer hasn't been attached.
3253 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3254 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3255   // If the new decl is already invalid, don't do any other checking.
3256   if (New->isInvalidDecl())
3257     return;
3258 
3259   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3260 
3261   // Verify the old decl was also a variable or variable template.
3262   VarDecl *Old = nullptr;
3263   VarTemplateDecl *OldTemplate = nullptr;
3264   if (Previous.isSingleResult()) {
3265     if (NewTemplate) {
3266       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3267       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3268     } else
3269       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3270   }
3271   if (!Old) {
3272     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3273       << New->getDeclName();
3274     Diag(Previous.getRepresentativeDecl()->getLocation(),
3275          diag::note_previous_definition);
3276     return New->setInvalidDecl();
3277   }
3278 
3279   if (!shouldLinkPossiblyHiddenDecl(Old, New))
3280     return;
3281 
3282   // Ensure the template parameters are compatible.
3283   if (NewTemplate &&
3284       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3285                                       OldTemplate->getTemplateParameters(),
3286                                       /*Complain=*/true, TPL_TemplateMatch))
3287     return;
3288 
3289   // C++ [class.mem]p1:
3290   //   A member shall not be declared twice in the member-specification [...]
3291   //
3292   // Here, we need only consider static data members.
3293   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3294     Diag(New->getLocation(), diag::err_duplicate_member)
3295       << New->getIdentifier();
3296     Diag(Old->getLocation(), diag::note_previous_declaration);
3297     New->setInvalidDecl();
3298   }
3299 
3300   mergeDeclAttributes(New, Old);
3301   // Warn if an already-declared variable is made a weak_import in a subsequent
3302   // declaration
3303   if (New->hasAttr<WeakImportAttr>() &&
3304       Old->getStorageClass() == SC_None &&
3305       !Old->hasAttr<WeakImportAttr>()) {
3306     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3307     Diag(Old->getLocation(), diag::note_previous_definition);
3308     // Remove weak_import attribute on new declaration.
3309     New->dropAttr<WeakImportAttr>();
3310   }
3311 
3312   // Merge the types.
3313   VarDecl *MostRecent = Old->getMostRecentDecl();
3314   if (MostRecent != Old) {
3315     MergeVarDeclTypes(New, MostRecent,
3316                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3317     if (New->isInvalidDecl())
3318       return;
3319   }
3320 
3321   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3322   if (New->isInvalidDecl())
3323     return;
3324 
3325   diag::kind PrevDiag;
3326   SourceLocation OldLocation;
3327   std::tie(PrevDiag, OldLocation) =
3328       getNoteDiagForInvalidRedeclaration(Old, New);
3329 
3330   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3331   if (New->getStorageClass() == SC_Static &&
3332       !New->isStaticDataMember() &&
3333       Old->hasExternalFormalLinkage()) {
3334     if (getLangOpts().MicrosoftExt) {
3335       Diag(New->getLocation(), diag::ext_static_non_static)
3336           << New->getDeclName();
3337       Diag(OldLocation, PrevDiag);
3338     } else {
3339       Diag(New->getLocation(), diag::err_static_non_static)
3340           << New->getDeclName();
3341       Diag(OldLocation, PrevDiag);
3342       return New->setInvalidDecl();
3343     }
3344   }
3345   // C99 6.2.2p4:
3346   //   For an identifier declared with the storage-class specifier
3347   //   extern in a scope in which a prior declaration of that
3348   //   identifier is visible,23) if the prior declaration specifies
3349   //   internal or external linkage, the linkage of the identifier at
3350   //   the later declaration is the same as the linkage specified at
3351   //   the prior declaration. If no prior declaration is visible, or
3352   //   if the prior declaration specifies no linkage, then the
3353   //   identifier has external linkage.
3354   if (New->hasExternalStorage() && Old->hasLinkage())
3355     /* Okay */;
3356   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3357            !New->isStaticDataMember() &&
3358            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3359     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3360     Diag(OldLocation, PrevDiag);
3361     return New->setInvalidDecl();
3362   }
3363 
3364   // Check if extern is followed by non-extern and vice-versa.
3365   if (New->hasExternalStorage() &&
3366       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3367     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3368     Diag(OldLocation, PrevDiag);
3369     return New->setInvalidDecl();
3370   }
3371   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3372       !New->hasExternalStorage()) {
3373     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3374     Diag(OldLocation, PrevDiag);
3375     return New->setInvalidDecl();
3376   }
3377 
3378   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3379 
3380   // FIXME: The test for external storage here seems wrong? We still
3381   // need to check for mismatches.
3382   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3383       // Don't complain about out-of-line definitions of static members.
3384       !(Old->getLexicalDeclContext()->isRecord() &&
3385         !New->getLexicalDeclContext()->isRecord())) {
3386     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3387     Diag(OldLocation, PrevDiag);
3388     return New->setInvalidDecl();
3389   }
3390 
3391   if (New->getTLSKind() != Old->getTLSKind()) {
3392     if (!Old->getTLSKind()) {
3393       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3394       Diag(OldLocation, PrevDiag);
3395     } else if (!New->getTLSKind()) {
3396       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3397       Diag(OldLocation, PrevDiag);
3398     } else {
3399       // Do not allow redeclaration to change the variable between requiring
3400       // static and dynamic initialization.
3401       // FIXME: GCC allows this, but uses the TLS keyword on the first
3402       // declaration to determine the kind. Do we need to be compatible here?
3403       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3404         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3405       Diag(OldLocation, PrevDiag);
3406     }
3407   }
3408 
3409   // C++ doesn't have tentative definitions, so go right ahead and check here.
3410   const VarDecl *Def;
3411   if (getLangOpts().CPlusPlus &&
3412       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3413       (Def = Old->getDefinition())) {
3414     Diag(New->getLocation(), diag::err_redefinition) << New;
3415     Diag(Def->getLocation(), diag::note_previous_definition);
3416     New->setInvalidDecl();
3417     return;
3418   }
3419 
3420   if (haveIncompatibleLanguageLinkages(Old, New)) {
3421     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3422     Diag(OldLocation, PrevDiag);
3423     New->setInvalidDecl();
3424     return;
3425   }
3426 
3427   // Merge "used" flag.
3428   if (Old->getMostRecentDecl()->isUsed(false))
3429     New->setIsUsed();
3430 
3431   // Keep a chain of previous declarations.
3432   New->setPreviousDecl(Old);
3433   if (NewTemplate)
3434     NewTemplate->setPreviousDecl(OldTemplate);
3435 
3436   // Inherit access appropriately.
3437   New->setAccess(Old->getAccess());
3438   if (NewTemplate)
3439     NewTemplate->setAccess(New->getAccess());
3440 }
3441 
3442 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3443 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3444 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3445                                        DeclSpec &DS) {
3446   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3447 }
3448 
3449 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3450 // disambiguate entities defined in different scopes.
3451 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
3452 // compatibility.
3453 // We will pick our mangling number depending on which version of MSVC is being
3454 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)3455 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3456   return LO.isCompatibleWithMSVC(19) ? S->getMSCurManglingNumber()
3457                                      : S->getMSLastManglingNumber();
3458 }
3459 
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)3460 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3461   if (!Context.getLangOpts().CPlusPlus)
3462     return;
3463 
3464   if (isa<CXXRecordDecl>(Tag->getParent())) {
3465     // If this tag is the direct child of a class, number it if
3466     // it is anonymous.
3467     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3468       return;
3469     MangleNumberingContext &MCtx =
3470         Context.getManglingNumberContext(Tag->getParent());
3471     Context.setManglingNumber(
3472         Tag, MCtx.getManglingNumber(
3473                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3474     return;
3475   }
3476 
3477   // If this tag isn't a direct child of a class, number it if it is local.
3478   Decl *ManglingContextDecl;
3479   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3480           Tag->getDeclContext(), ManglingContextDecl)) {
3481     Context.setManglingNumber(
3482         Tag, MCtx->getManglingNumber(
3483                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3484   }
3485 }
3486 
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)3487 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3488                                         TypedefNameDecl *NewTD) {
3489   // Do nothing if the tag is not anonymous or already has an
3490   // associated typedef (from an earlier typedef in this decl group).
3491   if (TagFromDeclSpec->getIdentifier())
3492     return;
3493   if (TagFromDeclSpec->getTypedefNameForAnonDecl())
3494     return;
3495 
3496   // A well-formed anonymous tag must always be a TUK_Definition.
3497   assert(TagFromDeclSpec->isThisDeclarationADefinition());
3498 
3499   // The type must match the tag exactly;  no qualifiers allowed.
3500   if (!Context.hasSameType(NewTD->getUnderlyingType(),
3501                            Context.getTagDeclType(TagFromDeclSpec)))
3502     return;
3503 
3504   // If we've already computed linkage for the anonymous tag, then
3505   // adding a typedef name for the anonymous decl can change that
3506   // linkage, which might be a serious problem.  Diagnose this as
3507   // unsupported and ignore the typedef name.  TODO: we should
3508   // pursue this as a language defect and establish a formal rule
3509   // for how to handle it.
3510   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3511     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3512 
3513     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3514     tagLoc = getLocForEndOfToken(tagLoc);
3515 
3516     llvm::SmallString<40> textToInsert;
3517     textToInsert += ' ';
3518     textToInsert += NewTD->getIdentifier()->getName();
3519     Diag(tagLoc, diag::note_typedef_changes_linkage)
3520         << FixItHint::CreateInsertion(tagLoc, textToInsert);
3521     return;
3522   }
3523 
3524   // Otherwise, set this is the anon-decl typedef for the tag.
3525   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3526 }
3527 
3528 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3529 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3530 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3531 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3532                                        DeclSpec &DS,
3533                                        MultiTemplateParamsArg TemplateParams,
3534                                        bool IsExplicitInstantiation) {
3535   Decl *TagD = nullptr;
3536   TagDecl *Tag = nullptr;
3537   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3538       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3539       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3540       DS.getTypeSpecType() == DeclSpec::TST_union ||
3541       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3542     TagD = DS.getRepAsDecl();
3543 
3544     if (!TagD) // We probably had an error
3545       return nullptr;
3546 
3547     // Note that the above type specs guarantee that the
3548     // type rep is a Decl, whereas in many of the others
3549     // it's a Type.
3550     if (isa<TagDecl>(TagD))
3551       Tag = cast<TagDecl>(TagD);
3552     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3553       Tag = CTD->getTemplatedDecl();
3554   }
3555 
3556   if (Tag) {
3557     handleTagNumbering(Tag, S);
3558     Tag->setFreeStanding();
3559     if (Tag->isInvalidDecl())
3560       return Tag;
3561   }
3562 
3563   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3564     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3565     // or incomplete types shall not be restrict-qualified."
3566     if (TypeQuals & DeclSpec::TQ_restrict)
3567       Diag(DS.getRestrictSpecLoc(),
3568            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3569            << DS.getSourceRange();
3570   }
3571 
3572   if (DS.isConstexprSpecified()) {
3573     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3574     // and definitions of functions and variables.
3575     if (Tag)
3576       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3577         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3578             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3579             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3580             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3581     else
3582       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3583     // Don't emit warnings after this error.
3584     return TagD;
3585   }
3586 
3587   DiagnoseFunctionSpecifiers(DS);
3588 
3589   if (DS.isFriendSpecified()) {
3590     // If we're dealing with a decl but not a TagDecl, assume that
3591     // whatever routines created it handled the friendship aspect.
3592     if (TagD && !Tag)
3593       return nullptr;
3594     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3595   }
3596 
3597   const CXXScopeSpec &SS = DS.getTypeSpecScope();
3598   bool IsExplicitSpecialization =
3599     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3600   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3601       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3602     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3603     // nested-name-specifier unless it is an explicit instantiation
3604     // or an explicit specialization.
3605     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3606     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3607       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3608           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3609           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3610           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3611       << SS.getRange();
3612     return nullptr;
3613   }
3614 
3615   // Track whether this decl-specifier declares anything.
3616   bool DeclaresAnything = true;
3617 
3618   // Handle anonymous struct definitions.
3619   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3620     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3621         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3622       if (getLangOpts().CPlusPlus ||
3623           Record->getDeclContext()->isRecord())
3624         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3625                                            Context.getPrintingPolicy());
3626 
3627       DeclaresAnything = false;
3628     }
3629   }
3630 
3631   // C11 6.7.2.1p2:
3632   //   A struct-declaration that does not declare an anonymous structure or
3633   //   anonymous union shall contain a struct-declarator-list.
3634   //
3635   // This rule also existed in C89 and C99; the grammar for struct-declaration
3636   // did not permit a struct-declaration without a struct-declarator-list.
3637   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3638       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3639     // Check for Microsoft C extension: anonymous struct/union member.
3640     // Handle 2 kinds of anonymous struct/union:
3641     //   struct STRUCT;
3642     //   union UNION;
3643     // and
3644     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3645     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
3646     if ((Tag && Tag->getDeclName()) ||
3647         DS.getTypeSpecType() == DeclSpec::TST_typename) {
3648       RecordDecl *Record = nullptr;
3649       if (Tag)
3650         Record = dyn_cast<RecordDecl>(Tag);
3651       else if (const RecordType *RT =
3652                    DS.getRepAsType().get()->getAsStructureType())
3653         Record = RT->getDecl();
3654       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3655         Record = UT->getDecl();
3656 
3657       if (Record && getLangOpts().MicrosoftExt) {
3658         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3659           << Record->isUnion() << DS.getSourceRange();
3660         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3661       }
3662 
3663       DeclaresAnything = false;
3664     }
3665   }
3666 
3667   // Skip all the checks below if we have a type error.
3668   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3669       (TagD && TagD->isInvalidDecl()))
3670     return TagD;
3671 
3672   if (getLangOpts().CPlusPlus &&
3673       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3674     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3675       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3676           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3677         DeclaresAnything = false;
3678 
3679   if (!DS.isMissingDeclaratorOk()) {
3680     // Customize diagnostic for a typedef missing a name.
3681     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3682       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3683         << DS.getSourceRange();
3684     else
3685       DeclaresAnything = false;
3686   }
3687 
3688   if (DS.isModulePrivateSpecified() &&
3689       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3690     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3691       << Tag->getTagKind()
3692       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3693 
3694   ActOnDocumentableDecl(TagD);
3695 
3696   // C 6.7/2:
3697   //   A declaration [...] shall declare at least a declarator [...], a tag,
3698   //   or the members of an enumeration.
3699   // C++ [dcl.dcl]p3:
3700   //   [If there are no declarators], and except for the declaration of an
3701   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3702   //   names into the program, or shall redeclare a name introduced by a
3703   //   previous declaration.
3704   if (!DeclaresAnything) {
3705     // In C, we allow this as a (popular) extension / bug. Don't bother
3706     // producing further diagnostics for redundant qualifiers after this.
3707     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3708     return TagD;
3709   }
3710 
3711   // C++ [dcl.stc]p1:
3712   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3713   //   init-declarator-list of the declaration shall not be empty.
3714   // C++ [dcl.fct.spec]p1:
3715   //   If a cv-qualifier appears in a decl-specifier-seq, the
3716   //   init-declarator-list of the declaration shall not be empty.
3717   //
3718   // Spurious qualifiers here appear to be valid in C.
3719   unsigned DiagID = diag::warn_standalone_specifier;
3720   if (getLangOpts().CPlusPlus)
3721     DiagID = diag::ext_standalone_specifier;
3722 
3723   // Note that a linkage-specification sets a storage class, but
3724   // 'extern "C" struct foo;' is actually valid and not theoretically
3725   // useless.
3726   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3727     if (SCS == DeclSpec::SCS_mutable)
3728       // Since mutable is not a viable storage class specifier in C, there is
3729       // no reason to treat it as an extension. Instead, diagnose as an error.
3730       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3731     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3732       Diag(DS.getStorageClassSpecLoc(), DiagID)
3733         << DeclSpec::getSpecifierName(SCS);
3734   }
3735 
3736   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3737     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3738       << DeclSpec::getSpecifierName(TSCS);
3739   if (DS.getTypeQualifiers()) {
3740     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3741       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3742     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3743       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3744     // Restrict is covered above.
3745     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3746       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3747   }
3748 
3749   // Warn about ignored type attributes, for example:
3750   // __attribute__((aligned)) struct A;
3751   // Attributes should be placed after tag to apply to type declaration.
3752   if (!DS.getAttributes().empty()) {
3753     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3754     if (TypeSpecType == DeclSpec::TST_class ||
3755         TypeSpecType == DeclSpec::TST_struct ||
3756         TypeSpecType == DeclSpec::TST_interface ||
3757         TypeSpecType == DeclSpec::TST_union ||
3758         TypeSpecType == DeclSpec::TST_enum) {
3759       AttributeList* attrs = DS.getAttributes().getList();
3760       while (attrs) {
3761         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3762         << attrs->getName()
3763         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3764             TypeSpecType == DeclSpec::TST_struct ? 1 :
3765             TypeSpecType == DeclSpec::TST_union ? 2 :
3766             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3767         attrs = attrs->getNext();
3768       }
3769     }
3770   }
3771 
3772   return TagD;
3773 }
3774 
3775 /// We are trying to inject an anonymous member into the given scope;
3776 /// check if there's an existing declaration that can't be overloaded.
3777 ///
3778 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3779 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3780                                          Scope *S,
3781                                          DeclContext *Owner,
3782                                          DeclarationName Name,
3783                                          SourceLocation NameLoc,
3784                                          unsigned diagnostic) {
3785   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3786                  Sema::ForRedeclaration);
3787   if (!SemaRef.LookupName(R, S)) return false;
3788 
3789   if (R.getAsSingle<TagDecl>())
3790     return false;
3791 
3792   // Pick a representative declaration.
3793   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3794   assert(PrevDecl && "Expected a non-null Decl");
3795 
3796   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3797     return false;
3798 
3799   SemaRef.Diag(NameLoc, diagnostic) << Name;
3800   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3801 
3802   return true;
3803 }
3804 
3805 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3806 /// anonymous struct or union AnonRecord into the owning context Owner
3807 /// and scope S. This routine will be invoked just after we realize
3808 /// that an unnamed union or struct is actually an anonymous union or
3809 /// struct, e.g.,
3810 ///
3811 /// @code
3812 /// union {
3813 ///   int i;
3814 ///   float f;
3815 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3816 ///    // f into the surrounding scope.x
3817 /// @endcode
3818 ///
3819 /// This routine is recursive, injecting the names of nested anonymous
3820 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3821 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3822                                          DeclContext *Owner,
3823                                          RecordDecl *AnonRecord,
3824                                          AccessSpecifier AS,
3825                                          SmallVectorImpl<NamedDecl *> &Chaining,
3826                                          bool MSAnonStruct) {
3827   unsigned diagKind
3828     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3829                             : diag::err_anonymous_struct_member_redecl;
3830 
3831   bool Invalid = false;
3832 
3833   // Look every FieldDecl and IndirectFieldDecl with a name.
3834   for (auto *D : AnonRecord->decls()) {
3835     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3836         cast<NamedDecl>(D)->getDeclName()) {
3837       ValueDecl *VD = cast<ValueDecl>(D);
3838       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3839                                        VD->getLocation(), diagKind)) {
3840         // C++ [class.union]p2:
3841         //   The names of the members of an anonymous union shall be
3842         //   distinct from the names of any other entity in the
3843         //   scope in which the anonymous union is declared.
3844         Invalid = true;
3845       } else {
3846         // C++ [class.union]p2:
3847         //   For the purpose of name lookup, after the anonymous union
3848         //   definition, the members of the anonymous union are
3849         //   considered to have been defined in the scope in which the
3850         //   anonymous union is declared.
3851         unsigned OldChainingSize = Chaining.size();
3852         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3853           Chaining.append(IF->chain_begin(), IF->chain_end());
3854         else
3855           Chaining.push_back(VD);
3856 
3857         assert(Chaining.size() >= 2);
3858         NamedDecl **NamedChain =
3859           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3860         for (unsigned i = 0; i < Chaining.size(); i++)
3861           NamedChain[i] = Chaining[i];
3862 
3863         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
3864             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
3865             VD->getType(), NamedChain, Chaining.size());
3866 
3867         for (const auto *Attr : VD->attrs())
3868           IndirectField->addAttr(Attr->clone(SemaRef.Context));
3869 
3870         IndirectField->setAccess(AS);
3871         IndirectField->setImplicit();
3872         SemaRef.PushOnScopeChains(IndirectField, S);
3873 
3874         // That includes picking up the appropriate access specifier.
3875         if (AS != AS_none) IndirectField->setAccess(AS);
3876 
3877         Chaining.resize(OldChainingSize);
3878       }
3879     }
3880   }
3881 
3882   return Invalid;
3883 }
3884 
3885 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3886 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3887 /// illegal input values are mapped to SC_None.
3888 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3889 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3890   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3891   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3892          "Parser allowed 'typedef' as storage class VarDecl.");
3893   switch (StorageClassSpec) {
3894   case DeclSpec::SCS_unspecified:    return SC_None;
3895   case DeclSpec::SCS_extern:
3896     if (DS.isExternInLinkageSpec())
3897       return SC_None;
3898     return SC_Extern;
3899   case DeclSpec::SCS_static:         return SC_Static;
3900   case DeclSpec::SCS_auto:           return SC_Auto;
3901   case DeclSpec::SCS_register:       return SC_Register;
3902   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3903     // Illegal SCSs map to None: error reporting is up to the caller.
3904   case DeclSpec::SCS_mutable:        // Fall through.
3905   case DeclSpec::SCS_typedef:        return SC_None;
3906   }
3907   llvm_unreachable("unknown storage class specifier");
3908 }
3909 
findDefaultInitializer(const CXXRecordDecl * Record)3910 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3911   assert(Record->hasInClassInitializer());
3912 
3913   for (const auto *I : Record->decls()) {
3914     const auto *FD = dyn_cast<FieldDecl>(I);
3915     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3916       FD = IFD->getAnonField();
3917     if (FD && FD->hasInClassInitializer())
3918       return FD->getLocation();
3919   }
3920 
3921   llvm_unreachable("couldn't find in-class initializer");
3922 }
3923 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)3924 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3925                                       SourceLocation DefaultInitLoc) {
3926   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3927     return;
3928 
3929   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3930   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3931 }
3932 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)3933 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3934                                       CXXRecordDecl *AnonUnion) {
3935   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3936     return;
3937 
3938   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3939 }
3940 
3941 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3942 /// anonymous structure or union. Anonymous unions are a C++ feature
3943 /// (C++ [class.union]) and a C11 feature; anonymous structures
3944 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)3945 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3946                                         AccessSpecifier AS,
3947                                         RecordDecl *Record,
3948                                         const PrintingPolicy &Policy) {
3949   DeclContext *Owner = Record->getDeclContext();
3950 
3951   // Diagnose whether this anonymous struct/union is an extension.
3952   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3953     Diag(Record->getLocation(), diag::ext_anonymous_union);
3954   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3955     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3956   else if (!Record->isUnion() && !getLangOpts().C11)
3957     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3958 
3959   // C and C++ require different kinds of checks for anonymous
3960   // structs/unions.
3961   bool Invalid = false;
3962   if (getLangOpts().CPlusPlus) {
3963     const char *PrevSpec = nullptr;
3964     unsigned DiagID;
3965     if (Record->isUnion()) {
3966       // C++ [class.union]p6:
3967       //   Anonymous unions declared in a named namespace or in the
3968       //   global namespace shall be declared static.
3969       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3970           (isa<TranslationUnitDecl>(Owner) ||
3971            (isa<NamespaceDecl>(Owner) &&
3972             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3973         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3974           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3975 
3976         // Recover by adding 'static'.
3977         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3978                                PrevSpec, DiagID, Policy);
3979       }
3980       // C++ [class.union]p6:
3981       //   A storage class is not allowed in a declaration of an
3982       //   anonymous union in a class scope.
3983       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3984                isa<RecordDecl>(Owner)) {
3985         Diag(DS.getStorageClassSpecLoc(),
3986              diag::err_anonymous_union_with_storage_spec)
3987           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3988 
3989         // Recover by removing the storage specifier.
3990         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3991                                SourceLocation(),
3992                                PrevSpec, DiagID, Context.getPrintingPolicy());
3993       }
3994     }
3995 
3996     // Ignore const/volatile/restrict qualifiers.
3997     if (DS.getTypeQualifiers()) {
3998       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3999         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4000           << Record->isUnion() << "const"
4001           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4002       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4003         Diag(DS.getVolatileSpecLoc(),
4004              diag::ext_anonymous_struct_union_qualified)
4005           << Record->isUnion() << "volatile"
4006           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4007       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4008         Diag(DS.getRestrictSpecLoc(),
4009              diag::ext_anonymous_struct_union_qualified)
4010           << Record->isUnion() << "restrict"
4011           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4012       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4013         Diag(DS.getAtomicSpecLoc(),
4014              diag::ext_anonymous_struct_union_qualified)
4015           << Record->isUnion() << "_Atomic"
4016           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4017 
4018       DS.ClearTypeQualifiers();
4019     }
4020 
4021     // C++ [class.union]p2:
4022     //   The member-specification of an anonymous union shall only
4023     //   define non-static data members. [Note: nested types and
4024     //   functions cannot be declared within an anonymous union. ]
4025     for (auto *Mem : Record->decls()) {
4026       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4027         // C++ [class.union]p3:
4028         //   An anonymous union shall not have private or protected
4029         //   members (clause 11).
4030         assert(FD->getAccess() != AS_none);
4031         if (FD->getAccess() != AS_public) {
4032           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4033             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
4034           Invalid = true;
4035         }
4036 
4037         // C++ [class.union]p1
4038         //   An object of a class with a non-trivial constructor, a non-trivial
4039         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4040         //   assignment operator cannot be a member of a union, nor can an
4041         //   array of such objects.
4042         if (CheckNontrivialField(FD))
4043           Invalid = true;
4044       } else if (Mem->isImplicit()) {
4045         // Any implicit members are fine.
4046       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4047         // This is a type that showed up in an
4048         // elaborated-type-specifier inside the anonymous struct or
4049         // union, but which actually declares a type outside of the
4050         // anonymous struct or union. It's okay.
4051       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4052         if (!MemRecord->isAnonymousStructOrUnion() &&
4053             MemRecord->getDeclName()) {
4054           // Visual C++ allows type definition in anonymous struct or union.
4055           if (getLangOpts().MicrosoftExt)
4056             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4057               << (int)Record->isUnion();
4058           else {
4059             // This is a nested type declaration.
4060             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4061               << (int)Record->isUnion();
4062             Invalid = true;
4063           }
4064         } else {
4065           // This is an anonymous type definition within another anonymous type.
4066           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4067           // not part of standard C++.
4068           Diag(MemRecord->getLocation(),
4069                diag::ext_anonymous_record_with_anonymous_type)
4070             << (int)Record->isUnion();
4071         }
4072       } else if (isa<AccessSpecDecl>(Mem)) {
4073         // Any access specifier is fine.
4074       } else if (isa<StaticAssertDecl>(Mem)) {
4075         // In C++1z, static_assert declarations are also fine.
4076       } else {
4077         // We have something that isn't a non-static data
4078         // member. Complain about it.
4079         unsigned DK = diag::err_anonymous_record_bad_member;
4080         if (isa<TypeDecl>(Mem))
4081           DK = diag::err_anonymous_record_with_type;
4082         else if (isa<FunctionDecl>(Mem))
4083           DK = diag::err_anonymous_record_with_function;
4084         else if (isa<VarDecl>(Mem))
4085           DK = diag::err_anonymous_record_with_static;
4086 
4087         // Visual C++ allows type definition in anonymous struct or union.
4088         if (getLangOpts().MicrosoftExt &&
4089             DK == diag::err_anonymous_record_with_type)
4090           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4091             << (int)Record->isUnion();
4092         else {
4093           Diag(Mem->getLocation(), DK)
4094               << (int)Record->isUnion();
4095           Invalid = true;
4096         }
4097       }
4098     }
4099 
4100     // C++11 [class.union]p8 (DR1460):
4101     //   At most one variant member of a union may have a
4102     //   brace-or-equal-initializer.
4103     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4104         Owner->isRecord())
4105       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4106                                 cast<CXXRecordDecl>(Record));
4107   }
4108 
4109   if (!Record->isUnion() && !Owner->isRecord()) {
4110     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4111       << (int)getLangOpts().CPlusPlus;
4112     Invalid = true;
4113   }
4114 
4115   // Mock up a declarator.
4116   Declarator Dc(DS, Declarator::MemberContext);
4117   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4118   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4119 
4120   // Create a declaration for this anonymous struct/union.
4121   NamedDecl *Anon = nullptr;
4122   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4123     Anon = FieldDecl::Create(Context, OwningClass,
4124                              DS.getLocStart(),
4125                              Record->getLocation(),
4126                              /*IdentifierInfo=*/nullptr,
4127                              Context.getTypeDeclType(Record),
4128                              TInfo,
4129                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4130                              /*InitStyle=*/ICIS_NoInit);
4131     Anon->setAccess(AS);
4132     if (getLangOpts().CPlusPlus)
4133       FieldCollector->Add(cast<FieldDecl>(Anon));
4134   } else {
4135     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4136     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4137     if (SCSpec == DeclSpec::SCS_mutable) {
4138       // mutable can only appear on non-static class members, so it's always
4139       // an error here
4140       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4141       Invalid = true;
4142       SC = SC_None;
4143     }
4144 
4145     Anon = VarDecl::Create(Context, Owner,
4146                            DS.getLocStart(),
4147                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4148                            Context.getTypeDeclType(Record),
4149                            TInfo, SC);
4150 
4151     // Default-initialize the implicit variable. This initialization will be
4152     // trivial in almost all cases, except if a union member has an in-class
4153     // initializer:
4154     //   union { int n = 0; };
4155     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4156   }
4157   Anon->setImplicit();
4158 
4159   // Mark this as an anonymous struct/union type.
4160   Record->setAnonymousStructOrUnion(true);
4161 
4162   // Add the anonymous struct/union object to the current
4163   // context. We'll be referencing this object when we refer to one of
4164   // its members.
4165   Owner->addDecl(Anon);
4166 
4167   // Inject the members of the anonymous struct/union into the owning
4168   // context and into the identifier resolver chain for name lookup
4169   // purposes.
4170   SmallVector<NamedDecl*, 2> Chain;
4171   Chain.push_back(Anon);
4172 
4173   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4174                                           Chain, false))
4175     Invalid = true;
4176 
4177   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4178     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4179       Decl *ManglingContextDecl;
4180       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4181               NewVD->getDeclContext(), ManglingContextDecl)) {
4182         Context.setManglingNumber(
4183             NewVD, MCtx->getManglingNumber(
4184                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4185         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4186       }
4187     }
4188   }
4189 
4190   if (Invalid)
4191     Anon->setInvalidDecl();
4192 
4193   return Anon;
4194 }
4195 
4196 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4197 /// Microsoft C anonymous structure.
4198 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4199 /// Example:
4200 ///
4201 /// struct A { int a; };
4202 /// struct B { struct A; int b; };
4203 ///
4204 /// void foo() {
4205 ///   B var;
4206 ///   var.a = 3;
4207 /// }
4208 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4209 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4210                                            RecordDecl *Record) {
4211   assert(Record && "expected a record!");
4212 
4213   // Mock up a declarator.
4214   Declarator Dc(DS, Declarator::TypeNameContext);
4215   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4216   assert(TInfo && "couldn't build declarator info for anonymous struct");
4217 
4218   auto *ParentDecl = cast<RecordDecl>(CurContext);
4219   QualType RecTy = Context.getTypeDeclType(Record);
4220 
4221   // Create a declaration for this anonymous struct.
4222   NamedDecl *Anon = FieldDecl::Create(Context,
4223                              ParentDecl,
4224                              DS.getLocStart(),
4225                              DS.getLocStart(),
4226                              /*IdentifierInfo=*/nullptr,
4227                              RecTy,
4228                              TInfo,
4229                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4230                              /*InitStyle=*/ICIS_NoInit);
4231   Anon->setImplicit();
4232 
4233   // Add the anonymous struct object to the current context.
4234   CurContext->addDecl(Anon);
4235 
4236   // Inject the members of the anonymous struct into the current
4237   // context and into the identifier resolver chain for name lookup
4238   // purposes.
4239   SmallVector<NamedDecl*, 2> Chain;
4240   Chain.push_back(Anon);
4241 
4242   RecordDecl *RecordDef = Record->getDefinition();
4243   if (RequireCompleteType(Anon->getLocation(), RecTy,
4244                           diag::err_field_incomplete) ||
4245       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4246                                           AS_none, Chain, true)) {
4247     Anon->setInvalidDecl();
4248     ParentDecl->setInvalidDecl();
4249   }
4250 
4251   return Anon;
4252 }
4253 
4254 /// GetNameForDeclarator - Determine the full declaration name for the
4255 /// given Declarator.
GetNameForDeclarator(Declarator & D)4256 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4257   return GetNameFromUnqualifiedId(D.getName());
4258 }
4259 
4260 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4261 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4262 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4263   DeclarationNameInfo NameInfo;
4264   NameInfo.setLoc(Name.StartLocation);
4265 
4266   switch (Name.getKind()) {
4267 
4268   case UnqualifiedId::IK_ImplicitSelfParam:
4269   case UnqualifiedId::IK_Identifier:
4270     NameInfo.setName(Name.Identifier);
4271     NameInfo.setLoc(Name.StartLocation);
4272     return NameInfo;
4273 
4274   case UnqualifiedId::IK_OperatorFunctionId:
4275     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4276                                            Name.OperatorFunctionId.Operator));
4277     NameInfo.setLoc(Name.StartLocation);
4278     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4279       = Name.OperatorFunctionId.SymbolLocations[0];
4280     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4281       = Name.EndLocation.getRawEncoding();
4282     return NameInfo;
4283 
4284   case UnqualifiedId::IK_LiteralOperatorId:
4285     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4286                                                            Name.Identifier));
4287     NameInfo.setLoc(Name.StartLocation);
4288     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4289     return NameInfo;
4290 
4291   case UnqualifiedId::IK_ConversionFunctionId: {
4292     TypeSourceInfo *TInfo;
4293     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4294     if (Ty.isNull())
4295       return DeclarationNameInfo();
4296     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4297                                                Context.getCanonicalType(Ty)));
4298     NameInfo.setLoc(Name.StartLocation);
4299     NameInfo.setNamedTypeInfo(TInfo);
4300     return NameInfo;
4301   }
4302 
4303   case UnqualifiedId::IK_ConstructorName: {
4304     TypeSourceInfo *TInfo;
4305     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4306     if (Ty.isNull())
4307       return DeclarationNameInfo();
4308     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4309                                               Context.getCanonicalType(Ty)));
4310     NameInfo.setLoc(Name.StartLocation);
4311     NameInfo.setNamedTypeInfo(TInfo);
4312     return NameInfo;
4313   }
4314 
4315   case UnqualifiedId::IK_ConstructorTemplateId: {
4316     // In well-formed code, we can only have a constructor
4317     // template-id that refers to the current context, so go there
4318     // to find the actual type being constructed.
4319     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4320     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4321       return DeclarationNameInfo();
4322 
4323     // Determine the type of the class being constructed.
4324     QualType CurClassType = Context.getTypeDeclType(CurClass);
4325 
4326     // FIXME: Check two things: that the template-id names the same type as
4327     // CurClassType, and that the template-id does not occur when the name
4328     // was qualified.
4329 
4330     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4331                                     Context.getCanonicalType(CurClassType)));
4332     NameInfo.setLoc(Name.StartLocation);
4333     // FIXME: should we retrieve TypeSourceInfo?
4334     NameInfo.setNamedTypeInfo(nullptr);
4335     return NameInfo;
4336   }
4337 
4338   case UnqualifiedId::IK_DestructorName: {
4339     TypeSourceInfo *TInfo;
4340     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4341     if (Ty.isNull())
4342       return DeclarationNameInfo();
4343     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4344                                               Context.getCanonicalType(Ty)));
4345     NameInfo.setLoc(Name.StartLocation);
4346     NameInfo.setNamedTypeInfo(TInfo);
4347     return NameInfo;
4348   }
4349 
4350   case UnqualifiedId::IK_TemplateId: {
4351     TemplateName TName = Name.TemplateId->Template.get();
4352     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4353     return Context.getNameForTemplate(TName, TNameLoc);
4354   }
4355 
4356   } // switch (Name.getKind())
4357 
4358   llvm_unreachable("Unknown name kind");
4359 }
4360 
getCoreType(QualType Ty)4361 static QualType getCoreType(QualType Ty) {
4362   do {
4363     if (Ty->isPointerType() || Ty->isReferenceType())
4364       Ty = Ty->getPointeeType();
4365     else if (Ty->isArrayType())
4366       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4367     else
4368       return Ty.withoutLocalFastQualifiers();
4369   } while (true);
4370 }
4371 
4372 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4373 /// and Definition have "nearly" matching parameters. This heuristic is
4374 /// used to improve diagnostics in the case where an out-of-line function
4375 /// definition doesn't match any declaration within the class or namespace.
4376 /// Also sets Params to the list of indices to the parameters that differ
4377 /// between the declaration and the definition. If hasSimilarParameters
4378 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4379 static bool hasSimilarParameters(ASTContext &Context,
4380                                      FunctionDecl *Declaration,
4381                                      FunctionDecl *Definition,
4382                                      SmallVectorImpl<unsigned> &Params) {
4383   Params.clear();
4384   if (Declaration->param_size() != Definition->param_size())
4385     return false;
4386   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4387     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4388     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4389 
4390     // The parameter types are identical
4391     if (Context.hasSameType(DefParamTy, DeclParamTy))
4392       continue;
4393 
4394     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4395     QualType DefParamBaseTy = getCoreType(DefParamTy);
4396     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4397     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4398 
4399     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4400         (DeclTyName && DeclTyName == DefTyName))
4401       Params.push_back(Idx);
4402     else  // The two parameters aren't even close
4403       return false;
4404   }
4405 
4406   return true;
4407 }
4408 
4409 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4410 /// declarator needs to be rebuilt in the current instantiation.
4411 /// Any bits of declarator which appear before the name are valid for
4412 /// consideration here.  That's specifically the type in the decl spec
4413 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4414 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4415                                                     DeclarationName Name) {
4416   // The types we specifically need to rebuild are:
4417   //   - typenames, typeofs, and decltypes
4418   //   - types which will become injected class names
4419   // Of course, we also need to rebuild any type referencing such a
4420   // type.  It's safest to just say "dependent", but we call out a
4421   // few cases here.
4422 
4423   DeclSpec &DS = D.getMutableDeclSpec();
4424   switch (DS.getTypeSpecType()) {
4425   case DeclSpec::TST_typename:
4426   case DeclSpec::TST_typeofType:
4427   case DeclSpec::TST_underlyingType:
4428   case DeclSpec::TST_atomic: {
4429     // Grab the type from the parser.
4430     TypeSourceInfo *TSI = nullptr;
4431     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4432     if (T.isNull() || !T->isDependentType()) break;
4433 
4434     // Make sure there's a type source info.  This isn't really much
4435     // of a waste; most dependent types should have type source info
4436     // attached already.
4437     if (!TSI)
4438       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4439 
4440     // Rebuild the type in the current instantiation.
4441     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4442     if (!TSI) return true;
4443 
4444     // Store the new type back in the decl spec.
4445     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4446     DS.UpdateTypeRep(LocType);
4447     break;
4448   }
4449 
4450   case DeclSpec::TST_decltype:
4451   case DeclSpec::TST_typeofExpr: {
4452     Expr *E = DS.getRepAsExpr();
4453     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4454     if (Result.isInvalid()) return true;
4455     DS.UpdateExprRep(Result.get());
4456     break;
4457   }
4458 
4459   default:
4460     // Nothing to do for these decl specs.
4461     break;
4462   }
4463 
4464   // It doesn't matter what order we do this in.
4465   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4466     DeclaratorChunk &Chunk = D.getTypeObject(I);
4467 
4468     // The only type information in the declarator which can come
4469     // before the declaration name is the base type of a member
4470     // pointer.
4471     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4472       continue;
4473 
4474     // Rebuild the scope specifier in-place.
4475     CXXScopeSpec &SS = Chunk.Mem.Scope();
4476     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4477       return true;
4478   }
4479 
4480   return false;
4481 }
4482 
ActOnDeclarator(Scope * S,Declarator & D)4483 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4484   D.setFunctionDefinitionKind(FDK_Declaration);
4485   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4486 
4487   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4488       Dcl && Dcl->getDeclContext()->isFileContext())
4489     Dcl->setTopLevelDeclInObjCContainer();
4490 
4491   return Dcl;
4492 }
4493 
4494 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4495 ///   If T is the name of a class, then each of the following shall have a
4496 ///   name different from T:
4497 ///     - every static data member of class T;
4498 ///     - every member function of class T
4499 ///     - every member of class T that is itself a type;
4500 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4501 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4502                                    DeclarationNameInfo NameInfo) {
4503   DeclarationName Name = NameInfo.getName();
4504 
4505   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4506     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4507       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4508       return true;
4509     }
4510 
4511   return false;
4512 }
4513 
4514 /// \brief Diagnose a declaration whose declarator-id has the given
4515 /// nested-name-specifier.
4516 ///
4517 /// \param SS The nested-name-specifier of the declarator-id.
4518 ///
4519 /// \param DC The declaration context to which the nested-name-specifier
4520 /// resolves.
4521 ///
4522 /// \param Name The name of the entity being declared.
4523 ///
4524 /// \param Loc The location of the name of the entity being declared.
4525 ///
4526 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4527 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4528                                         DeclarationName Name,
4529                                         SourceLocation Loc) {
4530   DeclContext *Cur = CurContext;
4531   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4532     Cur = Cur->getParent();
4533 
4534   // If the user provided a superfluous scope specifier that refers back to the
4535   // class in which the entity is already declared, diagnose and ignore it.
4536   //
4537   // class X {
4538   //   void X::f();
4539   // };
4540   //
4541   // Note, it was once ill-formed to give redundant qualification in all
4542   // contexts, but that rule was removed by DR482.
4543   if (Cur->Equals(DC)) {
4544     if (Cur->isRecord()) {
4545       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4546                                       : diag::err_member_extra_qualification)
4547         << Name << FixItHint::CreateRemoval(SS.getRange());
4548       SS.clear();
4549     } else {
4550       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4551     }
4552     return false;
4553   }
4554 
4555   // Check whether the qualifying scope encloses the scope of the original
4556   // declaration.
4557   if (!Cur->Encloses(DC)) {
4558     if (Cur->isRecord())
4559       Diag(Loc, diag::err_member_qualification)
4560         << Name << SS.getRange();
4561     else if (isa<TranslationUnitDecl>(DC))
4562       Diag(Loc, diag::err_invalid_declarator_global_scope)
4563         << Name << SS.getRange();
4564     else if (isa<FunctionDecl>(Cur))
4565       Diag(Loc, diag::err_invalid_declarator_in_function)
4566         << Name << SS.getRange();
4567     else if (isa<BlockDecl>(Cur))
4568       Diag(Loc, diag::err_invalid_declarator_in_block)
4569         << Name << SS.getRange();
4570     else
4571       Diag(Loc, diag::err_invalid_declarator_scope)
4572       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4573 
4574     return true;
4575   }
4576 
4577   if (Cur->isRecord()) {
4578     // Cannot qualify members within a class.
4579     Diag(Loc, diag::err_member_qualification)
4580       << Name << SS.getRange();
4581     SS.clear();
4582 
4583     // C++ constructors and destructors with incorrect scopes can break
4584     // our AST invariants by having the wrong underlying types. If
4585     // that's the case, then drop this declaration entirely.
4586     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4587          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4588         !Context.hasSameType(Name.getCXXNameType(),
4589                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4590       return true;
4591 
4592     return false;
4593   }
4594 
4595   // C++11 [dcl.meaning]p1:
4596   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4597   //   not begin with a decltype-specifer"
4598   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4599   while (SpecLoc.getPrefix())
4600     SpecLoc = SpecLoc.getPrefix();
4601   if (dyn_cast_or_null<DecltypeType>(
4602         SpecLoc.getNestedNameSpecifier()->getAsType()))
4603     Diag(Loc, diag::err_decltype_in_declarator)
4604       << SpecLoc.getTypeLoc().getSourceRange();
4605 
4606   return false;
4607 }
4608 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4609 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4610                                   MultiTemplateParamsArg TemplateParamLists) {
4611   // TODO: consider using NameInfo for diagnostic.
4612   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4613   DeclarationName Name = NameInfo.getName();
4614 
4615   // All of these full declarators require an identifier.  If it doesn't have
4616   // one, the ParsedFreeStandingDeclSpec action should be used.
4617   if (!Name) {
4618     if (!D.isInvalidType())  // Reject this if we think it is valid.
4619       Diag(D.getDeclSpec().getLocStart(),
4620            diag::err_declarator_need_ident)
4621         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4622     return nullptr;
4623   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4624     return nullptr;
4625 
4626   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4627   // we find one that is.
4628   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4629          (S->getFlags() & Scope::TemplateParamScope) != 0)
4630     S = S->getParent();
4631 
4632   DeclContext *DC = CurContext;
4633   if (D.getCXXScopeSpec().isInvalid())
4634     D.setInvalidType();
4635   else if (D.getCXXScopeSpec().isSet()) {
4636     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4637                                         UPPC_DeclarationQualifier))
4638       return nullptr;
4639 
4640     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4641     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4642     if (!DC || isa<EnumDecl>(DC)) {
4643       // If we could not compute the declaration context, it's because the
4644       // declaration context is dependent but does not refer to a class,
4645       // class template, or class template partial specialization. Complain
4646       // and return early, to avoid the coming semantic disaster.
4647       Diag(D.getIdentifierLoc(),
4648            diag::err_template_qualified_declarator_no_match)
4649         << D.getCXXScopeSpec().getScopeRep()
4650         << D.getCXXScopeSpec().getRange();
4651       return nullptr;
4652     }
4653     bool IsDependentContext = DC->isDependentContext();
4654 
4655     if (!IsDependentContext &&
4656         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4657       return nullptr;
4658 
4659     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4660       Diag(D.getIdentifierLoc(),
4661            diag::err_member_def_undefined_record)
4662         << Name << DC << D.getCXXScopeSpec().getRange();
4663       D.setInvalidType();
4664     } else if (!D.getDeclSpec().isFriendSpecified()) {
4665       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4666                                       Name, D.getIdentifierLoc())) {
4667         if (DC->isRecord())
4668           return nullptr;
4669 
4670         D.setInvalidType();
4671       }
4672     }
4673 
4674     // Check whether we need to rebuild the type of the given
4675     // declaration in the current instantiation.
4676     if (EnteringContext && IsDependentContext &&
4677         TemplateParamLists.size() != 0) {
4678       ContextRAII SavedContext(*this, DC);
4679       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4680         D.setInvalidType();
4681     }
4682   }
4683 
4684   if (DiagnoseClassNameShadow(DC, NameInfo))
4685     // If this is a typedef, we'll end up spewing multiple diagnostics.
4686     // Just return early; it's safer.
4687     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4688       return nullptr;
4689 
4690   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4691   QualType R = TInfo->getType();
4692 
4693   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4694                                       UPPC_DeclarationType))
4695     D.setInvalidType();
4696 
4697   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4698                         ForRedeclaration);
4699 
4700   // See if this is a redefinition of a variable in the same scope.
4701   if (!D.getCXXScopeSpec().isSet()) {
4702     bool IsLinkageLookup = false;
4703     bool CreateBuiltins = false;
4704 
4705     // If the declaration we're planning to build will be a function
4706     // or object with linkage, then look for another declaration with
4707     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4708     //
4709     // If the declaration we're planning to build will be declared with
4710     // external linkage in the translation unit, create any builtin with
4711     // the same name.
4712     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4713       /* Do nothing*/;
4714     else if (CurContext->isFunctionOrMethod() &&
4715              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4716               R->isFunctionType())) {
4717       IsLinkageLookup = true;
4718       CreateBuiltins =
4719           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4720     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4721                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4722       CreateBuiltins = true;
4723 
4724     if (IsLinkageLookup)
4725       Previous.clear(LookupRedeclarationWithLinkage);
4726 
4727     LookupName(Previous, S, CreateBuiltins);
4728   } else { // Something like "int foo::x;"
4729     LookupQualifiedName(Previous, DC);
4730 
4731     // C++ [dcl.meaning]p1:
4732     //   When the declarator-id is qualified, the declaration shall refer to a
4733     //  previously declared member of the class or namespace to which the
4734     //  qualifier refers (or, in the case of a namespace, of an element of the
4735     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4736     //  thereof; [...]
4737     //
4738     // Note that we already checked the context above, and that we do not have
4739     // enough information to make sure that Previous contains the declaration
4740     // we want to match. For example, given:
4741     //
4742     //   class X {
4743     //     void f();
4744     //     void f(float);
4745     //   };
4746     //
4747     //   void X::f(int) { } // ill-formed
4748     //
4749     // In this case, Previous will point to the overload set
4750     // containing the two f's declared in X, but neither of them
4751     // matches.
4752 
4753     // C++ [dcl.meaning]p1:
4754     //   [...] the member shall not merely have been introduced by a
4755     //   using-declaration in the scope of the class or namespace nominated by
4756     //   the nested-name-specifier of the declarator-id.
4757     RemoveUsingDecls(Previous);
4758   }
4759 
4760   if (Previous.isSingleResult() &&
4761       Previous.getFoundDecl()->isTemplateParameter()) {
4762     // Maybe we will complain about the shadowed template parameter.
4763     if (!D.isInvalidType())
4764       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4765                                       Previous.getFoundDecl());
4766 
4767     // Just pretend that we didn't see the previous declaration.
4768     Previous.clear();
4769   }
4770 
4771   // In C++, the previous declaration we find might be a tag type
4772   // (class or enum). In this case, the new declaration will hide the
4773   // tag type. Note that this does does not apply if we're declaring a
4774   // typedef (C++ [dcl.typedef]p4).
4775   if (Previous.isSingleTagDecl() &&
4776       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4777     Previous.clear();
4778 
4779   // Check that there are no default arguments other than in the parameters
4780   // of a function declaration (C++ only).
4781   if (getLangOpts().CPlusPlus)
4782     CheckExtraCXXDefaultArguments(D);
4783 
4784   NamedDecl *New;
4785 
4786   bool AddToScope = true;
4787   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4788     if (TemplateParamLists.size()) {
4789       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4790       return nullptr;
4791     }
4792 
4793     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4794   } else if (R->isFunctionType()) {
4795     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4796                                   TemplateParamLists,
4797                                   AddToScope);
4798   } else {
4799     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4800                                   AddToScope);
4801   }
4802 
4803   if (!New)
4804     return nullptr;
4805 
4806   // If this has an identifier and is not an invalid redeclaration or
4807   // function template specialization, add it to the scope stack.
4808   if (New->getDeclName() && AddToScope &&
4809        !(D.isRedeclaration() && New->isInvalidDecl())) {
4810     // Only make a locally-scoped extern declaration visible if it is the first
4811     // declaration of this entity. Qualified lookup for such an entity should
4812     // only find this declaration if there is no visible declaration of it.
4813     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4814     PushOnScopeChains(New, S, AddToContext);
4815     if (!AddToContext)
4816       CurContext->addHiddenDecl(New);
4817   }
4818 
4819   return New;
4820 }
4821 
4822 /// Helper method to turn variable array types into constant array
4823 /// types in certain situations which would otherwise be errors (for
4824 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4825 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4826                                                     ASTContext &Context,
4827                                                     bool &SizeIsNegative,
4828                                                     llvm::APSInt &Oversized) {
4829   // This method tries to turn a variable array into a constant
4830   // array even when the size isn't an ICE.  This is necessary
4831   // for compatibility with code that depends on gcc's buggy
4832   // constant expression folding, like struct {char x[(int)(char*)2];}
4833   SizeIsNegative = false;
4834   Oversized = 0;
4835 
4836   if (T->isDependentType())
4837     return QualType();
4838 
4839   QualifierCollector Qs;
4840   const Type *Ty = Qs.strip(T);
4841 
4842   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4843     QualType Pointee = PTy->getPointeeType();
4844     QualType FixedType =
4845         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4846                                             Oversized);
4847     if (FixedType.isNull()) return FixedType;
4848     FixedType = Context.getPointerType(FixedType);
4849     return Qs.apply(Context, FixedType);
4850   }
4851   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4852     QualType Inner = PTy->getInnerType();
4853     QualType FixedType =
4854         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4855                                             Oversized);
4856     if (FixedType.isNull()) return FixedType;
4857     FixedType = Context.getParenType(FixedType);
4858     return Qs.apply(Context, FixedType);
4859   }
4860 
4861   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4862   if (!VLATy)
4863     return QualType();
4864   // FIXME: We should probably handle this case
4865   if (VLATy->getElementType()->isVariablyModifiedType())
4866     return QualType();
4867 
4868   llvm::APSInt Res;
4869   if (!VLATy->getSizeExpr() ||
4870       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4871     return QualType();
4872 
4873   // Check whether the array size is negative.
4874   if (Res.isSigned() && Res.isNegative()) {
4875     SizeIsNegative = true;
4876     return QualType();
4877   }
4878 
4879   // Check whether the array is too large to be addressed.
4880   unsigned ActiveSizeBits
4881     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4882                                               Res);
4883   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4884     Oversized = Res;
4885     return QualType();
4886   }
4887 
4888   return Context.getConstantArrayType(VLATy->getElementType(),
4889                                       Res, ArrayType::Normal, 0);
4890 }
4891 
4892 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4893 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4894   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4895     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4896     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4897                                       DstPTL.getPointeeLoc());
4898     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4899     return;
4900   }
4901   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4902     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4903     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4904                                       DstPTL.getInnerLoc());
4905     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4906     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4907     return;
4908   }
4909   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4910   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4911   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4912   TypeLoc DstElemTL = DstATL.getElementLoc();
4913   DstElemTL.initializeFullCopy(SrcElemTL);
4914   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4915   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4916   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4917 }
4918 
4919 /// Helper method to turn variable array types into constant array
4920 /// types in certain situations which would otherwise be errors (for
4921 /// GCC compatibility).
4922 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4923 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4924                                               ASTContext &Context,
4925                                               bool &SizeIsNegative,
4926                                               llvm::APSInt &Oversized) {
4927   QualType FixedTy
4928     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4929                                           SizeIsNegative, Oversized);
4930   if (FixedTy.isNull())
4931     return nullptr;
4932   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4933   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4934                                     FixedTInfo->getTypeLoc());
4935   return FixedTInfo;
4936 }
4937 
4938 /// \brief Register the given locally-scoped extern "C" declaration so
4939 /// that it can be found later for redeclarations. We include any extern "C"
4940 /// declaration that is not visible in the translation unit here, not just
4941 /// function-scope declarations.
4942 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4943 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4944   if (!getLangOpts().CPlusPlus &&
4945       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4946     // Don't need to track declarations in the TU in C.
4947     return;
4948 
4949   // Note that we have a locally-scoped external with this name.
4950   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
4951 }
4952 
findLocallyScopedExternCDecl(DeclarationName Name)4953 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4954   // FIXME: We can have multiple results via __attribute__((overloadable)).
4955   auto Result = Context.getExternCContextDecl()->lookup(Name);
4956   return Result.empty() ? nullptr : *Result.begin();
4957 }
4958 
4959 /// \brief Diagnose function specifiers on a declaration of an identifier that
4960 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4961 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4962   // FIXME: We should probably indicate the identifier in question to avoid
4963   // confusion for constructs like "inline int a(), b;"
4964   if (DS.isInlineSpecified())
4965     Diag(DS.getInlineSpecLoc(),
4966          diag::err_inline_non_function);
4967 
4968   if (DS.isVirtualSpecified())
4969     Diag(DS.getVirtualSpecLoc(),
4970          diag::err_virtual_non_function);
4971 
4972   if (DS.isExplicitSpecified())
4973     Diag(DS.getExplicitSpecLoc(),
4974          diag::err_explicit_non_function);
4975 
4976   if (DS.isNoreturnSpecified())
4977     Diag(DS.getNoreturnSpecLoc(),
4978          diag::err_noreturn_non_function);
4979 }
4980 
4981 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4982 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4983                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4984   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4985   if (D.getCXXScopeSpec().isSet()) {
4986     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4987       << D.getCXXScopeSpec().getRange();
4988     D.setInvalidType();
4989     // Pretend we didn't see the scope specifier.
4990     DC = CurContext;
4991     Previous.clear();
4992   }
4993 
4994   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4995 
4996   if (D.getDeclSpec().isConstexprSpecified())
4997     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4998       << 1;
4999 
5000   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5001     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5002       << D.getName().getSourceRange();
5003     return nullptr;
5004   }
5005 
5006   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5007   if (!NewTD) return nullptr;
5008 
5009   // Handle attributes prior to checking for duplicates in MergeVarDecl
5010   ProcessDeclAttributes(S, NewTD, D);
5011 
5012   CheckTypedefForVariablyModifiedType(S, NewTD);
5013 
5014   bool Redeclaration = D.isRedeclaration();
5015   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5016   D.setRedeclaration(Redeclaration);
5017   return ND;
5018 }
5019 
5020 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)5021 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5022   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5023   // then it shall have block scope.
5024   // Note that variably modified types must be fixed before merging the decl so
5025   // that redeclarations will match.
5026   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5027   QualType T = TInfo->getType();
5028   if (T->isVariablyModifiedType()) {
5029     getCurFunction()->setHasBranchProtectedScope();
5030 
5031     if (S->getFnParent() == nullptr) {
5032       bool SizeIsNegative;
5033       llvm::APSInt Oversized;
5034       TypeSourceInfo *FixedTInfo =
5035         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5036                                                       SizeIsNegative,
5037                                                       Oversized);
5038       if (FixedTInfo) {
5039         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5040         NewTD->setTypeSourceInfo(FixedTInfo);
5041       } else {
5042         if (SizeIsNegative)
5043           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5044         else if (T->isVariableArrayType())
5045           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5046         else if (Oversized.getBoolValue())
5047           Diag(NewTD->getLocation(), diag::err_array_too_large)
5048             << Oversized.toString(10);
5049         else
5050           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5051         NewTD->setInvalidDecl();
5052       }
5053     }
5054   }
5055 }
5056 
5057 
5058 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5059 /// declares a typedef-name, either using the 'typedef' type specifier or via
5060 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5061 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)5062 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5063                            LookupResult &Previous, bool &Redeclaration) {
5064   // Merge the decl with the existing one if appropriate. If the decl is
5065   // in an outer scope, it isn't the same thing.
5066   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5067                        /*AllowInlineNamespace*/false);
5068   filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous);
5069   if (!Previous.empty()) {
5070     Redeclaration = true;
5071     MergeTypedefNameDecl(NewTD, Previous);
5072   }
5073 
5074   // If this is the C FILE type, notify the AST context.
5075   if (IdentifierInfo *II = NewTD->getIdentifier())
5076     if (!NewTD->isInvalidDecl() &&
5077         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5078       if (II->isStr("FILE"))
5079         Context.setFILEDecl(NewTD);
5080       else if (II->isStr("jmp_buf"))
5081         Context.setjmp_bufDecl(NewTD);
5082       else if (II->isStr("sigjmp_buf"))
5083         Context.setsigjmp_bufDecl(NewTD);
5084       else if (II->isStr("ucontext_t"))
5085         Context.setucontext_tDecl(NewTD);
5086     }
5087 
5088   return NewTD;
5089 }
5090 
5091 /// \brief Determines whether the given declaration is an out-of-scope
5092 /// previous declaration.
5093 ///
5094 /// This routine should be invoked when name lookup has found a
5095 /// previous declaration (PrevDecl) that is not in the scope where a
5096 /// new declaration by the same name is being introduced. If the new
5097 /// declaration occurs in a local scope, previous declarations with
5098 /// linkage may still be considered previous declarations (C99
5099 /// 6.2.2p4-5, C++ [basic.link]p6).
5100 ///
5101 /// \param PrevDecl the previous declaration found by name
5102 /// lookup
5103 ///
5104 /// \param DC the context in which the new declaration is being
5105 /// declared.
5106 ///
5107 /// \returns true if PrevDecl is an out-of-scope previous declaration
5108 /// for a new delcaration with the same name.
5109 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5110 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5111                                 ASTContext &Context) {
5112   if (!PrevDecl)
5113     return false;
5114 
5115   if (!PrevDecl->hasLinkage())
5116     return false;
5117 
5118   if (Context.getLangOpts().CPlusPlus) {
5119     // C++ [basic.link]p6:
5120     //   If there is a visible declaration of an entity with linkage
5121     //   having the same name and type, ignoring entities declared
5122     //   outside the innermost enclosing namespace scope, the block
5123     //   scope declaration declares that same entity and receives the
5124     //   linkage of the previous declaration.
5125     DeclContext *OuterContext = DC->getRedeclContext();
5126     if (!OuterContext->isFunctionOrMethod())
5127       // This rule only applies to block-scope declarations.
5128       return false;
5129 
5130     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5131     if (PrevOuterContext->isRecord())
5132       // We found a member function: ignore it.
5133       return false;
5134 
5135     // Find the innermost enclosing namespace for the new and
5136     // previous declarations.
5137     OuterContext = OuterContext->getEnclosingNamespaceContext();
5138     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5139 
5140     // The previous declaration is in a different namespace, so it
5141     // isn't the same function.
5142     if (!OuterContext->Equals(PrevOuterContext))
5143       return false;
5144   }
5145 
5146   return true;
5147 }
5148 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)5149 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5150   CXXScopeSpec &SS = D.getCXXScopeSpec();
5151   if (!SS.isSet()) return;
5152   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5153 }
5154 
inferObjCARCLifetime(ValueDecl * decl)5155 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5156   QualType type = decl->getType();
5157   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5158   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5159     // Various kinds of declaration aren't allowed to be __autoreleasing.
5160     unsigned kind = -1U;
5161     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5162       if (var->hasAttr<BlocksAttr>())
5163         kind = 0; // __block
5164       else if (!var->hasLocalStorage())
5165         kind = 1; // global
5166     } else if (isa<ObjCIvarDecl>(decl)) {
5167       kind = 3; // ivar
5168     } else if (isa<FieldDecl>(decl)) {
5169       kind = 2; // field
5170     }
5171 
5172     if (kind != -1U) {
5173       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5174         << kind;
5175     }
5176   } else if (lifetime == Qualifiers::OCL_None) {
5177     // Try to infer lifetime.
5178     if (!type->isObjCLifetimeType())
5179       return false;
5180 
5181     lifetime = type->getObjCARCImplicitLifetime();
5182     type = Context.getLifetimeQualifiedType(type, lifetime);
5183     decl->setType(type);
5184   }
5185 
5186   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5187     // Thread-local variables cannot have lifetime.
5188     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5189         var->getTLSKind()) {
5190       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5191         << var->getType();
5192       return true;
5193     }
5194   }
5195 
5196   return false;
5197 }
5198 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5199 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5200   // Ensure that an auto decl is deduced otherwise the checks below might cache
5201   // the wrong linkage.
5202   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5203 
5204   // 'weak' only applies to declarations with external linkage.
5205   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5206     if (!ND.isExternallyVisible()) {
5207       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5208       ND.dropAttr<WeakAttr>();
5209     }
5210   }
5211   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5212     if (ND.isExternallyVisible()) {
5213       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5214       ND.dropAttr<WeakRefAttr>();
5215       ND.dropAttr<AliasAttr>();
5216     }
5217   }
5218 
5219   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5220     if (VD->hasInit()) {
5221       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5222         assert(VD->isThisDeclarationADefinition() &&
5223                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5224         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5225         VD->dropAttr<AliasAttr>();
5226       }
5227     }
5228   }
5229 
5230   // 'selectany' only applies to externally visible varable declarations.
5231   // It does not apply to functions.
5232   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5233     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5234       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
5235       ND.dropAttr<SelectAnyAttr>();
5236     }
5237   }
5238 
5239   // dll attributes require external linkage.
5240   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5241     if (!ND.isExternallyVisible()) {
5242       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5243         << &ND << Attr;
5244       ND.setInvalidDecl();
5245     }
5246   }
5247 }
5248 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5249 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5250                                            NamedDecl *NewDecl,
5251                                            bool IsSpecialization) {
5252   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5253     OldDecl = OldTD->getTemplatedDecl();
5254   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5255     NewDecl = NewTD->getTemplatedDecl();
5256 
5257   if (!OldDecl || !NewDecl)
5258     return;
5259 
5260   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5261   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5262   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5263   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5264 
5265   // dllimport and dllexport are inheritable attributes so we have to exclude
5266   // inherited attribute instances.
5267   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5268                     (NewExportAttr && !NewExportAttr->isInherited());
5269 
5270   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5271   // the only exception being explicit specializations.
5272   // Implicitly generated declarations are also excluded for now because there
5273   // is no other way to switch these to use dllimport or dllexport.
5274   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5275 
5276   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5277     // If the declaration hasn't been used yet, allow with a warning for
5278     // free functions and global variables.
5279     bool JustWarn = false;
5280     if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) {
5281       auto *VD = dyn_cast<VarDecl>(OldDecl);
5282       if (VD && !VD->getDescribedVarTemplate())
5283         JustWarn = true;
5284       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5285       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5286         JustWarn = true;
5287     }
5288 
5289     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5290                                : diag::err_attribute_dll_redeclaration;
5291     S.Diag(NewDecl->getLocation(), DiagID)
5292         << NewDecl
5293         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5294     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5295     if (!JustWarn) {
5296       NewDecl->setInvalidDecl();
5297       return;
5298     }
5299   }
5300 
5301   // A redeclaration is not allowed to drop a dllimport attribute, the only
5302   // exceptions being inline function definitions, local extern declarations,
5303   // and qualified friend declarations.
5304   // NB: MSVC converts such a declaration to dllexport.
5305   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5306   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5307     // Ignore static data because out-of-line definitions are diagnosed
5308     // separately.
5309     IsStaticDataMember = VD->isStaticDataMember();
5310   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5311     IsInline = FD->isInlined();
5312     IsQualifiedFriend = FD->getQualifier() &&
5313                         FD->getFriendObjectKind() == Decl::FOK_Declared;
5314   }
5315 
5316   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5317       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5318     S.Diag(NewDecl->getLocation(),
5319            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5320       << NewDecl << OldImportAttr;
5321     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5322     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5323     OldDecl->dropAttr<DLLImportAttr>();
5324     NewDecl->dropAttr<DLLImportAttr>();
5325   } else if (IsInline && OldImportAttr &&
5326              !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5327     // In MinGW, seeing a function declared inline drops the dllimport attribute.
5328     OldDecl->dropAttr<DLLImportAttr>();
5329     NewDecl->dropAttr<DLLImportAttr>();
5330     S.Diag(NewDecl->getLocation(),
5331            diag::warn_dllimport_dropped_from_inline_function)
5332         << NewDecl << OldImportAttr;
5333   }
5334 }
5335 
5336 /// Given that we are within the definition of the given function,
5337 /// will that definition behave like C99's 'inline', where the
5338 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5339 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5340   // Try to avoid calling GetGVALinkageForFunction.
5341 
5342   // All cases of this require the 'inline' keyword.
5343   if (!FD->isInlined()) return false;
5344 
5345   // This is only possible in C++ with the gnu_inline attribute.
5346   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5347     return false;
5348 
5349   // Okay, go ahead and call the relatively-more-expensive function.
5350 
5351 #ifndef NDEBUG
5352   // AST quite reasonably asserts that it's working on a function
5353   // definition.  We don't really have a way to tell it that we're
5354   // currently defining the function, so just lie to it in +Asserts
5355   // builds.  This is an awful hack.
5356   FD->setLazyBody(1);
5357 #endif
5358 
5359   bool isC99Inline =
5360       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5361 
5362 #ifndef NDEBUG
5363   FD->setLazyBody(0);
5364 #endif
5365 
5366   return isC99Inline;
5367 }
5368 
5369 /// Determine whether a variable is extern "C" prior to attaching
5370 /// an initializer. We can't just call isExternC() here, because that
5371 /// will also compute and cache whether the declaration is externally
5372 /// visible, which might change when we attach the initializer.
5373 ///
5374 /// This can only be used if the declaration is known to not be a
5375 /// redeclaration of an internal linkage declaration.
5376 ///
5377 /// For instance:
5378 ///
5379 ///   auto x = []{};
5380 ///
5381 /// Attaching the initializer here makes this declaration not externally
5382 /// visible, because its type has internal linkage.
5383 ///
5384 /// FIXME: This is a hack.
5385 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5386 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5387   if (S.getLangOpts().CPlusPlus) {
5388     // In C++, the overloadable attribute negates the effects of extern "C".
5389     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5390       return false;
5391   }
5392   return D->isExternC();
5393 }
5394 
shouldConsiderLinkage(const VarDecl * VD)5395 static bool shouldConsiderLinkage(const VarDecl *VD) {
5396   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5397   if (DC->isFunctionOrMethod())
5398     return VD->hasExternalStorage();
5399   if (DC->isFileContext())
5400     return true;
5401   if (DC->isRecord())
5402     return false;
5403   llvm_unreachable("Unexpected context");
5404 }
5405 
shouldConsiderLinkage(const FunctionDecl * FD)5406 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5407   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5408   if (DC->isFileContext() || DC->isFunctionOrMethod())
5409     return true;
5410   if (DC->isRecord())
5411     return false;
5412   llvm_unreachable("Unexpected context");
5413 }
5414 
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5415 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5416                           AttributeList::Kind Kind) {
5417   for (const AttributeList *L = AttrList; L; L = L->getNext())
5418     if (L->getKind() == Kind)
5419       return true;
5420   return false;
5421 }
5422 
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5423 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5424                           AttributeList::Kind Kind) {
5425   // Check decl attributes on the DeclSpec.
5426   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5427     return true;
5428 
5429   // Walk the declarator structure, checking decl attributes that were in a type
5430   // position to the decl itself.
5431   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5432     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5433       return true;
5434   }
5435 
5436   // Finally, check attributes on the decl itself.
5437   return hasParsedAttr(S, PD.getAttributes(), Kind);
5438 }
5439 
5440 /// Adjust the \c DeclContext for a function or variable that might be a
5441 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5442 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5443   if (!DC->isFunctionOrMethod())
5444     return false;
5445 
5446   // If this is a local extern function or variable declared within a function
5447   // template, don't add it into the enclosing namespace scope until it is
5448   // instantiated; it might have a dependent type right now.
5449   if (DC->isDependentContext())
5450     return true;
5451 
5452   // C++11 [basic.link]p7:
5453   //   When a block scope declaration of an entity with linkage is not found to
5454   //   refer to some other declaration, then that entity is a member of the
5455   //   innermost enclosing namespace.
5456   //
5457   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5458   // semantically-enclosing namespace, not a lexically-enclosing one.
5459   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5460     DC = DC->getParent();
5461   return true;
5462 }
5463 
5464 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5465 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5466                               TypeSourceInfo *TInfo, LookupResult &Previous,
5467                               MultiTemplateParamsArg TemplateParamLists,
5468                               bool &AddToScope) {
5469   QualType R = TInfo->getType();
5470   DeclarationName Name = GetNameForDeclarator(D).getName();
5471 
5472   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5473   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5474 
5475   // dllimport globals without explicit storage class are treated as extern. We
5476   // have to change the storage class this early to get the right DeclContext.
5477   if (SC == SC_None && !DC->isRecord() &&
5478       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5479       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5480     SC = SC_Extern;
5481 
5482   DeclContext *OriginalDC = DC;
5483   bool IsLocalExternDecl = SC == SC_Extern &&
5484                            adjustContextForLocalExternDecl(DC);
5485 
5486   if (getLangOpts().OpenCL) {
5487     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5488     QualType NR = R;
5489     while (NR->isPointerType()) {
5490       if (NR->isFunctionPointerType()) {
5491         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5492         D.setInvalidType();
5493         break;
5494       }
5495       NR = NR->getPointeeType();
5496     }
5497 
5498     if (!getOpenCLOptions().cl_khr_fp16) {
5499       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5500       // half array type (unless the cl_khr_fp16 extension is enabled).
5501       if (Context.getBaseElementType(R)->isHalfType()) {
5502         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5503         D.setInvalidType();
5504       }
5505     }
5506   }
5507 
5508   if (SCSpec == DeclSpec::SCS_mutable) {
5509     // mutable can only appear on non-static class members, so it's always
5510     // an error here
5511     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5512     D.setInvalidType();
5513     SC = SC_None;
5514   }
5515 
5516   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5517       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5518                               D.getDeclSpec().getStorageClassSpecLoc())) {
5519     // In C++11, the 'register' storage class specifier is deprecated.
5520     // Suppress the warning in system macros, it's used in macros in some
5521     // popular C system headers, such as in glibc's htonl() macro.
5522     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5523          diag::warn_deprecated_register)
5524       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5525   }
5526 
5527   IdentifierInfo *II = Name.getAsIdentifierInfo();
5528   if (!II) {
5529     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5530       << Name;
5531     return nullptr;
5532   }
5533 
5534   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5535 
5536   if (!DC->isRecord() && S->getFnParent() == nullptr) {
5537     // C99 6.9p2: The storage-class specifiers auto and register shall not
5538     // appear in the declaration specifiers in an external declaration.
5539     // Global Register+Asm is a GNU extension we support.
5540     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5541       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5542       D.setInvalidType();
5543     }
5544   }
5545 
5546   if (getLangOpts().OpenCL) {
5547     // Set up the special work-group-local storage class for variables in the
5548     // OpenCL __local address space.
5549     if (R.getAddressSpace() == LangAS::opencl_local) {
5550       SC = SC_OpenCLWorkGroupLocal;
5551     }
5552 
5553     // OpenCL v1.2 s6.9.b p4:
5554     // The sampler type cannot be used with the __local and __global address
5555     // space qualifiers.
5556     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5557       R.getAddressSpace() == LangAS::opencl_global)) {
5558       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5559     }
5560 
5561     // OpenCL 1.2 spec, p6.9 r:
5562     // The event type cannot be used to declare a program scope variable.
5563     // The event type cannot be used with the __local, __constant and __global
5564     // address space qualifiers.
5565     if (R->isEventT()) {
5566       if (S->getParent() == nullptr) {
5567         Diag(D.getLocStart(), diag::err_event_t_global_var);
5568         D.setInvalidType();
5569       }
5570 
5571       if (R.getAddressSpace()) {
5572         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5573         D.setInvalidType();
5574       }
5575     }
5576   }
5577 
5578   bool IsExplicitSpecialization = false;
5579   bool IsVariableTemplateSpecialization = false;
5580   bool IsPartialSpecialization = false;
5581   bool IsVariableTemplate = false;
5582   VarDecl *NewVD = nullptr;
5583   VarTemplateDecl *NewTemplate = nullptr;
5584   TemplateParameterList *TemplateParams = nullptr;
5585   if (!getLangOpts().CPlusPlus) {
5586     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5587                             D.getIdentifierLoc(), II,
5588                             R, TInfo, SC);
5589 
5590     if (D.isInvalidType())
5591       NewVD->setInvalidDecl();
5592   } else {
5593     bool Invalid = false;
5594 
5595     if (DC->isRecord() && !CurContext->isRecord()) {
5596       // This is an out-of-line definition of a static data member.
5597       switch (SC) {
5598       case SC_None:
5599         break;
5600       case SC_Static:
5601         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5602              diag::err_static_out_of_line)
5603           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5604         break;
5605       case SC_Auto:
5606       case SC_Register:
5607       case SC_Extern:
5608         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5609         // to names of variables declared in a block or to function parameters.
5610         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5611         // of class members
5612 
5613         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5614              diag::err_storage_class_for_static_member)
5615           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5616         break;
5617       case SC_PrivateExtern:
5618         llvm_unreachable("C storage class in c++!");
5619       case SC_OpenCLWorkGroupLocal:
5620         llvm_unreachable("OpenCL storage class in c++!");
5621       }
5622     }
5623 
5624     if (SC == SC_Static && CurContext->isRecord()) {
5625       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5626         if (RD->isLocalClass())
5627           Diag(D.getIdentifierLoc(),
5628                diag::err_static_data_member_not_allowed_in_local_class)
5629             << Name << RD->getDeclName();
5630 
5631         // C++98 [class.union]p1: If a union contains a static data member,
5632         // the program is ill-formed. C++11 drops this restriction.
5633         if (RD->isUnion())
5634           Diag(D.getIdentifierLoc(),
5635                getLangOpts().CPlusPlus11
5636                  ? diag::warn_cxx98_compat_static_data_member_in_union
5637                  : diag::ext_static_data_member_in_union) << Name;
5638         // We conservatively disallow static data members in anonymous structs.
5639         else if (!RD->getDeclName())
5640           Diag(D.getIdentifierLoc(),
5641                diag::err_static_data_member_not_allowed_in_anon_struct)
5642             << Name << RD->isUnion();
5643       }
5644     }
5645 
5646     // Match up the template parameter lists with the scope specifier, then
5647     // determine whether we have a template or a template specialization.
5648     TemplateParams = MatchTemplateParametersToScopeSpecifier(
5649         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5650         D.getCXXScopeSpec(),
5651         D.getName().getKind() == UnqualifiedId::IK_TemplateId
5652             ? D.getName().TemplateId
5653             : nullptr,
5654         TemplateParamLists,
5655         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5656 
5657     if (TemplateParams) {
5658       if (!TemplateParams->size() &&
5659           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5660         // There is an extraneous 'template<>' for this variable. Complain
5661         // about it, but allow the declaration of the variable.
5662         Diag(TemplateParams->getTemplateLoc(),
5663              diag::err_template_variable_noparams)
5664           << II
5665           << SourceRange(TemplateParams->getTemplateLoc(),
5666                          TemplateParams->getRAngleLoc());
5667         TemplateParams = nullptr;
5668       } else {
5669         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5670           // This is an explicit specialization or a partial specialization.
5671           // FIXME: Check that we can declare a specialization here.
5672           IsVariableTemplateSpecialization = true;
5673           IsPartialSpecialization = TemplateParams->size() > 0;
5674         } else { // if (TemplateParams->size() > 0)
5675           // This is a template declaration.
5676           IsVariableTemplate = true;
5677 
5678           // Check that we can declare a template here.
5679           if (CheckTemplateDeclScope(S, TemplateParams))
5680             return nullptr;
5681 
5682           // Only C++1y supports variable templates (N3651).
5683           Diag(D.getIdentifierLoc(),
5684                getLangOpts().CPlusPlus14
5685                    ? diag::warn_cxx11_compat_variable_template
5686                    : diag::ext_variable_template);
5687         }
5688       }
5689     } else {
5690       assert(
5691           (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5692           "should have a 'template<>' for this decl");
5693     }
5694 
5695     if (IsVariableTemplateSpecialization) {
5696       SourceLocation TemplateKWLoc =
5697           TemplateParamLists.size() > 0
5698               ? TemplateParamLists[0]->getTemplateLoc()
5699               : SourceLocation();
5700       DeclResult Res = ActOnVarTemplateSpecialization(
5701           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5702           IsPartialSpecialization);
5703       if (Res.isInvalid())
5704         return nullptr;
5705       NewVD = cast<VarDecl>(Res.get());
5706       AddToScope = false;
5707     } else
5708       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5709                               D.getIdentifierLoc(), II, R, TInfo, SC);
5710 
5711     // If this is supposed to be a variable template, create it as such.
5712     if (IsVariableTemplate) {
5713       NewTemplate =
5714           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5715                                   TemplateParams, NewVD);
5716       NewVD->setDescribedVarTemplate(NewTemplate);
5717     }
5718 
5719     // If this decl has an auto type in need of deduction, make a note of the
5720     // Decl so we can diagnose uses of it in its own initializer.
5721     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5722       ParsingInitForAutoVars.insert(NewVD);
5723 
5724     if (D.isInvalidType() || Invalid) {
5725       NewVD->setInvalidDecl();
5726       if (NewTemplate)
5727         NewTemplate->setInvalidDecl();
5728     }
5729 
5730     SetNestedNameSpecifier(NewVD, D);
5731 
5732     // If we have any template parameter lists that don't directly belong to
5733     // the variable (matching the scope specifier), store them.
5734     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5735     if (TemplateParamLists.size() > VDTemplateParamLists)
5736       NewVD->setTemplateParameterListsInfo(
5737           Context, TemplateParamLists.size() - VDTemplateParamLists,
5738           TemplateParamLists.data());
5739 
5740     if (D.getDeclSpec().isConstexprSpecified())
5741       NewVD->setConstexpr(true);
5742   }
5743 
5744   // Set the lexical context. If the declarator has a C++ scope specifier, the
5745   // lexical context will be different from the semantic context.
5746   NewVD->setLexicalDeclContext(CurContext);
5747   if (NewTemplate)
5748     NewTemplate->setLexicalDeclContext(CurContext);
5749 
5750   if (IsLocalExternDecl)
5751     NewVD->setLocalExternDecl();
5752 
5753   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5754     // C++11 [dcl.stc]p4:
5755     //   When thread_local is applied to a variable of block scope the
5756     //   storage-class-specifier static is implied if it does not appear
5757     //   explicitly.
5758     // Core issue: 'static' is not implied if the variable is declared
5759     //   'extern'.
5760     if (NewVD->hasLocalStorage() &&
5761         (SCSpec != DeclSpec::SCS_unspecified ||
5762          TSCS != DeclSpec::TSCS_thread_local ||
5763          !DC->isFunctionOrMethod()))
5764       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5765            diag::err_thread_non_global)
5766         << DeclSpec::getSpecifierName(TSCS);
5767     else if (!Context.getTargetInfo().isTLSSupported())
5768       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5769            diag::err_thread_unsupported);
5770     else
5771       NewVD->setTSCSpec(TSCS);
5772   }
5773 
5774   // C99 6.7.4p3
5775   //   An inline definition of a function with external linkage shall
5776   //   not contain a definition of a modifiable object with static or
5777   //   thread storage duration...
5778   // We only apply this when the function is required to be defined
5779   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5780   // that a local variable with thread storage duration still has to
5781   // be marked 'static'.  Also note that it's possible to get these
5782   // semantics in C++ using __attribute__((gnu_inline)).
5783   if (SC == SC_Static && S->getFnParent() != nullptr &&
5784       !NewVD->getType().isConstQualified()) {
5785     FunctionDecl *CurFD = getCurFunctionDecl();
5786     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5787       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5788            diag::warn_static_local_in_extern_inline);
5789       MaybeSuggestAddingStaticToDecl(CurFD);
5790     }
5791   }
5792 
5793   if (D.getDeclSpec().isModulePrivateSpecified()) {
5794     if (IsVariableTemplateSpecialization)
5795       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5796           << (IsPartialSpecialization ? 1 : 0)
5797           << FixItHint::CreateRemoval(
5798                  D.getDeclSpec().getModulePrivateSpecLoc());
5799     else if (IsExplicitSpecialization)
5800       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5801         << 2
5802         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5803     else if (NewVD->hasLocalStorage())
5804       Diag(NewVD->getLocation(), diag::err_module_private_local)
5805         << 0 << NewVD->getDeclName()
5806         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5807         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5808     else {
5809       NewVD->setModulePrivate();
5810       if (NewTemplate)
5811         NewTemplate->setModulePrivate();
5812     }
5813   }
5814 
5815   // Handle attributes prior to checking for duplicates in MergeVarDecl
5816   ProcessDeclAttributes(S, NewVD, D);
5817 
5818   if (getLangOpts().CUDA) {
5819     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5820     // storage [duration]."
5821     if (SC == SC_None && S->getFnParent() != nullptr &&
5822         (NewVD->hasAttr<CUDASharedAttr>() ||
5823          NewVD->hasAttr<CUDAConstantAttr>())) {
5824       NewVD->setStorageClass(SC_Static);
5825     }
5826   }
5827 
5828   // Ensure that dllimport globals without explicit storage class are treated as
5829   // extern. The storage class is set above using parsed attributes. Now we can
5830   // check the VarDecl itself.
5831   assert(!NewVD->hasAttr<DLLImportAttr>() ||
5832          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5833          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5834 
5835   // In auto-retain/release, infer strong retension for variables of
5836   // retainable type.
5837   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5838     NewVD->setInvalidDecl();
5839 
5840   // Handle GNU asm-label extension (encoded as an attribute).
5841   if (Expr *E = (Expr*)D.getAsmLabel()) {
5842     // The parser guarantees this is a string.
5843     StringLiteral *SE = cast<StringLiteral>(E);
5844     StringRef Label = SE->getString();
5845     if (S->getFnParent() != nullptr) {
5846       switch (SC) {
5847       case SC_None:
5848       case SC_Auto:
5849         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5850         break;
5851       case SC_Register:
5852         // Local Named register
5853         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5854           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5855         break;
5856       case SC_Static:
5857       case SC_Extern:
5858       case SC_PrivateExtern:
5859       case SC_OpenCLWorkGroupLocal:
5860         break;
5861       }
5862     } else if (SC == SC_Register) {
5863       // Global Named register
5864       if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5865         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5866       if (!R->isIntegralType(Context) && !R->isPointerType()) {
5867         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5868         NewVD->setInvalidDecl(true);
5869       }
5870     }
5871 
5872     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5873                                                 Context, Label, 0));
5874   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5875     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5876       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5877     if (I != ExtnameUndeclaredIdentifiers.end()) {
5878       NewVD->addAttr(I->second);
5879       ExtnameUndeclaredIdentifiers.erase(I);
5880     }
5881   }
5882 
5883   // Diagnose shadowed variables before filtering for scope.
5884   if (D.getCXXScopeSpec().isEmpty())
5885     CheckShadow(S, NewVD, Previous);
5886 
5887   // Don't consider existing declarations that are in a different
5888   // scope and are out-of-semantic-context declarations (if the new
5889   // declaration has linkage).
5890   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5891                        D.getCXXScopeSpec().isNotEmpty() ||
5892                        IsExplicitSpecialization ||
5893                        IsVariableTemplateSpecialization);
5894 
5895   // Check whether the previous declaration is in the same block scope. This
5896   // affects whether we merge types with it, per C++11 [dcl.array]p3.
5897   if (getLangOpts().CPlusPlus &&
5898       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5899     NewVD->setPreviousDeclInSameBlockScope(
5900         Previous.isSingleResult() && !Previous.isShadowed() &&
5901         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5902 
5903   if (!getLangOpts().CPlusPlus) {
5904     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5905   } else {
5906     // If this is an explicit specialization of a static data member, check it.
5907     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5908         CheckMemberSpecialization(NewVD, Previous))
5909       NewVD->setInvalidDecl();
5910 
5911     // Merge the decl with the existing one if appropriate.
5912     if (!Previous.empty()) {
5913       if (Previous.isSingleResult() &&
5914           isa<FieldDecl>(Previous.getFoundDecl()) &&
5915           D.getCXXScopeSpec().isSet()) {
5916         // The user tried to define a non-static data member
5917         // out-of-line (C++ [dcl.meaning]p1).
5918         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5919           << D.getCXXScopeSpec().getRange();
5920         Previous.clear();
5921         NewVD->setInvalidDecl();
5922       }
5923     } else if (D.getCXXScopeSpec().isSet()) {
5924       // No previous declaration in the qualifying scope.
5925       Diag(D.getIdentifierLoc(), diag::err_no_member)
5926         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5927         << D.getCXXScopeSpec().getRange();
5928       NewVD->setInvalidDecl();
5929     }
5930 
5931     if (!IsVariableTemplateSpecialization)
5932       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5933 
5934     if (NewTemplate) {
5935       VarTemplateDecl *PrevVarTemplate =
5936           NewVD->getPreviousDecl()
5937               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5938               : nullptr;
5939 
5940       // Check the template parameter list of this declaration, possibly
5941       // merging in the template parameter list from the previous variable
5942       // template declaration.
5943       if (CheckTemplateParameterList(
5944               TemplateParams,
5945               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5946                               : nullptr,
5947               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5948                DC->isDependentContext())
5949                   ? TPC_ClassTemplateMember
5950                   : TPC_VarTemplate))
5951         NewVD->setInvalidDecl();
5952 
5953       // If we are providing an explicit specialization of a static variable
5954       // template, make a note of that.
5955       if (PrevVarTemplate &&
5956           PrevVarTemplate->getInstantiatedFromMemberTemplate())
5957         PrevVarTemplate->setMemberSpecialization();
5958     }
5959   }
5960 
5961   ProcessPragmaWeak(S, NewVD);
5962 
5963   // If this is the first declaration of an extern C variable, update
5964   // the map of such variables.
5965   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5966       isIncompleteDeclExternC(*this, NewVD))
5967     RegisterLocallyScopedExternCDecl(NewVD, S);
5968 
5969   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5970     Decl *ManglingContextDecl;
5971     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
5972             NewVD->getDeclContext(), ManglingContextDecl)) {
5973       Context.setManglingNumber(
5974           NewVD, MCtx->getManglingNumber(
5975                      NewVD, getMSManglingNumber(getLangOpts(), S)));
5976       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5977     }
5978   }
5979 
5980   if (D.isRedeclaration() && !Previous.empty()) {
5981     checkDLLAttributeRedeclaration(
5982         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5983         IsExplicitSpecialization);
5984   }
5985 
5986   if (NewTemplate) {
5987     if (NewVD->isInvalidDecl())
5988       NewTemplate->setInvalidDecl();
5989     ActOnDocumentableDecl(NewTemplate);
5990     return NewTemplate;
5991   }
5992 
5993   return NewVD;
5994 }
5995 
5996 /// \brief Diagnose variable or built-in function shadowing.  Implements
5997 /// -Wshadow.
5998 ///
5999 /// This method is called whenever a VarDecl is added to a "useful"
6000 /// scope.
6001 ///
6002 /// \param S the scope in which the shadowing name is being declared
6003 /// \param R the lookup of the name
6004 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)6005 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6006   // Return if warning is ignored.
6007   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6008     return;
6009 
6010   // Don't diagnose declarations at file scope.
6011   if (D->hasGlobalStorage())
6012     return;
6013 
6014   DeclContext *NewDC = D->getDeclContext();
6015 
6016   // Only diagnose if we're shadowing an unambiguous field or variable.
6017   if (R.getResultKind() != LookupResult::Found)
6018     return;
6019 
6020   NamedDecl* ShadowedDecl = R.getFoundDecl();
6021   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6022     return;
6023 
6024   // Fields are not shadowed by variables in C++ static methods.
6025   if (isa<FieldDecl>(ShadowedDecl))
6026     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6027       if (MD->isStatic())
6028         return;
6029 
6030   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6031     if (shadowedVar->isExternC()) {
6032       // For shadowing external vars, make sure that we point to the global
6033       // declaration, not a locally scoped extern declaration.
6034       for (auto I : shadowedVar->redecls())
6035         if (I->isFileVarDecl()) {
6036           ShadowedDecl = I;
6037           break;
6038         }
6039     }
6040 
6041   DeclContext *OldDC = ShadowedDecl->getDeclContext();
6042 
6043   // Only warn about certain kinds of shadowing for class members.
6044   if (NewDC && NewDC->isRecord()) {
6045     // In particular, don't warn about shadowing non-class members.
6046     if (!OldDC->isRecord())
6047       return;
6048 
6049     // TODO: should we warn about static data members shadowing
6050     // static data members from base classes?
6051 
6052     // TODO: don't diagnose for inaccessible shadowed members.
6053     // This is hard to do perfectly because we might friend the
6054     // shadowing context, but that's just a false negative.
6055   }
6056 
6057   // Determine what kind of declaration we're shadowing.
6058   unsigned Kind;
6059   if (isa<RecordDecl>(OldDC)) {
6060     if (isa<FieldDecl>(ShadowedDecl))
6061       Kind = 3; // field
6062     else
6063       Kind = 2; // static data member
6064   } else if (OldDC->isFileContext())
6065     Kind = 1; // global
6066   else
6067     Kind = 0; // local
6068 
6069   DeclarationName Name = R.getLookupName();
6070 
6071   // Emit warning and note.
6072   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6073     return;
6074   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6075   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6076 }
6077 
6078 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)6079 void Sema::CheckShadow(Scope *S, VarDecl *D) {
6080   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6081     return;
6082 
6083   LookupResult R(*this, D->getDeclName(), D->getLocation(),
6084                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6085   LookupName(R, S);
6086   CheckShadow(S, D, R);
6087 }
6088 
6089 /// Check for conflict between this global or extern "C" declaration and
6090 /// previous global or extern "C" declarations. This is only used in C++.
6091 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)6092 static bool checkGlobalOrExternCConflict(
6093     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6094   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6095   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6096 
6097   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6098     // The common case: this global doesn't conflict with any extern "C"
6099     // declaration.
6100     return false;
6101   }
6102 
6103   if (Prev) {
6104     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6105       // Both the old and new declarations have C language linkage. This is a
6106       // redeclaration.
6107       Previous.clear();
6108       Previous.addDecl(Prev);
6109       return true;
6110     }
6111 
6112     // This is a global, non-extern "C" declaration, and there is a previous
6113     // non-global extern "C" declaration. Diagnose if this is a variable
6114     // declaration.
6115     if (!isa<VarDecl>(ND))
6116       return false;
6117   } else {
6118     // The declaration is extern "C". Check for any declaration in the
6119     // translation unit which might conflict.
6120     if (IsGlobal) {
6121       // We have already performed the lookup into the translation unit.
6122       IsGlobal = false;
6123       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6124            I != E; ++I) {
6125         if (isa<VarDecl>(*I)) {
6126           Prev = *I;
6127           break;
6128         }
6129       }
6130     } else {
6131       DeclContext::lookup_result R =
6132           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6133       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6134            I != E; ++I) {
6135         if (isa<VarDecl>(*I)) {
6136           Prev = *I;
6137           break;
6138         }
6139         // FIXME: If we have any other entity with this name in global scope,
6140         // the declaration is ill-formed, but that is a defect: it breaks the
6141         // 'stat' hack, for instance. Only variables can have mangled name
6142         // clashes with extern "C" declarations, so only they deserve a
6143         // diagnostic.
6144       }
6145     }
6146 
6147     if (!Prev)
6148       return false;
6149   }
6150 
6151   // Use the first declaration's location to ensure we point at something which
6152   // is lexically inside an extern "C" linkage-spec.
6153   assert(Prev && "should have found a previous declaration to diagnose");
6154   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6155     Prev = FD->getFirstDecl();
6156   else
6157     Prev = cast<VarDecl>(Prev)->getFirstDecl();
6158 
6159   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6160     << IsGlobal << ND;
6161   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6162     << IsGlobal;
6163   return false;
6164 }
6165 
6166 /// Apply special rules for handling extern "C" declarations. Returns \c true
6167 /// if we have found that this is a redeclaration of some prior entity.
6168 ///
6169 /// Per C++ [dcl.link]p6:
6170 ///   Two declarations [for a function or variable] with C language linkage
6171 ///   with the same name that appear in different scopes refer to the same
6172 ///   [entity]. An entity with C language linkage shall not be declared with
6173 ///   the same name as an entity in global scope.
6174 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)6175 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6176                                                   LookupResult &Previous) {
6177   if (!S.getLangOpts().CPlusPlus) {
6178     // In C, when declaring a global variable, look for a corresponding 'extern'
6179     // variable declared in function scope. We don't need this in C++, because
6180     // we find local extern decls in the surrounding file-scope DeclContext.
6181     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6182       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6183         Previous.clear();
6184         Previous.addDecl(Prev);
6185         return true;
6186       }
6187     }
6188     return false;
6189   }
6190 
6191   // A declaration in the translation unit can conflict with an extern "C"
6192   // declaration.
6193   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6194     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6195 
6196   // An extern "C" declaration can conflict with a declaration in the
6197   // translation unit or can be a redeclaration of an extern "C" declaration
6198   // in another scope.
6199   if (isIncompleteDeclExternC(S,ND))
6200     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6201 
6202   // Neither global nor extern "C": nothing to do.
6203   return false;
6204 }
6205 
CheckVariableDeclarationType(VarDecl * NewVD)6206 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6207   // If the decl is already known invalid, don't check it.
6208   if (NewVD->isInvalidDecl())
6209     return;
6210 
6211   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6212   QualType T = TInfo->getType();
6213 
6214   // Defer checking an 'auto' type until its initializer is attached.
6215   if (T->isUndeducedType())
6216     return;
6217 
6218   if (NewVD->hasAttrs())
6219     CheckAlignasUnderalignment(NewVD);
6220 
6221   if (T->isObjCObjectType()) {
6222     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6223       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6224     T = Context.getObjCObjectPointerType(T);
6225     NewVD->setType(T);
6226   }
6227 
6228   // Emit an error if an address space was applied to decl with local storage.
6229   // This includes arrays of objects with address space qualifiers, but not
6230   // automatic variables that point to other address spaces.
6231   // ISO/IEC TR 18037 S5.1.2
6232   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6233     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6234     NewVD->setInvalidDecl();
6235     return;
6236   }
6237 
6238   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6239   // __constant address space.
6240   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
6241       && T.getAddressSpace() != LangAS::opencl_constant
6242       && !T->isSamplerT()){
6243     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
6244     NewVD->setInvalidDecl();
6245     return;
6246   }
6247 
6248   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6249   // scope.
6250   if ((getLangOpts().OpenCLVersion >= 120)
6251       && NewVD->isStaticLocal()) {
6252     Diag(NewVD->getLocation(), diag::err_static_function_scope);
6253     NewVD->setInvalidDecl();
6254     return;
6255   }
6256 
6257   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6258       && !NewVD->hasAttr<BlocksAttr>()) {
6259     if (getLangOpts().getGC() != LangOptions::NonGC)
6260       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6261     else {
6262       assert(!getLangOpts().ObjCAutoRefCount);
6263       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6264     }
6265   }
6266 
6267   bool isVM = T->isVariablyModifiedType();
6268   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6269       NewVD->hasAttr<BlocksAttr>())
6270     getCurFunction()->setHasBranchProtectedScope();
6271 
6272   if ((isVM && NewVD->hasLinkage()) ||
6273       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6274     bool SizeIsNegative;
6275     llvm::APSInt Oversized;
6276     TypeSourceInfo *FixedTInfo =
6277       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6278                                                     SizeIsNegative, Oversized);
6279     if (!FixedTInfo && T->isVariableArrayType()) {
6280       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6281       // FIXME: This won't give the correct result for
6282       // int a[10][n];
6283       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6284 
6285       if (NewVD->isFileVarDecl())
6286         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6287         << SizeRange;
6288       else if (NewVD->isStaticLocal())
6289         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6290         << SizeRange;
6291       else
6292         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6293         << SizeRange;
6294       NewVD->setInvalidDecl();
6295       return;
6296     }
6297 
6298     if (!FixedTInfo) {
6299       if (NewVD->isFileVarDecl())
6300         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6301       else
6302         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6303       NewVD->setInvalidDecl();
6304       return;
6305     }
6306 
6307     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6308     NewVD->setType(FixedTInfo->getType());
6309     NewVD->setTypeSourceInfo(FixedTInfo);
6310   }
6311 
6312   if (T->isVoidType()) {
6313     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6314     //                    of objects and functions.
6315     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6316       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6317         << T;
6318       NewVD->setInvalidDecl();
6319       return;
6320     }
6321   }
6322 
6323   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6324     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6325     NewVD->setInvalidDecl();
6326     return;
6327   }
6328 
6329   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6330     Diag(NewVD->getLocation(), diag::err_block_on_vm);
6331     NewVD->setInvalidDecl();
6332     return;
6333   }
6334 
6335   if (NewVD->isConstexpr() && !T->isDependentType() &&
6336       RequireLiteralType(NewVD->getLocation(), T,
6337                          diag::err_constexpr_var_non_literal)) {
6338     NewVD->setInvalidDecl();
6339     return;
6340   }
6341 }
6342 
6343 /// \brief Perform semantic checking on a newly-created variable
6344 /// declaration.
6345 ///
6346 /// This routine performs all of the type-checking required for a
6347 /// variable declaration once it has been built. It is used both to
6348 /// check variables after they have been parsed and their declarators
6349 /// have been translated into a declaration, and to check variables
6350 /// that have been instantiated from a template.
6351 ///
6352 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6353 ///
6354 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6355 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6356   CheckVariableDeclarationType(NewVD);
6357 
6358   // If the decl is already known invalid, don't check it.
6359   if (NewVD->isInvalidDecl())
6360     return false;
6361 
6362   // If we did not find anything by this name, look for a non-visible
6363   // extern "C" declaration with the same name.
6364   if (Previous.empty() &&
6365       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6366     Previous.setShadowed();
6367 
6368   // Filter out any non-conflicting previous declarations.
6369   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6370 
6371   if (!Previous.empty()) {
6372     MergeVarDecl(NewVD, Previous);
6373     return true;
6374   }
6375   return false;
6376 }
6377 
6378 /// \brief Data used with FindOverriddenMethod
6379 struct FindOverriddenMethodData {
6380   Sema *S;
6381   CXXMethodDecl *Method;
6382 };
6383 
6384 /// \brief Member lookup function that determines whether a given C++
6385 /// method overrides a method in a base class, to be used with
6386 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6387 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6388                                  CXXBasePath &Path,
6389                                  void *UserData) {
6390   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6391 
6392   FindOverriddenMethodData *Data
6393     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6394 
6395   DeclarationName Name = Data->Method->getDeclName();
6396 
6397   // FIXME: Do we care about other names here too?
6398   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6399     // We really want to find the base class destructor here.
6400     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6401     CanQualType CT = Data->S->Context.getCanonicalType(T);
6402 
6403     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6404   }
6405 
6406   for (Path.Decls = BaseRecord->lookup(Name);
6407        !Path.Decls.empty();
6408        Path.Decls = Path.Decls.slice(1)) {
6409     NamedDecl *D = Path.Decls.front();
6410     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6411       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6412         return true;
6413     }
6414   }
6415 
6416   return false;
6417 }
6418 
6419 namespace {
6420   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6421 }
6422 /// \brief Report an error regarding overriding, along with any relevant
6423 /// overriden methods.
6424 ///
6425 /// \param DiagID the primary error to report.
6426 /// \param MD the overriding method.
6427 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6428 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6429                             OverrideErrorKind OEK = OEK_All) {
6430   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6431   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6432                                       E = MD->end_overridden_methods();
6433        I != E; ++I) {
6434     // This check (& the OEK parameter) could be replaced by a predicate, but
6435     // without lambdas that would be overkill. This is still nicer than writing
6436     // out the diag loop 3 times.
6437     if ((OEK == OEK_All) ||
6438         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6439         (OEK == OEK_Deleted && (*I)->isDeleted()))
6440       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6441   }
6442 }
6443 
6444 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6445 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6446 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6447   // Look for methods in base classes that this method might override.
6448   CXXBasePaths Paths;
6449   FindOverriddenMethodData Data;
6450   Data.Method = MD;
6451   Data.S = this;
6452   bool hasDeletedOverridenMethods = false;
6453   bool hasNonDeletedOverridenMethods = false;
6454   bool AddedAny = false;
6455   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6456     for (auto *I : Paths.found_decls()) {
6457       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6458         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6459         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6460             !CheckOverridingFunctionAttributes(MD, OldMD) &&
6461             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6462             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6463           hasDeletedOverridenMethods |= OldMD->isDeleted();
6464           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6465           AddedAny = true;
6466         }
6467       }
6468     }
6469   }
6470 
6471   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6472     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6473   }
6474   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6475     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6476   }
6477 
6478   return AddedAny;
6479 }
6480 
6481 namespace {
6482   // Struct for holding all of the extra arguments needed by
6483   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6484   struct ActOnFDArgs {
6485     Scope *S;
6486     Declarator &D;
6487     MultiTemplateParamsArg TemplateParamLists;
6488     bool AddToScope;
6489   };
6490 }
6491 
6492 namespace {
6493 
6494 // Callback to only accept typo corrections that have a non-zero edit distance.
6495 // Also only accept corrections that have the same parent decl.
6496 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6497  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6498   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6499                             CXXRecordDecl *Parent)
6500       : Context(Context), OriginalFD(TypoFD),
6501         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6502 
ValidateCandidate(const TypoCorrection & candidate)6503   bool ValidateCandidate(const TypoCorrection &candidate) override {
6504     if (candidate.getEditDistance() == 0)
6505       return false;
6506 
6507     SmallVector<unsigned, 1> MismatchedParams;
6508     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6509                                           CDeclEnd = candidate.end();
6510          CDecl != CDeclEnd; ++CDecl) {
6511       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6512 
6513       if (FD && !FD->hasBody() &&
6514           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6515         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6516           CXXRecordDecl *Parent = MD->getParent();
6517           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6518             return true;
6519         } else if (!ExpectedParent) {
6520           return true;
6521         }
6522       }
6523     }
6524 
6525     return false;
6526   }
6527 
6528  private:
6529   ASTContext &Context;
6530   FunctionDecl *OriginalFD;
6531   CXXRecordDecl *ExpectedParent;
6532 };
6533 
6534 }
6535 
6536 /// \brief Generate diagnostics for an invalid function redeclaration.
6537 ///
6538 /// This routine handles generating the diagnostic messages for an invalid
6539 /// function redeclaration, including finding possible similar declarations
6540 /// or performing typo correction if there are no previous declarations with
6541 /// the same name.
6542 ///
6543 /// Returns a NamedDecl iff typo correction was performed and substituting in
6544 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6545 static NamedDecl *DiagnoseInvalidRedeclaration(
6546     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6547     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6548   DeclarationName Name = NewFD->getDeclName();
6549   DeclContext *NewDC = NewFD->getDeclContext();
6550   SmallVector<unsigned, 1> MismatchedParams;
6551   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6552   TypoCorrection Correction;
6553   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6554   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6555                                    : diag::err_member_decl_does_not_match;
6556   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6557                     IsLocalFriend ? Sema::LookupLocalFriendName
6558                                   : Sema::LookupOrdinaryName,
6559                     Sema::ForRedeclaration);
6560 
6561   NewFD->setInvalidDecl();
6562   if (IsLocalFriend)
6563     SemaRef.LookupName(Prev, S);
6564   else
6565     SemaRef.LookupQualifiedName(Prev, NewDC);
6566   assert(!Prev.isAmbiguous() &&
6567          "Cannot have an ambiguity in previous-declaration lookup");
6568   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6569   if (!Prev.empty()) {
6570     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6571          Func != FuncEnd; ++Func) {
6572       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6573       if (FD &&
6574           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6575         // Add 1 to the index so that 0 can mean the mismatch didn't
6576         // involve a parameter
6577         unsigned ParamNum =
6578             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6579         NearMatches.push_back(std::make_pair(FD, ParamNum));
6580       }
6581     }
6582   // If the qualified name lookup yielded nothing, try typo correction
6583   } else if ((Correction = SemaRef.CorrectTypo(
6584                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6585                   &ExtraArgs.D.getCXXScopeSpec(),
6586                   llvm::make_unique<DifferentNameValidatorCCC>(
6587                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6588                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6589     // Set up everything for the call to ActOnFunctionDeclarator
6590     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6591                               ExtraArgs.D.getIdentifierLoc());
6592     Previous.clear();
6593     Previous.setLookupName(Correction.getCorrection());
6594     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6595                                     CDeclEnd = Correction.end();
6596          CDecl != CDeclEnd; ++CDecl) {
6597       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6598       if (FD && !FD->hasBody() &&
6599           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6600         Previous.addDecl(FD);
6601       }
6602     }
6603     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6604 
6605     NamedDecl *Result;
6606     // Retry building the function declaration with the new previous
6607     // declarations, and with errors suppressed.
6608     {
6609       // Trap errors.
6610       Sema::SFINAETrap Trap(SemaRef);
6611 
6612       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6613       // pieces need to verify the typo-corrected C++ declaration and hopefully
6614       // eliminate the need for the parameter pack ExtraArgs.
6615       Result = SemaRef.ActOnFunctionDeclarator(
6616           ExtraArgs.S, ExtraArgs.D,
6617           Correction.getCorrectionDecl()->getDeclContext(),
6618           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6619           ExtraArgs.AddToScope);
6620 
6621       if (Trap.hasErrorOccurred())
6622         Result = nullptr;
6623     }
6624 
6625     if (Result) {
6626       // Determine which correction we picked.
6627       Decl *Canonical = Result->getCanonicalDecl();
6628       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6629            I != E; ++I)
6630         if ((*I)->getCanonicalDecl() == Canonical)
6631           Correction.setCorrectionDecl(*I);
6632 
6633       SemaRef.diagnoseTypo(
6634           Correction,
6635           SemaRef.PDiag(IsLocalFriend
6636                           ? diag::err_no_matching_local_friend_suggest
6637                           : diag::err_member_decl_does_not_match_suggest)
6638             << Name << NewDC << IsDefinition);
6639       return Result;
6640     }
6641 
6642     // Pretend the typo correction never occurred
6643     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6644                               ExtraArgs.D.getIdentifierLoc());
6645     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6646     Previous.clear();
6647     Previous.setLookupName(Name);
6648   }
6649 
6650   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6651       << Name << NewDC << IsDefinition << NewFD->getLocation();
6652 
6653   bool NewFDisConst = false;
6654   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6655     NewFDisConst = NewMD->isConst();
6656 
6657   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6658        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6659        NearMatch != NearMatchEnd; ++NearMatch) {
6660     FunctionDecl *FD = NearMatch->first;
6661     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6662     bool FDisConst = MD && MD->isConst();
6663     bool IsMember = MD || !IsLocalFriend;
6664 
6665     // FIXME: These notes are poorly worded for the local friend case.
6666     if (unsigned Idx = NearMatch->second) {
6667       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6668       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6669       if (Loc.isInvalid()) Loc = FD->getLocation();
6670       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6671                                  : diag::note_local_decl_close_param_match)
6672         << Idx << FDParam->getType()
6673         << NewFD->getParamDecl(Idx - 1)->getType();
6674     } else if (FDisConst != NewFDisConst) {
6675       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6676           << NewFDisConst << FD->getSourceRange().getEnd();
6677     } else
6678       SemaRef.Diag(FD->getLocation(),
6679                    IsMember ? diag::note_member_def_close_match
6680                             : diag::note_local_decl_close_match);
6681   }
6682   return nullptr;
6683 }
6684 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6685 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
6686   switch (D.getDeclSpec().getStorageClassSpec()) {
6687   default: llvm_unreachable("Unknown storage class!");
6688   case DeclSpec::SCS_auto:
6689   case DeclSpec::SCS_register:
6690   case DeclSpec::SCS_mutable:
6691     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6692                  diag::err_typecheck_sclass_func);
6693     D.setInvalidType();
6694     break;
6695   case DeclSpec::SCS_unspecified: break;
6696   case DeclSpec::SCS_extern:
6697     if (D.getDeclSpec().isExternInLinkageSpec())
6698       return SC_None;
6699     return SC_Extern;
6700   case DeclSpec::SCS_static: {
6701     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6702       // C99 6.7.1p5:
6703       //   The declaration of an identifier for a function that has
6704       //   block scope shall have no explicit storage-class specifier
6705       //   other than extern
6706       // See also (C++ [dcl.stc]p4).
6707       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6708                    diag::err_static_block_func);
6709       break;
6710     } else
6711       return SC_Static;
6712   }
6713   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6714   }
6715 
6716   // No explicit storage class has already been returned
6717   return SC_None;
6718 }
6719 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)6720 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6721                                            DeclContext *DC, QualType &R,
6722                                            TypeSourceInfo *TInfo,
6723                                            StorageClass SC,
6724                                            bool &IsVirtualOkay) {
6725   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6726   DeclarationName Name = NameInfo.getName();
6727 
6728   FunctionDecl *NewFD = nullptr;
6729   bool isInline = D.getDeclSpec().isInlineSpecified();
6730 
6731   if (!SemaRef.getLangOpts().CPlusPlus) {
6732     // Determine whether the function was written with a
6733     // prototype. This true when:
6734     //   - there is a prototype in the declarator, or
6735     //   - the type R of the function is some kind of typedef or other reference
6736     //     to a type name (which eventually refers to a function type).
6737     bool HasPrototype =
6738       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6739       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6740 
6741     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6742                                  D.getLocStart(), NameInfo, R,
6743                                  TInfo, SC, isInline,
6744                                  HasPrototype, false);
6745     if (D.isInvalidType())
6746       NewFD->setInvalidDecl();
6747 
6748     return NewFD;
6749   }
6750 
6751   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6752   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6753 
6754   // Check that the return type is not an abstract class type.
6755   // For record types, this is done by the AbstractClassUsageDiagnoser once
6756   // the class has been completely parsed.
6757   if (!DC->isRecord() &&
6758       SemaRef.RequireNonAbstractType(
6759           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6760           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6761     D.setInvalidType();
6762 
6763   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6764     // This is a C++ constructor declaration.
6765     assert(DC->isRecord() &&
6766            "Constructors can only be declared in a member context");
6767 
6768     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6769     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6770                                       D.getLocStart(), NameInfo,
6771                                       R, TInfo, isExplicit, isInline,
6772                                       /*isImplicitlyDeclared=*/false,
6773                                       isConstexpr);
6774 
6775   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6776     // This is a C++ destructor declaration.
6777     if (DC->isRecord()) {
6778       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6779       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6780       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6781                                         SemaRef.Context, Record,
6782                                         D.getLocStart(),
6783                                         NameInfo, R, TInfo, isInline,
6784                                         /*isImplicitlyDeclared=*/false);
6785 
6786       // If the class is complete, then we now create the implicit exception
6787       // specification. If the class is incomplete or dependent, we can't do
6788       // it yet.
6789       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6790           Record->getDefinition() && !Record->isBeingDefined() &&
6791           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6792         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6793       }
6794 
6795       IsVirtualOkay = true;
6796       return NewDD;
6797 
6798     } else {
6799       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6800       D.setInvalidType();
6801 
6802       // Create a FunctionDecl to satisfy the function definition parsing
6803       // code path.
6804       return FunctionDecl::Create(SemaRef.Context, DC,
6805                                   D.getLocStart(),
6806                                   D.getIdentifierLoc(), Name, R, TInfo,
6807                                   SC, isInline,
6808                                   /*hasPrototype=*/true, isConstexpr);
6809     }
6810 
6811   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6812     if (!DC->isRecord()) {
6813       SemaRef.Diag(D.getIdentifierLoc(),
6814            diag::err_conv_function_not_member);
6815       return nullptr;
6816     }
6817 
6818     SemaRef.CheckConversionDeclarator(D, R, SC);
6819     IsVirtualOkay = true;
6820     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6821                                      D.getLocStart(), NameInfo,
6822                                      R, TInfo, isInline, isExplicit,
6823                                      isConstexpr, SourceLocation());
6824 
6825   } else if (DC->isRecord()) {
6826     // If the name of the function is the same as the name of the record,
6827     // then this must be an invalid constructor that has a return type.
6828     // (The parser checks for a return type and makes the declarator a
6829     // constructor if it has no return type).
6830     if (Name.getAsIdentifierInfo() &&
6831         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6832       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6833         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6834         << SourceRange(D.getIdentifierLoc());
6835       return nullptr;
6836     }
6837 
6838     // This is a C++ method declaration.
6839     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6840                                                cast<CXXRecordDecl>(DC),
6841                                                D.getLocStart(), NameInfo, R,
6842                                                TInfo, SC, isInline,
6843                                                isConstexpr, SourceLocation());
6844     IsVirtualOkay = !Ret->isStatic();
6845     return Ret;
6846   } else {
6847     bool isFriend =
6848         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
6849     if (!isFriend && SemaRef.CurContext->isRecord())
6850       return nullptr;
6851 
6852     // Determine whether the function was written with a
6853     // prototype. This true when:
6854     //   - we're in C++ (where every function has a prototype),
6855     return FunctionDecl::Create(SemaRef.Context, DC,
6856                                 D.getLocStart(),
6857                                 NameInfo, R, TInfo, SC, isInline,
6858                                 true/*HasPrototype*/, isConstexpr);
6859   }
6860 }
6861 
6862 enum OpenCLParamType {
6863   ValidKernelParam,
6864   PtrPtrKernelParam,
6865   PtrKernelParam,
6866   PrivatePtrKernelParam,
6867   InvalidKernelParam,
6868   RecordKernelParam
6869 };
6870 
getOpenCLKernelParameterType(QualType PT)6871 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6872   if (PT->isPointerType()) {
6873     QualType PointeeType = PT->getPointeeType();
6874     if (PointeeType->isPointerType())
6875       return PtrPtrKernelParam;
6876     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6877                                               : PtrKernelParam;
6878   }
6879 
6880   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6881   // be used as builtin types.
6882 
6883   if (PT->isImageType())
6884     return PtrKernelParam;
6885 
6886   if (PT->isBooleanType())
6887     return InvalidKernelParam;
6888 
6889   if (PT->isEventT())
6890     return InvalidKernelParam;
6891 
6892   if (PT->isHalfType())
6893     return InvalidKernelParam;
6894 
6895   if (PT->isRecordType())
6896     return RecordKernelParam;
6897 
6898   return ValidKernelParam;
6899 }
6900 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)6901 static void checkIsValidOpenCLKernelParameter(
6902   Sema &S,
6903   Declarator &D,
6904   ParmVarDecl *Param,
6905   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
6906   QualType PT = Param->getType();
6907 
6908   // Cache the valid types we encounter to avoid rechecking structs that are
6909   // used again
6910   if (ValidTypes.count(PT.getTypePtr()))
6911     return;
6912 
6913   switch (getOpenCLKernelParameterType(PT)) {
6914   case PtrPtrKernelParam:
6915     // OpenCL v1.2 s6.9.a:
6916     // A kernel function argument cannot be declared as a
6917     // pointer to a pointer type.
6918     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6919     D.setInvalidType();
6920     return;
6921 
6922   case PrivatePtrKernelParam:
6923     // OpenCL v1.2 s6.9.a:
6924     // A kernel function argument cannot be declared as a
6925     // pointer to the private address space.
6926     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6927     D.setInvalidType();
6928     return;
6929 
6930     // OpenCL v1.2 s6.9.k:
6931     // Arguments to kernel functions in a program cannot be declared with the
6932     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6933     // uintptr_t or a struct and/or union that contain fields declared to be
6934     // one of these built-in scalar types.
6935 
6936   case InvalidKernelParam:
6937     // OpenCL v1.2 s6.8 n:
6938     // A kernel function argument cannot be declared
6939     // of event_t type.
6940     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6941     D.setInvalidType();
6942     return;
6943 
6944   case PtrKernelParam:
6945   case ValidKernelParam:
6946     ValidTypes.insert(PT.getTypePtr());
6947     return;
6948 
6949   case RecordKernelParam:
6950     break;
6951   }
6952 
6953   // Track nested structs we will inspect
6954   SmallVector<const Decl *, 4> VisitStack;
6955 
6956   // Track where we are in the nested structs. Items will migrate from
6957   // VisitStack to HistoryStack as we do the DFS for bad field.
6958   SmallVector<const FieldDecl *, 4> HistoryStack;
6959   HistoryStack.push_back(nullptr);
6960 
6961   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6962   VisitStack.push_back(PD);
6963 
6964   assert(VisitStack.back() && "First decl null?");
6965 
6966   do {
6967     const Decl *Next = VisitStack.pop_back_val();
6968     if (!Next) {
6969       assert(!HistoryStack.empty());
6970       // Found a marker, we have gone up a level
6971       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6972         ValidTypes.insert(Hist->getType().getTypePtr());
6973 
6974       continue;
6975     }
6976 
6977     // Adds everything except the original parameter declaration (which is not a
6978     // field itself) to the history stack.
6979     const RecordDecl *RD;
6980     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6981       HistoryStack.push_back(Field);
6982       RD = Field->getType()->castAs<RecordType>()->getDecl();
6983     } else {
6984       RD = cast<RecordDecl>(Next);
6985     }
6986 
6987     // Add a null marker so we know when we've gone back up a level
6988     VisitStack.push_back(nullptr);
6989 
6990     for (const auto *FD : RD->fields()) {
6991       QualType QT = FD->getType();
6992 
6993       if (ValidTypes.count(QT.getTypePtr()))
6994         continue;
6995 
6996       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6997       if (ParamType == ValidKernelParam)
6998         continue;
6999 
7000       if (ParamType == RecordKernelParam) {
7001         VisitStack.push_back(FD);
7002         continue;
7003       }
7004 
7005       // OpenCL v1.2 s6.9.p:
7006       // Arguments to kernel functions that are declared to be a struct or union
7007       // do not allow OpenCL objects to be passed as elements of the struct or
7008       // union.
7009       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7010           ParamType == PrivatePtrKernelParam) {
7011         S.Diag(Param->getLocation(),
7012                diag::err_record_with_pointers_kernel_param)
7013           << PT->isUnionType()
7014           << PT;
7015       } else {
7016         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7017       }
7018 
7019       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7020         << PD->getDeclName();
7021 
7022       // We have an error, now let's go back up through history and show where
7023       // the offending field came from
7024       for (ArrayRef<const FieldDecl *>::const_iterator
7025                I = HistoryStack.begin() + 1,
7026                E = HistoryStack.end();
7027            I != E; ++I) {
7028         const FieldDecl *OuterField = *I;
7029         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7030           << OuterField->getType();
7031       }
7032 
7033       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7034         << QT->isPointerType()
7035         << QT;
7036       D.setInvalidType();
7037       return;
7038     }
7039   } while (!VisitStack.empty());
7040 }
7041 
7042 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)7043 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7044                               TypeSourceInfo *TInfo, LookupResult &Previous,
7045                               MultiTemplateParamsArg TemplateParamLists,
7046                               bool &AddToScope) {
7047   QualType R = TInfo->getType();
7048 
7049   assert(R.getTypePtr()->isFunctionType());
7050 
7051   // TODO: consider using NameInfo for diagnostic.
7052   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7053   DeclarationName Name = NameInfo.getName();
7054   StorageClass SC = getFunctionStorageClass(*this, D);
7055 
7056   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7057     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7058          diag::err_invalid_thread)
7059       << DeclSpec::getSpecifierName(TSCS);
7060 
7061   if (D.isFirstDeclarationOfMember())
7062     adjustMemberFunctionCC(R, D.isStaticMember());
7063 
7064   bool isFriend = false;
7065   FunctionTemplateDecl *FunctionTemplate = nullptr;
7066   bool isExplicitSpecialization = false;
7067   bool isFunctionTemplateSpecialization = false;
7068 
7069   bool isDependentClassScopeExplicitSpecialization = false;
7070   bool HasExplicitTemplateArgs = false;
7071   TemplateArgumentListInfo TemplateArgs;
7072 
7073   bool isVirtualOkay = false;
7074 
7075   DeclContext *OriginalDC = DC;
7076   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7077 
7078   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7079                                               isVirtualOkay);
7080   if (!NewFD) return nullptr;
7081 
7082   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7083     NewFD->setTopLevelDeclInObjCContainer();
7084 
7085   // Set the lexical context. If this is a function-scope declaration, or has a
7086   // C++ scope specifier, or is the object of a friend declaration, the lexical
7087   // context will be different from the semantic context.
7088   NewFD->setLexicalDeclContext(CurContext);
7089 
7090   if (IsLocalExternDecl)
7091     NewFD->setLocalExternDecl();
7092 
7093   if (getLangOpts().CPlusPlus) {
7094     bool isInline = D.getDeclSpec().isInlineSpecified();
7095     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7096     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7097     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7098     isFriend = D.getDeclSpec().isFriendSpecified();
7099     if (isFriend && !isInline && D.isFunctionDefinition()) {
7100       // C++ [class.friend]p5
7101       //   A function can be defined in a friend declaration of a
7102       //   class . . . . Such a function is implicitly inline.
7103       NewFD->setImplicitlyInline();
7104     }
7105 
7106     // If this is a method defined in an __interface, and is not a constructor
7107     // or an overloaded operator, then set the pure flag (isVirtual will already
7108     // return true).
7109     if (const CXXRecordDecl *Parent =
7110           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7111       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7112         NewFD->setPure(true);
7113     }
7114 
7115     SetNestedNameSpecifier(NewFD, D);
7116     isExplicitSpecialization = false;
7117     isFunctionTemplateSpecialization = false;
7118     if (D.isInvalidType())
7119       NewFD->setInvalidDecl();
7120 
7121     // Match up the template parameter lists with the scope specifier, then
7122     // determine whether we have a template or a template specialization.
7123     bool Invalid = false;
7124     if (TemplateParameterList *TemplateParams =
7125             MatchTemplateParametersToScopeSpecifier(
7126                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7127                 D.getCXXScopeSpec(),
7128                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7129                     ? D.getName().TemplateId
7130                     : nullptr,
7131                 TemplateParamLists, isFriend, isExplicitSpecialization,
7132                 Invalid)) {
7133       if (TemplateParams->size() > 0) {
7134         // This is a function template
7135 
7136         // Check that we can declare a template here.
7137         if (CheckTemplateDeclScope(S, TemplateParams))
7138           NewFD->setInvalidDecl();
7139 
7140         // A destructor cannot be a template.
7141         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7142           Diag(NewFD->getLocation(), diag::err_destructor_template);
7143           NewFD->setInvalidDecl();
7144         }
7145 
7146         // If we're adding a template to a dependent context, we may need to
7147         // rebuilding some of the types used within the template parameter list,
7148         // now that we know what the current instantiation is.
7149         if (DC->isDependentContext()) {
7150           ContextRAII SavedContext(*this, DC);
7151           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7152             Invalid = true;
7153         }
7154 
7155 
7156         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7157                                                         NewFD->getLocation(),
7158                                                         Name, TemplateParams,
7159                                                         NewFD);
7160         FunctionTemplate->setLexicalDeclContext(CurContext);
7161         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7162 
7163         // For source fidelity, store the other template param lists.
7164         if (TemplateParamLists.size() > 1) {
7165           NewFD->setTemplateParameterListsInfo(Context,
7166                                                TemplateParamLists.size() - 1,
7167                                                TemplateParamLists.data());
7168         }
7169       } else {
7170         // This is a function template specialization.
7171         isFunctionTemplateSpecialization = true;
7172         // For source fidelity, store all the template param lists.
7173         if (TemplateParamLists.size() > 0)
7174           NewFD->setTemplateParameterListsInfo(Context,
7175                                                TemplateParamLists.size(),
7176                                                TemplateParamLists.data());
7177 
7178         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7179         if (isFriend) {
7180           // We want to remove the "template<>", found here.
7181           SourceRange RemoveRange = TemplateParams->getSourceRange();
7182 
7183           // If we remove the template<> and the name is not a
7184           // template-id, we're actually silently creating a problem:
7185           // the friend declaration will refer to an untemplated decl,
7186           // and clearly the user wants a template specialization.  So
7187           // we need to insert '<>' after the name.
7188           SourceLocation InsertLoc;
7189           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7190             InsertLoc = D.getName().getSourceRange().getEnd();
7191             InsertLoc = getLocForEndOfToken(InsertLoc);
7192           }
7193 
7194           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7195             << Name << RemoveRange
7196             << FixItHint::CreateRemoval(RemoveRange)
7197             << FixItHint::CreateInsertion(InsertLoc, "<>");
7198         }
7199       }
7200     }
7201     else {
7202       // All template param lists were matched against the scope specifier:
7203       // this is NOT (an explicit specialization of) a template.
7204       if (TemplateParamLists.size() > 0)
7205         // For source fidelity, store all the template param lists.
7206         NewFD->setTemplateParameterListsInfo(Context,
7207                                              TemplateParamLists.size(),
7208                                              TemplateParamLists.data());
7209     }
7210 
7211     if (Invalid) {
7212       NewFD->setInvalidDecl();
7213       if (FunctionTemplate)
7214         FunctionTemplate->setInvalidDecl();
7215     }
7216 
7217     // C++ [dcl.fct.spec]p5:
7218     //   The virtual specifier shall only be used in declarations of
7219     //   nonstatic class member functions that appear within a
7220     //   member-specification of a class declaration; see 10.3.
7221     //
7222     if (isVirtual && !NewFD->isInvalidDecl()) {
7223       if (!isVirtualOkay) {
7224         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7225              diag::err_virtual_non_function);
7226       } else if (!CurContext->isRecord()) {
7227         // 'virtual' was specified outside of the class.
7228         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7229              diag::err_virtual_out_of_class)
7230           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7231       } else if (NewFD->getDescribedFunctionTemplate()) {
7232         // C++ [temp.mem]p3:
7233         //  A member function template shall not be virtual.
7234         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7235              diag::err_virtual_member_function_template)
7236           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7237       } else {
7238         // Okay: Add virtual to the method.
7239         NewFD->setVirtualAsWritten(true);
7240       }
7241 
7242       if (getLangOpts().CPlusPlus14 &&
7243           NewFD->getReturnType()->isUndeducedType())
7244         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7245     }
7246 
7247     if (getLangOpts().CPlusPlus14 &&
7248         (NewFD->isDependentContext() ||
7249          (isFriend && CurContext->isDependentContext())) &&
7250         NewFD->getReturnType()->isUndeducedType()) {
7251       // If the function template is referenced directly (for instance, as a
7252       // member of the current instantiation), pretend it has a dependent type.
7253       // This is not really justified by the standard, but is the only sane
7254       // thing to do.
7255       // FIXME: For a friend function, we have not marked the function as being
7256       // a friend yet, so 'isDependentContext' on the FD doesn't work.
7257       const FunctionProtoType *FPT =
7258           NewFD->getType()->castAs<FunctionProtoType>();
7259       QualType Result =
7260           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7261       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7262                                              FPT->getExtProtoInfo()));
7263     }
7264 
7265     // C++ [dcl.fct.spec]p3:
7266     //  The inline specifier shall not appear on a block scope function
7267     //  declaration.
7268     if (isInline && !NewFD->isInvalidDecl()) {
7269       if (CurContext->isFunctionOrMethod()) {
7270         // 'inline' is not allowed on block scope function declaration.
7271         Diag(D.getDeclSpec().getInlineSpecLoc(),
7272              diag::err_inline_declaration_block_scope) << Name
7273           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7274       }
7275     }
7276 
7277     // C++ [dcl.fct.spec]p6:
7278     //  The explicit specifier shall be used only in the declaration of a
7279     //  constructor or conversion function within its class definition;
7280     //  see 12.3.1 and 12.3.2.
7281     if (isExplicit && !NewFD->isInvalidDecl()) {
7282       if (!CurContext->isRecord()) {
7283         // 'explicit' was specified outside of the class.
7284         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7285              diag::err_explicit_out_of_class)
7286           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7287       } else if (!isa<CXXConstructorDecl>(NewFD) &&
7288                  !isa<CXXConversionDecl>(NewFD)) {
7289         // 'explicit' was specified on a function that wasn't a constructor
7290         // or conversion function.
7291         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7292              diag::err_explicit_non_ctor_or_conv_function)
7293           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7294       }
7295     }
7296 
7297     if (isConstexpr) {
7298       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7299       // are implicitly inline.
7300       NewFD->setImplicitlyInline();
7301 
7302       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7303       // be either constructors or to return a literal type. Therefore,
7304       // destructors cannot be declared constexpr.
7305       if (isa<CXXDestructorDecl>(NewFD))
7306         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7307     }
7308 
7309     // If __module_private__ was specified, mark the function accordingly.
7310     if (D.getDeclSpec().isModulePrivateSpecified()) {
7311       if (isFunctionTemplateSpecialization) {
7312         SourceLocation ModulePrivateLoc
7313           = D.getDeclSpec().getModulePrivateSpecLoc();
7314         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7315           << 0
7316           << FixItHint::CreateRemoval(ModulePrivateLoc);
7317       } else {
7318         NewFD->setModulePrivate();
7319         if (FunctionTemplate)
7320           FunctionTemplate->setModulePrivate();
7321       }
7322     }
7323 
7324     if (isFriend) {
7325       if (FunctionTemplate) {
7326         FunctionTemplate->setObjectOfFriendDecl();
7327         FunctionTemplate->setAccess(AS_public);
7328       }
7329       NewFD->setObjectOfFriendDecl();
7330       NewFD->setAccess(AS_public);
7331     }
7332 
7333     // If a function is defined as defaulted or deleted, mark it as such now.
7334     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7335     // definition kind to FDK_Definition.
7336     switch (D.getFunctionDefinitionKind()) {
7337       case FDK_Declaration:
7338       case FDK_Definition:
7339         break;
7340 
7341       case FDK_Defaulted:
7342         NewFD->setDefaulted();
7343         break;
7344 
7345       case FDK_Deleted:
7346         NewFD->setDeletedAsWritten();
7347         break;
7348     }
7349 
7350     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7351         D.isFunctionDefinition()) {
7352       // C++ [class.mfct]p2:
7353       //   A member function may be defined (8.4) in its class definition, in
7354       //   which case it is an inline member function (7.1.2)
7355       NewFD->setImplicitlyInline();
7356     }
7357 
7358     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7359         !CurContext->isRecord()) {
7360       // C++ [class.static]p1:
7361       //   A data or function member of a class may be declared static
7362       //   in a class definition, in which case it is a static member of
7363       //   the class.
7364 
7365       // Complain about the 'static' specifier if it's on an out-of-line
7366       // member function definition.
7367       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7368            diag::err_static_out_of_line)
7369         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7370     }
7371 
7372     // C++11 [except.spec]p15:
7373     //   A deallocation function with no exception-specification is treated
7374     //   as if it were specified with noexcept(true).
7375     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7376     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7377          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7378         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7379       NewFD->setType(Context.getFunctionType(
7380           FPT->getReturnType(), FPT->getParamTypes(),
7381           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7382   }
7383 
7384   // Filter out previous declarations that don't match the scope.
7385   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7386                        D.getCXXScopeSpec().isNotEmpty() ||
7387                        isExplicitSpecialization ||
7388                        isFunctionTemplateSpecialization);
7389 
7390   // Handle GNU asm-label extension (encoded as an attribute).
7391   if (Expr *E = (Expr*) D.getAsmLabel()) {
7392     // The parser guarantees this is a string.
7393     StringLiteral *SE = cast<StringLiteral>(E);
7394     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7395                                                 SE->getString(), 0));
7396   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7397     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7398       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7399     if (I != ExtnameUndeclaredIdentifiers.end()) {
7400       NewFD->addAttr(I->second);
7401       ExtnameUndeclaredIdentifiers.erase(I);
7402     }
7403   }
7404 
7405   // Copy the parameter declarations from the declarator D to the function
7406   // declaration NewFD, if they are available.  First scavenge them into Params.
7407   SmallVector<ParmVarDecl*, 16> Params;
7408   if (D.isFunctionDeclarator()) {
7409     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7410 
7411     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7412     // function that takes no arguments, not a function that takes a
7413     // single void argument.
7414     // We let through "const void" here because Sema::GetTypeForDeclarator
7415     // already checks for that case.
7416     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7417       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7418         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7419         assert(Param->getDeclContext() != NewFD && "Was set before ?");
7420         Param->setDeclContext(NewFD);
7421         Params.push_back(Param);
7422 
7423         if (Param->isInvalidDecl())
7424           NewFD->setInvalidDecl();
7425       }
7426     }
7427 
7428   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7429     // When we're declaring a function with a typedef, typeof, etc as in the
7430     // following example, we'll need to synthesize (unnamed)
7431     // parameters for use in the declaration.
7432     //
7433     // @code
7434     // typedef void fn(int);
7435     // fn f;
7436     // @endcode
7437 
7438     // Synthesize a parameter for each argument type.
7439     for (const auto &AI : FT->param_types()) {
7440       ParmVarDecl *Param =
7441           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7442       Param->setScopeInfo(0, Params.size());
7443       Params.push_back(Param);
7444     }
7445   } else {
7446     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7447            "Should not need args for typedef of non-prototype fn");
7448   }
7449 
7450   // Finally, we know we have the right number of parameters, install them.
7451   NewFD->setParams(Params);
7452 
7453   // Find all anonymous symbols defined during the declaration of this function
7454   // and add to NewFD. This lets us track decls such 'enum Y' in:
7455   //
7456   //   void f(enum Y {AA} x) {}
7457   //
7458   // which would otherwise incorrectly end up in the translation unit scope.
7459   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7460   DeclsInPrototypeScope.clear();
7461 
7462   if (D.getDeclSpec().isNoreturnSpecified())
7463     NewFD->addAttr(
7464         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7465                                        Context, 0));
7466 
7467   // Functions returning a variably modified type violate C99 6.7.5.2p2
7468   // because all functions have linkage.
7469   if (!NewFD->isInvalidDecl() &&
7470       NewFD->getReturnType()->isVariablyModifiedType()) {
7471     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7472     NewFD->setInvalidDecl();
7473   }
7474 
7475   // Apply an implicit SectionAttr if #pragma code_seg is active.
7476   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7477       !NewFD->hasAttr<SectionAttr>()) {
7478     NewFD->addAttr(
7479         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7480                                     CodeSegStack.CurrentValue->getString(),
7481                                     CodeSegStack.CurrentPragmaLocation));
7482     if (UnifySection(CodeSegStack.CurrentValue->getString(),
7483                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7484                          ASTContext::PSF_Read,
7485                      NewFD))
7486       NewFD->dropAttr<SectionAttr>();
7487   }
7488 
7489   // Handle attributes.
7490   ProcessDeclAttributes(S, NewFD, D);
7491 
7492   if (getLangOpts().OpenCL) {
7493     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7494     // type declaration will generate a compilation error.
7495     unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7496     if (AddressSpace == LangAS::opencl_local ||
7497         AddressSpace == LangAS::opencl_global ||
7498         AddressSpace == LangAS::opencl_constant) {
7499       Diag(NewFD->getLocation(),
7500            diag::err_opencl_return_value_with_address_space);
7501       NewFD->setInvalidDecl();
7502     }
7503   }
7504 
7505   if (!getLangOpts().CPlusPlus) {
7506     // Perform semantic checking on the function declaration.
7507     bool isExplicitSpecialization=false;
7508     if (!NewFD->isInvalidDecl() && NewFD->isMain())
7509       CheckMain(NewFD, D.getDeclSpec());
7510 
7511     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7512       CheckMSVCRTEntryPoint(NewFD);
7513 
7514     if (!NewFD->isInvalidDecl())
7515       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7516                                                   isExplicitSpecialization));
7517     else if (!Previous.empty())
7518       // Recover gracefully from an invalid redeclaration.
7519       D.setRedeclaration(true);
7520     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7521             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7522            "previous declaration set still overloaded");
7523 
7524     // Diagnose no-prototype function declarations with calling conventions that
7525     // don't support variadic calls. Only do this in C and do it after merging
7526     // possibly prototyped redeclarations.
7527     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7528     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7529       CallingConv CC = FT->getExtInfo().getCC();
7530       if (!supportsVariadicCall(CC)) {
7531         // Windows system headers sometimes accidentally use stdcall without
7532         // (void) parameters, so we relax this to a warning.
7533         int DiagID =
7534             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7535         Diag(NewFD->getLocation(), DiagID)
7536             << FunctionType::getNameForCallConv(CC);
7537       }
7538     }
7539   } else {
7540     // C++11 [replacement.functions]p3:
7541     //  The program's definitions shall not be specified as inline.
7542     //
7543     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7544     //
7545     // Suppress the diagnostic if the function is __attribute__((used)), since
7546     // that forces an external definition to be emitted.
7547     if (D.getDeclSpec().isInlineSpecified() &&
7548         NewFD->isReplaceableGlobalAllocationFunction() &&
7549         !NewFD->hasAttr<UsedAttr>())
7550       Diag(D.getDeclSpec().getInlineSpecLoc(),
7551            diag::ext_operator_new_delete_declared_inline)
7552         << NewFD->getDeclName();
7553 
7554     // If the declarator is a template-id, translate the parser's template
7555     // argument list into our AST format.
7556     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7557       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7558       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7559       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7560       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7561                                          TemplateId->NumArgs);
7562       translateTemplateArguments(TemplateArgsPtr,
7563                                  TemplateArgs);
7564 
7565       HasExplicitTemplateArgs = true;
7566 
7567       if (NewFD->isInvalidDecl()) {
7568         HasExplicitTemplateArgs = false;
7569       } else if (FunctionTemplate) {
7570         // Function template with explicit template arguments.
7571         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7572           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7573 
7574         HasExplicitTemplateArgs = false;
7575       } else {
7576         assert((isFunctionTemplateSpecialization ||
7577                 D.getDeclSpec().isFriendSpecified()) &&
7578                "should have a 'template<>' for this decl");
7579         // "friend void foo<>(int);" is an implicit specialization decl.
7580         isFunctionTemplateSpecialization = true;
7581       }
7582     } else if (isFriend && isFunctionTemplateSpecialization) {
7583       // This combination is only possible in a recovery case;  the user
7584       // wrote something like:
7585       //   template <> friend void foo(int);
7586       // which we're recovering from as if the user had written:
7587       //   friend void foo<>(int);
7588       // Go ahead and fake up a template id.
7589       HasExplicitTemplateArgs = true;
7590       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7591       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7592     }
7593 
7594     // If it's a friend (and only if it's a friend), it's possible
7595     // that either the specialized function type or the specialized
7596     // template is dependent, and therefore matching will fail.  In
7597     // this case, don't check the specialization yet.
7598     bool InstantiationDependent = false;
7599     if (isFunctionTemplateSpecialization && isFriend &&
7600         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7601          TemplateSpecializationType::anyDependentTemplateArguments(
7602             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7603             InstantiationDependent))) {
7604       assert(HasExplicitTemplateArgs &&
7605              "friend function specialization without template args");
7606       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7607                                                        Previous))
7608         NewFD->setInvalidDecl();
7609     } else if (isFunctionTemplateSpecialization) {
7610       if (CurContext->isDependentContext() && CurContext->isRecord()
7611           && !isFriend) {
7612         isDependentClassScopeExplicitSpecialization = true;
7613         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7614           diag::ext_function_specialization_in_class :
7615           diag::err_function_specialization_in_class)
7616           << NewFD->getDeclName();
7617       } else if (CheckFunctionTemplateSpecialization(NewFD,
7618                                   (HasExplicitTemplateArgs ? &TemplateArgs
7619                                                            : nullptr),
7620                                                      Previous))
7621         NewFD->setInvalidDecl();
7622 
7623       // C++ [dcl.stc]p1:
7624       //   A storage-class-specifier shall not be specified in an explicit
7625       //   specialization (14.7.3)
7626       FunctionTemplateSpecializationInfo *Info =
7627           NewFD->getTemplateSpecializationInfo();
7628       if (Info && SC != SC_None) {
7629         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7630           Diag(NewFD->getLocation(),
7631                diag::err_explicit_specialization_inconsistent_storage_class)
7632             << SC
7633             << FixItHint::CreateRemoval(
7634                                       D.getDeclSpec().getStorageClassSpecLoc());
7635 
7636         else
7637           Diag(NewFD->getLocation(),
7638                diag::ext_explicit_specialization_storage_class)
7639             << FixItHint::CreateRemoval(
7640                                       D.getDeclSpec().getStorageClassSpecLoc());
7641       }
7642 
7643     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7644       if (CheckMemberSpecialization(NewFD, Previous))
7645           NewFD->setInvalidDecl();
7646     }
7647 
7648     // Perform semantic checking on the function declaration.
7649     if (!isDependentClassScopeExplicitSpecialization) {
7650       if (!NewFD->isInvalidDecl() && NewFD->isMain())
7651         CheckMain(NewFD, D.getDeclSpec());
7652 
7653       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7654         CheckMSVCRTEntryPoint(NewFD);
7655 
7656       if (!NewFD->isInvalidDecl())
7657         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7658                                                     isExplicitSpecialization));
7659       else if (!Previous.empty())
7660         // Recover gracefully from an invalid redeclaration.
7661         D.setRedeclaration(true);
7662     }
7663 
7664     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7665             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7666            "previous declaration set still overloaded");
7667 
7668     NamedDecl *PrincipalDecl = (FunctionTemplate
7669                                 ? cast<NamedDecl>(FunctionTemplate)
7670                                 : NewFD);
7671 
7672     if (isFriend && D.isRedeclaration()) {
7673       AccessSpecifier Access = AS_public;
7674       if (!NewFD->isInvalidDecl())
7675         Access = NewFD->getPreviousDecl()->getAccess();
7676 
7677       NewFD->setAccess(Access);
7678       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7679     }
7680 
7681     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7682         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7683       PrincipalDecl->setNonMemberOperator();
7684 
7685     // If we have a function template, check the template parameter
7686     // list. This will check and merge default template arguments.
7687     if (FunctionTemplate) {
7688       FunctionTemplateDecl *PrevTemplate =
7689                                      FunctionTemplate->getPreviousDecl();
7690       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7691                        PrevTemplate ? PrevTemplate->getTemplateParameters()
7692                                     : nullptr,
7693                             D.getDeclSpec().isFriendSpecified()
7694                               ? (D.isFunctionDefinition()
7695                                    ? TPC_FriendFunctionTemplateDefinition
7696                                    : TPC_FriendFunctionTemplate)
7697                               : (D.getCXXScopeSpec().isSet() &&
7698                                  DC && DC->isRecord() &&
7699                                  DC->isDependentContext())
7700                                   ? TPC_ClassTemplateMember
7701                                   : TPC_FunctionTemplate);
7702     }
7703 
7704     if (NewFD->isInvalidDecl()) {
7705       // Ignore all the rest of this.
7706     } else if (!D.isRedeclaration()) {
7707       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7708                                        AddToScope };
7709       // Fake up an access specifier if it's supposed to be a class member.
7710       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7711         NewFD->setAccess(AS_public);
7712 
7713       // Qualified decls generally require a previous declaration.
7714       if (D.getCXXScopeSpec().isSet()) {
7715         // ...with the major exception of templated-scope or
7716         // dependent-scope friend declarations.
7717 
7718         // TODO: we currently also suppress this check in dependent
7719         // contexts because (1) the parameter depth will be off when
7720         // matching friend templates and (2) we might actually be
7721         // selecting a friend based on a dependent factor.  But there
7722         // are situations where these conditions don't apply and we
7723         // can actually do this check immediately.
7724         if (isFriend &&
7725             (TemplateParamLists.size() ||
7726              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7727              CurContext->isDependentContext())) {
7728           // ignore these
7729         } else {
7730           // The user tried to provide an out-of-line definition for a
7731           // function that is a member of a class or namespace, but there
7732           // was no such member function declared (C++ [class.mfct]p2,
7733           // C++ [namespace.memdef]p2). For example:
7734           //
7735           // class X {
7736           //   void f() const;
7737           // };
7738           //
7739           // void X::f() { } // ill-formed
7740           //
7741           // Complain about this problem, and attempt to suggest close
7742           // matches (e.g., those that differ only in cv-qualifiers and
7743           // whether the parameter types are references).
7744 
7745           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7746                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7747             AddToScope = ExtraArgs.AddToScope;
7748             return Result;
7749           }
7750         }
7751 
7752         // Unqualified local friend declarations are required to resolve
7753         // to something.
7754       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7755         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7756                 *this, Previous, NewFD, ExtraArgs, true, S)) {
7757           AddToScope = ExtraArgs.AddToScope;
7758           return Result;
7759         }
7760       }
7761 
7762     } else if (!D.isFunctionDefinition() &&
7763                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7764                !isFriend && !isFunctionTemplateSpecialization &&
7765                !isExplicitSpecialization) {
7766       // An out-of-line member function declaration must also be a
7767       // definition (C++ [class.mfct]p2).
7768       // Note that this is not the case for explicit specializations of
7769       // function templates or member functions of class templates, per
7770       // C++ [temp.expl.spec]p2. We also allow these declarations as an
7771       // extension for compatibility with old SWIG code which likes to
7772       // generate them.
7773       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7774         << D.getCXXScopeSpec().getRange();
7775     }
7776   }
7777 
7778   ProcessPragmaWeak(S, NewFD);
7779   checkAttributesAfterMerging(*this, *NewFD);
7780 
7781   AddKnownFunctionAttributes(NewFD);
7782 
7783   if (NewFD->hasAttr<OverloadableAttr>() &&
7784       !NewFD->getType()->getAs<FunctionProtoType>()) {
7785     Diag(NewFD->getLocation(),
7786          diag::err_attribute_overloadable_no_prototype)
7787       << NewFD;
7788 
7789     // Turn this into a variadic function with no parameters.
7790     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7791     FunctionProtoType::ExtProtoInfo EPI(
7792         Context.getDefaultCallingConvention(true, false));
7793     EPI.Variadic = true;
7794     EPI.ExtInfo = FT->getExtInfo();
7795 
7796     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7797     NewFD->setType(R);
7798   }
7799 
7800   // If there's a #pragma GCC visibility in scope, and this isn't a class
7801   // member, set the visibility of this function.
7802   if (!DC->isRecord() && NewFD->isExternallyVisible())
7803     AddPushedVisibilityAttribute(NewFD);
7804 
7805   // If there's a #pragma clang arc_cf_code_audited in scope, consider
7806   // marking the function.
7807   AddCFAuditedAttribute(NewFD);
7808 
7809   // If this is a function definition, check if we have to apply optnone due to
7810   // a pragma.
7811   if(D.isFunctionDefinition())
7812     AddRangeBasedOptnone(NewFD);
7813 
7814   // If this is the first declaration of an extern C variable, update
7815   // the map of such variables.
7816   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7817       isIncompleteDeclExternC(*this, NewFD))
7818     RegisterLocallyScopedExternCDecl(NewFD, S);
7819 
7820   // Set this FunctionDecl's range up to the right paren.
7821   NewFD->setRangeEnd(D.getSourceRange().getEnd());
7822 
7823   if (D.isRedeclaration() && !Previous.empty()) {
7824     checkDLLAttributeRedeclaration(
7825         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7826         isExplicitSpecialization || isFunctionTemplateSpecialization);
7827   }
7828 
7829   if (getLangOpts().CPlusPlus) {
7830     if (FunctionTemplate) {
7831       if (NewFD->isInvalidDecl())
7832         FunctionTemplate->setInvalidDecl();
7833       return FunctionTemplate;
7834     }
7835   }
7836 
7837   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7838     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7839     if ((getLangOpts().OpenCLVersion >= 120)
7840         && (SC == SC_Static)) {
7841       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7842       D.setInvalidType();
7843     }
7844 
7845     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7846     if (!NewFD->getReturnType()->isVoidType()) {
7847       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7848       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7849           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7850                                 : FixItHint());
7851       D.setInvalidType();
7852     }
7853 
7854     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7855     for (auto Param : NewFD->params())
7856       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7857   }
7858 
7859   MarkUnusedFileScopedDecl(NewFD);
7860 
7861   if (getLangOpts().CUDA)
7862     if (IdentifierInfo *II = NewFD->getIdentifier())
7863       if (!NewFD->isInvalidDecl() &&
7864           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7865         if (II->isStr("cudaConfigureCall")) {
7866           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7867             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7868 
7869           Context.setcudaConfigureCallDecl(NewFD);
7870         }
7871       }
7872 
7873   // Here we have an function template explicit specialization at class scope.
7874   // The actually specialization will be postponed to template instatiation
7875   // time via the ClassScopeFunctionSpecializationDecl node.
7876   if (isDependentClassScopeExplicitSpecialization) {
7877     ClassScopeFunctionSpecializationDecl *NewSpec =
7878                          ClassScopeFunctionSpecializationDecl::Create(
7879                                 Context, CurContext, SourceLocation(),
7880                                 cast<CXXMethodDecl>(NewFD),
7881                                 HasExplicitTemplateArgs, TemplateArgs);
7882     CurContext->addDecl(NewSpec);
7883     AddToScope = false;
7884   }
7885 
7886   return NewFD;
7887 }
7888 
7889 /// \brief Perform semantic checking of a new function declaration.
7890 ///
7891 /// Performs semantic analysis of the new function declaration
7892 /// NewFD. This routine performs all semantic checking that does not
7893 /// require the actual declarator involved in the declaration, and is
7894 /// used both for the declaration of functions as they are parsed
7895 /// (called via ActOnDeclarator) and for the declaration of functions
7896 /// that have been instantiated via C++ template instantiation (called
7897 /// via InstantiateDecl).
7898 ///
7899 /// \param IsExplicitSpecialization whether this new function declaration is
7900 /// an explicit specialization of the previous declaration.
7901 ///
7902 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7903 ///
7904 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7905 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7906                                     LookupResult &Previous,
7907                                     bool IsExplicitSpecialization) {
7908   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7909          "Variably modified return types are not handled here");
7910 
7911   // Determine whether the type of this function should be merged with
7912   // a previous visible declaration. This never happens for functions in C++,
7913   // and always happens in C if the previous declaration was visible.
7914   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7915                                !Previous.isShadowed();
7916 
7917   // Filter out any non-conflicting previous declarations.
7918   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7919 
7920   bool Redeclaration = false;
7921   NamedDecl *OldDecl = nullptr;
7922 
7923   // Merge or overload the declaration with an existing declaration of
7924   // the same name, if appropriate.
7925   if (!Previous.empty()) {
7926     // Determine whether NewFD is an overload of PrevDecl or
7927     // a declaration that requires merging. If it's an overload,
7928     // there's no more work to do here; we'll just add the new
7929     // function to the scope.
7930     if (!AllowOverloadingOfFunction(Previous, Context)) {
7931       NamedDecl *Candidate = Previous.getFoundDecl();
7932       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7933         Redeclaration = true;
7934         OldDecl = Candidate;
7935       }
7936     } else {
7937       switch (CheckOverload(S, NewFD, Previous, OldDecl,
7938                             /*NewIsUsingDecl*/ false)) {
7939       case Ovl_Match:
7940         Redeclaration = true;
7941         break;
7942 
7943       case Ovl_NonFunction:
7944         Redeclaration = true;
7945         break;
7946 
7947       case Ovl_Overload:
7948         Redeclaration = false;
7949         break;
7950       }
7951 
7952       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7953         // If a function name is overloadable in C, then every function
7954         // with that name must be marked "overloadable".
7955         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7956           << Redeclaration << NewFD;
7957         NamedDecl *OverloadedDecl = nullptr;
7958         if (Redeclaration)
7959           OverloadedDecl = OldDecl;
7960         else if (!Previous.empty())
7961           OverloadedDecl = Previous.getRepresentativeDecl();
7962         if (OverloadedDecl)
7963           Diag(OverloadedDecl->getLocation(),
7964                diag::note_attribute_overloadable_prev_overload);
7965         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7966       }
7967     }
7968   }
7969 
7970   // Check for a previous extern "C" declaration with this name.
7971   if (!Redeclaration &&
7972       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7973     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7974     if (!Previous.empty()) {
7975       // This is an extern "C" declaration with the same name as a previous
7976       // declaration, and thus redeclares that entity...
7977       Redeclaration = true;
7978       OldDecl = Previous.getFoundDecl();
7979       MergeTypeWithPrevious = false;
7980 
7981       // ... except in the presence of __attribute__((overloadable)).
7982       if (OldDecl->hasAttr<OverloadableAttr>()) {
7983         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7984           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7985             << Redeclaration << NewFD;
7986           Diag(Previous.getFoundDecl()->getLocation(),
7987                diag::note_attribute_overloadable_prev_overload);
7988           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7989         }
7990         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7991           Redeclaration = false;
7992           OldDecl = nullptr;
7993         }
7994       }
7995     }
7996   }
7997 
7998   // C++11 [dcl.constexpr]p8:
7999   //   A constexpr specifier for a non-static member function that is not
8000   //   a constructor declares that member function to be const.
8001   //
8002   // This needs to be delayed until we know whether this is an out-of-line
8003   // definition of a static member function.
8004   //
8005   // This rule is not present in C++1y, so we produce a backwards
8006   // compatibility warning whenever it happens in C++11.
8007   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8008   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8009       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8010       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8011     CXXMethodDecl *OldMD = nullptr;
8012     if (OldDecl)
8013       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8014     if (!OldMD || !OldMD->isStatic()) {
8015       const FunctionProtoType *FPT =
8016         MD->getType()->castAs<FunctionProtoType>();
8017       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8018       EPI.TypeQuals |= Qualifiers::Const;
8019       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8020                                           FPT->getParamTypes(), EPI));
8021 
8022       // Warn that we did this, if we're not performing template instantiation.
8023       // In that case, we'll have warned already when the template was defined.
8024       if (ActiveTemplateInstantiations.empty()) {
8025         SourceLocation AddConstLoc;
8026         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8027                 .IgnoreParens().getAs<FunctionTypeLoc>())
8028           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8029 
8030         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8031           << FixItHint::CreateInsertion(AddConstLoc, " const");
8032       }
8033     }
8034   }
8035 
8036   if (Redeclaration) {
8037     // NewFD and OldDecl represent declarations that need to be
8038     // merged.
8039     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8040       NewFD->setInvalidDecl();
8041       return Redeclaration;
8042     }
8043 
8044     Previous.clear();
8045     Previous.addDecl(OldDecl);
8046 
8047     if (FunctionTemplateDecl *OldTemplateDecl
8048                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8049       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8050       FunctionTemplateDecl *NewTemplateDecl
8051         = NewFD->getDescribedFunctionTemplate();
8052       assert(NewTemplateDecl && "Template/non-template mismatch");
8053       if (CXXMethodDecl *Method
8054             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8055         Method->setAccess(OldTemplateDecl->getAccess());
8056         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8057       }
8058 
8059       // If this is an explicit specialization of a member that is a function
8060       // template, mark it as a member specialization.
8061       if (IsExplicitSpecialization &&
8062           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8063         NewTemplateDecl->setMemberSpecialization();
8064         assert(OldTemplateDecl->isMemberSpecialization());
8065       }
8066 
8067     } else {
8068       // This needs to happen first so that 'inline' propagates.
8069       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8070 
8071       if (isa<CXXMethodDecl>(NewFD))
8072         NewFD->setAccess(OldDecl->getAccess());
8073     }
8074   }
8075 
8076   // Semantic checking for this function declaration (in isolation).
8077 
8078   if (getLangOpts().CPlusPlus) {
8079     // C++-specific checks.
8080     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8081       CheckConstructor(Constructor);
8082     } else if (CXXDestructorDecl *Destructor =
8083                 dyn_cast<CXXDestructorDecl>(NewFD)) {
8084       CXXRecordDecl *Record = Destructor->getParent();
8085       QualType ClassType = Context.getTypeDeclType(Record);
8086 
8087       // FIXME: Shouldn't we be able to perform this check even when the class
8088       // type is dependent? Both gcc and edg can handle that.
8089       if (!ClassType->isDependentType()) {
8090         DeclarationName Name
8091           = Context.DeclarationNames.getCXXDestructorName(
8092                                         Context.getCanonicalType(ClassType));
8093         if (NewFD->getDeclName() != Name) {
8094           Diag(NewFD->getLocation(), diag::err_destructor_name);
8095           NewFD->setInvalidDecl();
8096           return Redeclaration;
8097         }
8098       }
8099     } else if (CXXConversionDecl *Conversion
8100                = dyn_cast<CXXConversionDecl>(NewFD)) {
8101       ActOnConversionDeclarator(Conversion);
8102     }
8103 
8104     // Find any virtual functions that this function overrides.
8105     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8106       if (!Method->isFunctionTemplateSpecialization() &&
8107           !Method->getDescribedFunctionTemplate() &&
8108           Method->isCanonicalDecl()) {
8109         if (AddOverriddenMethods(Method->getParent(), Method)) {
8110           // If the function was marked as "static", we have a problem.
8111           if (NewFD->getStorageClass() == SC_Static) {
8112             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8113           }
8114         }
8115       }
8116 
8117       if (Method->isStatic())
8118         checkThisInStaticMemberFunctionType(Method);
8119     }
8120 
8121     // Extra checking for C++ overloaded operators (C++ [over.oper]).
8122     if (NewFD->isOverloadedOperator() &&
8123         CheckOverloadedOperatorDeclaration(NewFD)) {
8124       NewFD->setInvalidDecl();
8125       return Redeclaration;
8126     }
8127 
8128     // Extra checking for C++0x literal operators (C++0x [over.literal]).
8129     if (NewFD->getLiteralIdentifier() &&
8130         CheckLiteralOperatorDeclaration(NewFD)) {
8131       NewFD->setInvalidDecl();
8132       return Redeclaration;
8133     }
8134 
8135     // In C++, check default arguments now that we have merged decls. Unless
8136     // the lexical context is the class, because in this case this is done
8137     // during delayed parsing anyway.
8138     if (!CurContext->isRecord())
8139       CheckCXXDefaultArguments(NewFD);
8140 
8141     // If this function declares a builtin function, check the type of this
8142     // declaration against the expected type for the builtin.
8143     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8144       ASTContext::GetBuiltinTypeError Error;
8145       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8146       QualType T = Context.GetBuiltinType(BuiltinID, Error);
8147       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8148         // The type of this function differs from the type of the builtin,
8149         // so forget about the builtin entirely.
8150         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
8151       }
8152     }
8153 
8154     // If this function is declared as being extern "C", then check to see if
8155     // the function returns a UDT (class, struct, or union type) that is not C
8156     // compatible, and if it does, warn the user.
8157     // But, issue any diagnostic on the first declaration only.
8158     if (Previous.empty() && NewFD->isExternC()) {
8159       QualType R = NewFD->getReturnType();
8160       if (R->isIncompleteType() && !R->isVoidType())
8161         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8162             << NewFD << R;
8163       else if (!R.isPODType(Context) && !R->isVoidType() &&
8164                !R->isObjCObjectPointerType())
8165         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8166     }
8167   }
8168   return Redeclaration;
8169 }
8170 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)8171 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8172   // C++11 [basic.start.main]p3:
8173   //   A program that [...] declares main to be inline, static or
8174   //   constexpr is ill-formed.
8175   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
8176   //   appear in a declaration of main.
8177   // static main is not an error under C99, but we should warn about it.
8178   // We accept _Noreturn main as an extension.
8179   if (FD->getStorageClass() == SC_Static)
8180     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8181          ? diag::err_static_main : diag::warn_static_main)
8182       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8183   if (FD->isInlineSpecified())
8184     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8185       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8186   if (DS.isNoreturnSpecified()) {
8187     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8188     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8189     Diag(NoreturnLoc, diag::ext_noreturn_main);
8190     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8191       << FixItHint::CreateRemoval(NoreturnRange);
8192   }
8193   if (FD->isConstexpr()) {
8194     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8195       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8196     FD->setConstexpr(false);
8197   }
8198 
8199   if (getLangOpts().OpenCL) {
8200     Diag(FD->getLocation(), diag::err_opencl_no_main)
8201         << FD->hasAttr<OpenCLKernelAttr>();
8202     FD->setInvalidDecl();
8203     return;
8204   }
8205 
8206   QualType T = FD->getType();
8207   assert(T->isFunctionType() && "function decl is not of function type");
8208   const FunctionType* FT = T->castAs<FunctionType>();
8209 
8210   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8211     // In C with GNU extensions we allow main() to have non-integer return
8212     // type, but we should warn about the extension, and we disable the
8213     // implicit-return-zero rule.
8214 
8215     // GCC in C mode accepts qualified 'int'.
8216     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8217       FD->setHasImplicitReturnZero(true);
8218     else {
8219       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8220       SourceRange RTRange = FD->getReturnTypeSourceRange();
8221       if (RTRange.isValid())
8222         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8223             << FixItHint::CreateReplacement(RTRange, "int");
8224     }
8225   } else {
8226     // In C and C++, main magically returns 0 if you fall off the end;
8227     // set the flag which tells us that.
8228     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8229 
8230     // All the standards say that main() should return 'int'.
8231     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8232       FD->setHasImplicitReturnZero(true);
8233     else {
8234       // Otherwise, this is just a flat-out error.
8235       SourceRange RTRange = FD->getReturnTypeSourceRange();
8236       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8237           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8238                                 : FixItHint());
8239       FD->setInvalidDecl(true);
8240     }
8241   }
8242 
8243   // Treat protoless main() as nullary.
8244   if (isa<FunctionNoProtoType>(FT)) return;
8245 
8246   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8247   unsigned nparams = FTP->getNumParams();
8248   assert(FD->getNumParams() == nparams);
8249 
8250   bool HasExtraParameters = (nparams > 3);
8251 
8252   // Darwin passes an undocumented fourth argument of type char**.  If
8253   // other platforms start sprouting these, the logic below will start
8254   // getting shifty.
8255   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8256     HasExtraParameters = false;
8257 
8258   if (HasExtraParameters) {
8259     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8260     FD->setInvalidDecl(true);
8261     nparams = 3;
8262   }
8263 
8264   // FIXME: a lot of the following diagnostics would be improved
8265   // if we had some location information about types.
8266 
8267   QualType CharPP =
8268     Context.getPointerType(Context.getPointerType(Context.CharTy));
8269   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8270 
8271   for (unsigned i = 0; i < nparams; ++i) {
8272     QualType AT = FTP->getParamType(i);
8273 
8274     bool mismatch = true;
8275 
8276     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8277       mismatch = false;
8278     else if (Expected[i] == CharPP) {
8279       // As an extension, the following forms are okay:
8280       //   char const **
8281       //   char const * const *
8282       //   char * const *
8283 
8284       QualifierCollector qs;
8285       const PointerType* PT;
8286       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8287           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8288           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8289                               Context.CharTy)) {
8290         qs.removeConst();
8291         mismatch = !qs.empty();
8292       }
8293     }
8294 
8295     if (mismatch) {
8296       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8297       // TODO: suggest replacing given type with expected type
8298       FD->setInvalidDecl(true);
8299     }
8300   }
8301 
8302   if (nparams == 1 && !FD->isInvalidDecl()) {
8303     Diag(FD->getLocation(), diag::warn_main_one_arg);
8304   }
8305 
8306   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8307     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8308     FD->setInvalidDecl();
8309   }
8310 }
8311 
CheckMSVCRTEntryPoint(FunctionDecl * FD)8312 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8313   QualType T = FD->getType();
8314   assert(T->isFunctionType() && "function decl is not of function type");
8315   const FunctionType *FT = T->castAs<FunctionType>();
8316 
8317   // Set an implicit return of 'zero' if the function can return some integral,
8318   // enumeration, pointer or nullptr type.
8319   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8320       FT->getReturnType()->isAnyPointerType() ||
8321       FT->getReturnType()->isNullPtrType())
8322     // DllMain is exempt because a return value of zero means it failed.
8323     if (FD->getName() != "DllMain")
8324       FD->setHasImplicitReturnZero(true);
8325 
8326   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8327     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8328     FD->setInvalidDecl();
8329   }
8330 }
8331 
CheckForConstantInitializer(Expr * Init,QualType DclT)8332 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8333   // FIXME: Need strict checking.  In C89, we need to check for
8334   // any assignment, increment, decrement, function-calls, or
8335   // commas outside of a sizeof.  In C99, it's the same list,
8336   // except that the aforementioned are allowed in unevaluated
8337   // expressions.  Everything else falls under the
8338   // "may accept other forms of constant expressions" exception.
8339   // (We never end up here for C++, so the constant expression
8340   // rules there don't matter.)
8341   const Expr *Culprit;
8342   if (Init->isConstantInitializer(Context, false, &Culprit))
8343     return false;
8344   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8345     << Culprit->getSourceRange();
8346   return true;
8347 }
8348 
8349 namespace {
8350   // Visits an initialization expression to see if OrigDecl is evaluated in
8351   // its own initialization and throws a warning if it does.
8352   class SelfReferenceChecker
8353       : public EvaluatedExprVisitor<SelfReferenceChecker> {
8354     Sema &S;
8355     Decl *OrigDecl;
8356     bool isRecordType;
8357     bool isPODType;
8358     bool isReferenceType;
8359 
8360     bool isInitList;
8361     llvm::SmallVector<unsigned, 4> InitFieldIndex;
8362   public:
8363     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8364 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8365     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8366                                                     S(S), OrigDecl(OrigDecl) {
8367       isPODType = false;
8368       isRecordType = false;
8369       isReferenceType = false;
8370       isInitList = false;
8371       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8372         isPODType = VD->getType().isPODType(S.Context);
8373         isRecordType = VD->getType()->isRecordType();
8374         isReferenceType = VD->getType()->isReferenceType();
8375       }
8376     }
8377 
8378     // For most expressions, just call the visitor.  For initializer lists,
8379     // track the index of the field being initialized since fields are
8380     // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)8381     void CheckExpr(Expr *E) {
8382       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8383       if (!InitList) {
8384         Visit(E);
8385         return;
8386       }
8387 
8388       // Track and increment the index here.
8389       isInitList = true;
8390       InitFieldIndex.push_back(0);
8391       for (auto Child : InitList->children()) {
8392         CheckExpr(cast<Expr>(Child));
8393         ++InitFieldIndex.back();
8394       }
8395       InitFieldIndex.pop_back();
8396     }
8397 
8398     // Returns true if MemberExpr is checked and no futher checking is needed.
8399     // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)8400     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8401       llvm::SmallVector<FieldDecl*, 4> Fields;
8402       Expr *Base = E;
8403       bool ReferenceField = false;
8404 
8405       // Get the field memebers used.
8406       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8407         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8408         if (!FD)
8409           return false;
8410         Fields.push_back(FD);
8411         if (FD->getType()->isReferenceType())
8412           ReferenceField = true;
8413         Base = ME->getBase()->IgnoreParenImpCasts();
8414       }
8415 
8416       // Keep checking only if the base Decl is the same.
8417       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8418       if (!DRE || DRE->getDecl() != OrigDecl)
8419         return false;
8420 
8421       // A reference field can be bound to an unininitialized field.
8422       if (CheckReference && !ReferenceField)
8423         return true;
8424 
8425       // Convert FieldDecls to their index number.
8426       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8427       for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
8428         UsedFieldIndex.push_back((*I)->getFieldIndex());
8429       }
8430 
8431       // See if a warning is needed by checking the first difference in index
8432       // numbers.  If field being used has index less than the field being
8433       // initialized, then the use is safe.
8434       for (auto UsedIter = UsedFieldIndex.begin(),
8435                 UsedEnd = UsedFieldIndex.end(),
8436                 OrigIter = InitFieldIndex.begin(),
8437                 OrigEnd = InitFieldIndex.end();
8438            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8439         if (*UsedIter < *OrigIter)
8440           return true;
8441         if (*UsedIter > *OrigIter)
8442           break;
8443       }
8444 
8445       // TODO: Add a different warning which will print the field names.
8446       HandleDeclRefExpr(DRE);
8447       return true;
8448     }
8449 
8450     // For most expressions, the cast is directly above the DeclRefExpr.
8451     // For conditional operators, the cast can be outside the conditional
8452     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8453     void HandleValue(Expr *E) {
8454       E = E->IgnoreParens();
8455       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8456         HandleDeclRefExpr(DRE);
8457         return;
8458       }
8459 
8460       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8461         Visit(CO->getCond());
8462         HandleValue(CO->getTrueExpr());
8463         HandleValue(CO->getFalseExpr());
8464         return;
8465       }
8466 
8467       if (BinaryConditionalOperator *BCO =
8468               dyn_cast<BinaryConditionalOperator>(E)) {
8469         Visit(BCO->getCond());
8470         HandleValue(BCO->getFalseExpr());
8471         return;
8472       }
8473 
8474       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8475         HandleValue(OVE->getSourceExpr());
8476         return;
8477       }
8478 
8479       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8480         if (BO->getOpcode() == BO_Comma) {
8481           Visit(BO->getLHS());
8482           HandleValue(BO->getRHS());
8483           return;
8484         }
8485       }
8486 
8487       if (isa<MemberExpr>(E)) {
8488         if (isInitList) {
8489           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8490                                       false /*CheckReference*/))
8491             return;
8492         }
8493 
8494         Expr *Base = E->IgnoreParenImpCasts();
8495         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8496           // Check for static member variables and don't warn on them.
8497           if (!isa<FieldDecl>(ME->getMemberDecl()))
8498             return;
8499           Base = ME->getBase()->IgnoreParenImpCasts();
8500         }
8501         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8502           HandleDeclRefExpr(DRE);
8503         return;
8504       }
8505 
8506       Visit(E);
8507     }
8508 
8509     // Reference types not handled in HandleValue are handled here since all
8510     // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8511     void VisitDeclRefExpr(DeclRefExpr *E) {
8512       if (isReferenceType)
8513         HandleDeclRefExpr(E);
8514     }
8515 
VisitImplicitCastExpr(ImplicitCastExpr * E)8516     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8517       if (E->getCastKind() == CK_LValueToRValue) {
8518         HandleValue(E->getSubExpr());
8519         return;
8520       }
8521 
8522       Inherited::VisitImplicitCastExpr(E);
8523     }
8524 
VisitMemberExpr(MemberExpr * E)8525     void VisitMemberExpr(MemberExpr *E) {
8526       if (isInitList) {
8527         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8528           return;
8529       }
8530 
8531       // Don't warn on arrays since they can be treated as pointers.
8532       if (E->getType()->canDecayToPointerType()) return;
8533 
8534       // Warn when a non-static method call is followed by non-static member
8535       // field accesses, which is followed by a DeclRefExpr.
8536       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8537       bool Warn = (MD && !MD->isStatic());
8538       Expr *Base = E->getBase()->IgnoreParenImpCasts();
8539       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8540         if (!isa<FieldDecl>(ME->getMemberDecl()))
8541           Warn = false;
8542         Base = ME->getBase()->IgnoreParenImpCasts();
8543       }
8544 
8545       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8546         if (Warn)
8547           HandleDeclRefExpr(DRE);
8548         return;
8549       }
8550 
8551       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8552       // Visit that expression.
8553       Visit(Base);
8554     }
8555 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8556     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8557       Expr *Callee = E->getCallee();
8558 
8559       if (isa<UnresolvedLookupExpr>(Callee))
8560         return Inherited::VisitCXXOperatorCallExpr(E);
8561 
8562       Visit(Callee);
8563       for (auto Arg: E->arguments())
8564         HandleValue(Arg->IgnoreParenImpCasts());
8565     }
8566 
VisitUnaryOperator(UnaryOperator * E)8567     void VisitUnaryOperator(UnaryOperator *E) {
8568       // For POD record types, addresses of its own members are well-defined.
8569       if (E->getOpcode() == UO_AddrOf && isRecordType &&
8570           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8571         if (!isPODType)
8572           HandleValue(E->getSubExpr());
8573         return;
8574       }
8575 
8576       if (E->isIncrementDecrementOp()) {
8577         HandleValue(E->getSubExpr());
8578         return;
8579       }
8580 
8581       Inherited::VisitUnaryOperator(E);
8582     }
8583 
VisitObjCMessageExpr(ObjCMessageExpr * E)8584     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8585 
VisitCXXConstructExpr(CXXConstructExpr * E)8586     void VisitCXXConstructExpr(CXXConstructExpr *E) {
8587       if (E->getConstructor()->isCopyConstructor()) {
8588         Expr *ArgExpr = E->getArg(0);
8589         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8590           if (ILE->getNumInits() == 1)
8591             ArgExpr = ILE->getInit(0);
8592         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8593           if (ICE->getCastKind() == CK_NoOp)
8594             ArgExpr = ICE->getSubExpr();
8595         HandleValue(ArgExpr);
8596         return;
8597       }
8598       Inherited::VisitCXXConstructExpr(E);
8599     }
8600 
VisitCallExpr(CallExpr * E)8601     void VisitCallExpr(CallExpr *E) {
8602       // Treat std::move as a use.
8603       if (E->getNumArgs() == 1) {
8604         if (FunctionDecl *FD = E->getDirectCallee()) {
8605           if (FD->isInStdNamespace() && FD->getIdentifier() &&
8606               FD->getIdentifier()->isStr("move")) {
8607             HandleValue(E->getArg(0));
8608             return;
8609           }
8610         }
8611       }
8612 
8613       Inherited::VisitCallExpr(E);
8614     }
8615 
VisitBinaryOperator(BinaryOperator * E)8616     void VisitBinaryOperator(BinaryOperator *E) {
8617       if (E->isCompoundAssignmentOp()) {
8618         HandleValue(E->getLHS());
8619         Visit(E->getRHS());
8620         return;
8621       }
8622 
8623       Inherited::VisitBinaryOperator(E);
8624     }
8625 
8626     // A custom visitor for BinaryConditionalOperator is needed because the
8627     // regular visitor would check the condition and true expression separately
8628     // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)8629     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
8630       Visit(E->getCond());
8631       Visit(E->getFalseExpr());
8632     }
8633 
HandleDeclRefExpr(DeclRefExpr * DRE)8634     void HandleDeclRefExpr(DeclRefExpr *DRE) {
8635       Decl* ReferenceDecl = DRE->getDecl();
8636       if (OrigDecl != ReferenceDecl) return;
8637       unsigned diag;
8638       if (isReferenceType) {
8639         diag = diag::warn_uninit_self_reference_in_reference_init;
8640       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8641         diag = diag::warn_static_self_reference_in_init;
8642       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
8643                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
8644                  DRE->getDecl()->getType()->isRecordType()) {
8645         diag = diag::warn_uninit_self_reference_in_init;
8646       } else {
8647         // Local variables will be handled by the CFG analysis.
8648         return;
8649       }
8650 
8651       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8652                             S.PDiag(diag)
8653                               << DRE->getNameInfo().getName()
8654                               << OrigDecl->getLocation()
8655                               << DRE->getSourceRange());
8656     }
8657   };
8658 
8659   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)8660   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8661                                  bool DirectInit) {
8662     // Parameters arguments are occassionially constructed with itself,
8663     // for instance, in recursive functions.  Skip them.
8664     if (isa<ParmVarDecl>(OrigDecl))
8665       return;
8666 
8667     E = E->IgnoreParens();
8668 
8669     // Skip checking T a = a where T is not a record or reference type.
8670     // Doing so is a way to silence uninitialized warnings.
8671     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8672       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8673         if (ICE->getCastKind() == CK_LValueToRValue)
8674           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8675             if (DRE->getDecl() == OrigDecl)
8676               return;
8677 
8678     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
8679   }
8680 }
8681 
8682 /// AddInitializerToDecl - Adds the initializer Init to the
8683 /// declaration dcl. If DirectInit is true, this is C++ direct
8684 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)8685 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8686                                 bool DirectInit, bool TypeMayContainAuto) {
8687   // If there is no declaration, there was an error parsing it.  Just ignore
8688   // the initializer.
8689   if (!RealDecl || RealDecl->isInvalidDecl()) {
8690     CorrectDelayedTyposInExpr(Init);
8691     return;
8692   }
8693 
8694   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8695     // With declarators parsed the way they are, the parser cannot
8696     // distinguish between a normal initializer and a pure-specifier.
8697     // Thus this grotesque test.
8698     IntegerLiteral *IL;
8699     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8700         Context.getCanonicalType(IL->getType()) == Context.IntTy)
8701       CheckPureMethod(Method, Init->getSourceRange());
8702     else {
8703       Diag(Method->getLocation(), diag::err_member_function_initialization)
8704         << Method->getDeclName() << Init->getSourceRange();
8705       Method->setInvalidDecl();
8706     }
8707     return;
8708   }
8709 
8710   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8711   if (!VDecl) {
8712     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8713     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8714     RealDecl->setInvalidDecl();
8715     return;
8716   }
8717   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8718 
8719   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8720   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8721     // Attempt typo correction early so that the type of the init expression can
8722     // be deduced based on the chosen correction:if the original init contains a
8723     // TypoExpr.
8724     ExprResult Res = CorrectDelayedTyposInExpr(Init);
8725     if (!Res.isUsable()) {
8726       RealDecl->setInvalidDecl();
8727       return;
8728     }
8729     if (Res.get() != Init) {
8730       Init = Res.get();
8731       if (CXXDirectInit)
8732         CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8733     }
8734 
8735     Expr *DeduceInit = Init;
8736     // Initializer could be a C++ direct-initializer. Deduction only works if it
8737     // contains exactly one expression.
8738     if (CXXDirectInit) {
8739       if (CXXDirectInit->getNumExprs() == 0) {
8740         // It isn't possible to write this directly, but it is possible to
8741         // end up in this situation with "auto x(some_pack...);"
8742         Diag(CXXDirectInit->getLocStart(),
8743              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8744                                     : diag::err_auto_var_init_no_expression)
8745           << VDecl->getDeclName() << VDecl->getType()
8746           << VDecl->getSourceRange();
8747         RealDecl->setInvalidDecl();
8748         return;
8749       } else if (CXXDirectInit->getNumExprs() > 1) {
8750         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8751              VDecl->isInitCapture()
8752                  ? diag::err_init_capture_multiple_expressions
8753                  : diag::err_auto_var_init_multiple_expressions)
8754           << VDecl->getDeclName() << VDecl->getType()
8755           << VDecl->getSourceRange();
8756         RealDecl->setInvalidDecl();
8757         return;
8758       } else {
8759         DeduceInit = CXXDirectInit->getExpr(0);
8760         if (isa<InitListExpr>(DeduceInit))
8761           Diag(CXXDirectInit->getLocStart(),
8762                diag::err_auto_var_init_paren_braces)
8763             << VDecl->getDeclName() << VDecl->getType()
8764             << VDecl->getSourceRange();
8765       }
8766     }
8767 
8768     // Expressions default to 'id' when we're in a debugger.
8769     bool DefaultedToAuto = false;
8770     if (getLangOpts().DebuggerCastResultToId &&
8771         Init->getType() == Context.UnknownAnyTy) {
8772       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8773       if (Result.isInvalid()) {
8774         VDecl->setInvalidDecl();
8775         return;
8776       }
8777       Init = Result.get();
8778       DefaultedToAuto = true;
8779     }
8780 
8781     QualType DeducedType;
8782     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8783             DAR_Failed)
8784       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8785     if (DeducedType.isNull()) {
8786       RealDecl->setInvalidDecl();
8787       return;
8788     }
8789     VDecl->setType(DeducedType);
8790     assert(VDecl->isLinkageValid());
8791 
8792     // In ARC, infer lifetime.
8793     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8794       VDecl->setInvalidDecl();
8795 
8796     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8797     // 'id' instead of a specific object type prevents most of our usual checks.
8798     // We only want to warn outside of template instantiations, though:
8799     // inside a template, the 'id' could have come from a parameter.
8800     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8801         DeducedType->isObjCIdType()) {
8802       SourceLocation Loc =
8803           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8804       Diag(Loc, diag::warn_auto_var_is_id)
8805         << VDecl->getDeclName() << DeduceInit->getSourceRange();
8806     }
8807 
8808     // If this is a redeclaration, check that the type we just deduced matches
8809     // the previously declared type.
8810     if (VarDecl *Old = VDecl->getPreviousDecl()) {
8811       // We never need to merge the type, because we cannot form an incomplete
8812       // array of auto, nor deduce such a type.
8813       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8814     }
8815 
8816     // Check the deduced type is valid for a variable declaration.
8817     CheckVariableDeclarationType(VDecl);
8818     if (VDecl->isInvalidDecl())
8819       return;
8820 
8821     // If all looks well, warn if this is a case that will change meaning when
8822     // we implement N3922.
8823     if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
8824       Diag(Init->getLocStart(),
8825            diag::warn_auto_var_direct_list_init)
8826         << FixItHint::CreateInsertion(Init->getLocStart(), "=");
8827     }
8828   }
8829 
8830   // dllimport cannot be used on variable definitions.
8831   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8832     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8833     VDecl->setInvalidDecl();
8834     return;
8835   }
8836 
8837   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8838     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8839     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8840     VDecl->setInvalidDecl();
8841     return;
8842   }
8843 
8844   if (!VDecl->getType()->isDependentType()) {
8845     // A definition must end up with a complete type, which means it must be
8846     // complete with the restriction that an array type might be completed by
8847     // the initializer; note that later code assumes this restriction.
8848     QualType BaseDeclType = VDecl->getType();
8849     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8850       BaseDeclType = Array->getElementType();
8851     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8852                             diag::err_typecheck_decl_incomplete_type)) {
8853       RealDecl->setInvalidDecl();
8854       return;
8855     }
8856 
8857     // The variable can not have an abstract class type.
8858     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8859                                diag::err_abstract_type_in_decl,
8860                                AbstractVariableType))
8861       VDecl->setInvalidDecl();
8862   }
8863 
8864   const VarDecl *Def;
8865   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8866     Diag(VDecl->getLocation(), diag::err_redefinition)
8867       << VDecl->getDeclName();
8868     Diag(Def->getLocation(), diag::note_previous_definition);
8869     VDecl->setInvalidDecl();
8870     return;
8871   }
8872 
8873   const VarDecl *PrevInit = nullptr;
8874   if (getLangOpts().CPlusPlus) {
8875     // C++ [class.static.data]p4
8876     //   If a static data member is of const integral or const
8877     //   enumeration type, its declaration in the class definition can
8878     //   specify a constant-initializer which shall be an integral
8879     //   constant expression (5.19). In that case, the member can appear
8880     //   in integral constant expressions. The member shall still be
8881     //   defined in a namespace scope if it is used in the program and the
8882     //   namespace scope definition shall not contain an initializer.
8883     //
8884     // We already performed a redefinition check above, but for static
8885     // data members we also need to check whether there was an in-class
8886     // declaration with an initializer.
8887     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8888       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8889           << VDecl->getDeclName();
8890       Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8891       return;
8892     }
8893 
8894     if (VDecl->hasLocalStorage())
8895       getCurFunction()->setHasBranchProtectedScope();
8896 
8897     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8898       VDecl->setInvalidDecl();
8899       return;
8900     }
8901   }
8902 
8903   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8904   // a kernel function cannot be initialized."
8905   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8906     Diag(VDecl->getLocation(), diag::err_local_cant_init);
8907     VDecl->setInvalidDecl();
8908     return;
8909   }
8910 
8911   // Get the decls type and save a reference for later, since
8912   // CheckInitializerTypes may change it.
8913   QualType DclT = VDecl->getType(), SavT = DclT;
8914 
8915   // Expressions default to 'id' when we're in a debugger
8916   // and we are assigning it to a variable of Objective-C pointer type.
8917   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8918       Init->getType() == Context.UnknownAnyTy) {
8919     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8920     if (Result.isInvalid()) {
8921       VDecl->setInvalidDecl();
8922       return;
8923     }
8924     Init = Result.get();
8925   }
8926 
8927   // Perform the initialization.
8928   if (!VDecl->isInvalidDecl()) {
8929     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8930     InitializationKind Kind
8931       = DirectInit ?
8932           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8933                                                            Init->getLocStart(),
8934                                                            Init->getLocEnd())
8935                         : InitializationKind::CreateDirectList(
8936                                                           VDecl->getLocation())
8937                    : InitializationKind::CreateCopy(VDecl->getLocation(),
8938                                                     Init->getLocStart());
8939 
8940     MultiExprArg Args = Init;
8941     if (CXXDirectInit)
8942       Args = MultiExprArg(CXXDirectInit->getExprs(),
8943                           CXXDirectInit->getNumExprs());
8944 
8945     // Try to correct any TypoExprs in the initialization arguments.
8946     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
8947       ExprResult Res =
8948           CorrectDelayedTyposInExpr(Args[Idx], [this, Entity, Kind](Expr *E) {
8949             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
8950             return Init.Failed() ? ExprError() : E;
8951           });
8952       if (Res.isInvalid()) {
8953         VDecl->setInvalidDecl();
8954       } else if (Res.get() != Args[Idx]) {
8955         Args[Idx] = Res.get();
8956       }
8957     }
8958     if (VDecl->isInvalidDecl())
8959       return;
8960 
8961     InitializationSequence InitSeq(*this, Entity, Kind, Args);
8962     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8963     if (Result.isInvalid()) {
8964       VDecl->setInvalidDecl();
8965       return;
8966     }
8967 
8968     Init = Result.getAs<Expr>();
8969   }
8970 
8971   // Check for self-references within variable initializers.
8972   // Variables declared within a function/method body (except for references)
8973   // are handled by a dataflow analysis.
8974   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8975       VDecl->getType()->isReferenceType()) {
8976     CheckSelfReference(*this, RealDecl, Init, DirectInit);
8977   }
8978 
8979   // If the type changed, it means we had an incomplete type that was
8980   // completed by the initializer. For example:
8981   //   int ary[] = { 1, 3, 5 };
8982   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8983   if (!VDecl->isInvalidDecl() && (DclT != SavT))
8984     VDecl->setType(DclT);
8985 
8986   if (!VDecl->isInvalidDecl()) {
8987     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8988 
8989     if (VDecl->hasAttr<BlocksAttr>())
8990       checkRetainCycles(VDecl, Init);
8991 
8992     // It is safe to assign a weak reference into a strong variable.
8993     // Although this code can still have problems:
8994     //   id x = self.weakProp;
8995     //   id y = self.weakProp;
8996     // we do not warn to warn spuriously when 'x' and 'y' are on separate
8997     // paths through the function. This should be revisited if
8998     // -Wrepeated-use-of-weak is made flow-sensitive.
8999     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9000         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9001                          Init->getLocStart()))
9002         getCurFunction()->markSafeWeakUse(Init);
9003   }
9004 
9005   // The initialization is usually a full-expression.
9006   //
9007   // FIXME: If this is a braced initialization of an aggregate, it is not
9008   // an expression, and each individual field initializer is a separate
9009   // full-expression. For instance, in:
9010   //
9011   //   struct Temp { ~Temp(); };
9012   //   struct S { S(Temp); };
9013   //   struct T { S a, b; } t = { Temp(), Temp() }
9014   //
9015   // we should destroy the first Temp before constructing the second.
9016   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9017                                           false,
9018                                           VDecl->isConstexpr());
9019   if (Result.isInvalid()) {
9020     VDecl->setInvalidDecl();
9021     return;
9022   }
9023   Init = Result.get();
9024 
9025   // Attach the initializer to the decl.
9026   VDecl->setInit(Init);
9027 
9028   if (VDecl->isLocalVarDecl()) {
9029     // C99 6.7.8p4: All the expressions in an initializer for an object that has
9030     // static storage duration shall be constant expressions or string literals.
9031     // C++ does not have this restriction.
9032     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9033       const Expr *Culprit;
9034       if (VDecl->getStorageClass() == SC_Static)
9035         CheckForConstantInitializer(Init, DclT);
9036       // C89 is stricter than C99 for non-static aggregate types.
9037       // C89 6.5.7p3: All the expressions [...] in an initializer list
9038       // for an object that has aggregate or union type shall be
9039       // constant expressions.
9040       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9041                isa<InitListExpr>(Init) &&
9042                !Init->isConstantInitializer(Context, false, &Culprit))
9043         Diag(Culprit->getExprLoc(),
9044              diag::ext_aggregate_init_not_constant)
9045           << Culprit->getSourceRange();
9046     }
9047   } else if (VDecl->isStaticDataMember() &&
9048              VDecl->getLexicalDeclContext()->isRecord()) {
9049     // This is an in-class initialization for a static data member, e.g.,
9050     //
9051     // struct S {
9052     //   static const int value = 17;
9053     // };
9054 
9055     // C++ [class.mem]p4:
9056     //   A member-declarator can contain a constant-initializer only
9057     //   if it declares a static member (9.4) of const integral or
9058     //   const enumeration type, see 9.4.2.
9059     //
9060     // C++11 [class.static.data]p3:
9061     //   If a non-volatile const static data member is of integral or
9062     //   enumeration type, its declaration in the class definition can
9063     //   specify a brace-or-equal-initializer in which every initalizer-clause
9064     //   that is an assignment-expression is a constant expression. A static
9065     //   data member of literal type can be declared in the class definition
9066     //   with the constexpr specifier; if so, its declaration shall specify a
9067     //   brace-or-equal-initializer in which every initializer-clause that is
9068     //   an assignment-expression is a constant expression.
9069 
9070     // Do nothing on dependent types.
9071     if (DclT->isDependentType()) {
9072 
9073     // Allow any 'static constexpr' members, whether or not they are of literal
9074     // type. We separately check that every constexpr variable is of literal
9075     // type.
9076     } else if (VDecl->isConstexpr()) {
9077 
9078     // Require constness.
9079     } else if (!DclT.isConstQualified()) {
9080       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9081         << Init->getSourceRange();
9082       VDecl->setInvalidDecl();
9083 
9084     // We allow integer constant expressions in all cases.
9085     } else if (DclT->isIntegralOrEnumerationType()) {
9086       // Check whether the expression is a constant expression.
9087       SourceLocation Loc;
9088       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9089         // In C++11, a non-constexpr const static data member with an
9090         // in-class initializer cannot be volatile.
9091         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9092       else if (Init->isValueDependent())
9093         ; // Nothing to check.
9094       else if (Init->isIntegerConstantExpr(Context, &Loc))
9095         ; // Ok, it's an ICE!
9096       else if (Init->isEvaluatable(Context)) {
9097         // If we can constant fold the initializer through heroics, accept it,
9098         // but report this as a use of an extension for -pedantic.
9099         Diag(Loc, diag::ext_in_class_initializer_non_constant)
9100           << Init->getSourceRange();
9101       } else {
9102         // Otherwise, this is some crazy unknown case.  Report the issue at the
9103         // location provided by the isIntegerConstantExpr failed check.
9104         Diag(Loc, diag::err_in_class_initializer_non_constant)
9105           << Init->getSourceRange();
9106         VDecl->setInvalidDecl();
9107       }
9108 
9109     // We allow foldable floating-point constants as an extension.
9110     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9111       // In C++98, this is a GNU extension. In C++11, it is not, but we support
9112       // it anyway and provide a fixit to add the 'constexpr'.
9113       if (getLangOpts().CPlusPlus11) {
9114         Diag(VDecl->getLocation(),
9115              diag::ext_in_class_initializer_float_type_cxx11)
9116             << DclT << Init->getSourceRange();
9117         Diag(VDecl->getLocStart(),
9118              diag::note_in_class_initializer_float_type_cxx11)
9119             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9120       } else {
9121         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9122           << DclT << Init->getSourceRange();
9123 
9124         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9125           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9126             << Init->getSourceRange();
9127           VDecl->setInvalidDecl();
9128         }
9129       }
9130 
9131     // Suggest adding 'constexpr' in C++11 for literal types.
9132     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9133       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9134         << DclT << Init->getSourceRange()
9135         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9136       VDecl->setConstexpr(true);
9137 
9138     } else {
9139       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9140         << DclT << Init->getSourceRange();
9141       VDecl->setInvalidDecl();
9142     }
9143   } else if (VDecl->isFileVarDecl()) {
9144     if (VDecl->getStorageClass() == SC_Extern &&
9145         (!getLangOpts().CPlusPlus ||
9146          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9147            VDecl->isExternC())) &&
9148         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9149       Diag(VDecl->getLocation(), diag::warn_extern_init);
9150 
9151     // C99 6.7.8p4. All file scoped initializers need to be constant.
9152     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9153       CheckForConstantInitializer(Init, DclT);
9154   }
9155 
9156   // We will represent direct-initialization similarly to copy-initialization:
9157   //    int x(1);  -as-> int x = 1;
9158   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9159   //
9160   // Clients that want to distinguish between the two forms, can check for
9161   // direct initializer using VarDecl::getInitStyle().
9162   // A major benefit is that clients that don't particularly care about which
9163   // exactly form was it (like the CodeGen) can handle both cases without
9164   // special case code.
9165 
9166   // C++ 8.5p11:
9167   // The form of initialization (using parentheses or '=') is generally
9168   // insignificant, but does matter when the entity being initialized has a
9169   // class type.
9170   if (CXXDirectInit) {
9171     assert(DirectInit && "Call-style initializer must be direct init.");
9172     VDecl->setInitStyle(VarDecl::CallInit);
9173   } else if (DirectInit) {
9174     // This must be list-initialization. No other way is direct-initialization.
9175     VDecl->setInitStyle(VarDecl::ListInit);
9176   }
9177 
9178   CheckCompleteVariableDeclaration(VDecl);
9179 }
9180 
9181 /// ActOnInitializerError - Given that there was an error parsing an
9182 /// initializer for the given declaration, try to return to some form
9183 /// of sanity.
ActOnInitializerError(Decl * D)9184 void Sema::ActOnInitializerError(Decl *D) {
9185   // Our main concern here is re-establishing invariants like "a
9186   // variable's type is either dependent or complete".
9187   if (!D || D->isInvalidDecl()) return;
9188 
9189   VarDecl *VD = dyn_cast<VarDecl>(D);
9190   if (!VD) return;
9191 
9192   // Auto types are meaningless if we can't make sense of the initializer.
9193   if (ParsingInitForAutoVars.count(D)) {
9194     D->setInvalidDecl();
9195     return;
9196   }
9197 
9198   QualType Ty = VD->getType();
9199   if (Ty->isDependentType()) return;
9200 
9201   // Require a complete type.
9202   if (RequireCompleteType(VD->getLocation(),
9203                           Context.getBaseElementType(Ty),
9204                           diag::err_typecheck_decl_incomplete_type)) {
9205     VD->setInvalidDecl();
9206     return;
9207   }
9208 
9209   // Require a non-abstract type.
9210   if (RequireNonAbstractType(VD->getLocation(), Ty,
9211                              diag::err_abstract_type_in_decl,
9212                              AbstractVariableType)) {
9213     VD->setInvalidDecl();
9214     return;
9215   }
9216 
9217   // Don't bother complaining about constructors or destructors,
9218   // though.
9219 }
9220 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)9221 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9222                                   bool TypeMayContainAuto) {
9223   // If there is no declaration, there was an error parsing it. Just ignore it.
9224   if (!RealDecl)
9225     return;
9226 
9227   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9228     QualType Type = Var->getType();
9229 
9230     // C++11 [dcl.spec.auto]p3
9231     if (TypeMayContainAuto && Type->getContainedAutoType()) {
9232       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9233         << Var->getDeclName() << Type;
9234       Var->setInvalidDecl();
9235       return;
9236     }
9237 
9238     // C++11 [class.static.data]p3: A static data member can be declared with
9239     // the constexpr specifier; if so, its declaration shall specify
9240     // a brace-or-equal-initializer.
9241     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9242     // the definition of a variable [...] or the declaration of a static data
9243     // member.
9244     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9245       if (Var->isStaticDataMember())
9246         Diag(Var->getLocation(),
9247              diag::err_constexpr_static_mem_var_requires_init)
9248           << Var->getDeclName();
9249       else
9250         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9251       Var->setInvalidDecl();
9252       return;
9253     }
9254 
9255     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9256     // be initialized.
9257     if (!Var->isInvalidDecl() &&
9258         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9259         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9260       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9261       Var->setInvalidDecl();
9262       return;
9263     }
9264 
9265     switch (Var->isThisDeclarationADefinition()) {
9266     case VarDecl::Definition:
9267       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9268         break;
9269 
9270       // We have an out-of-line definition of a static data member
9271       // that has an in-class initializer, so we type-check this like
9272       // a declaration.
9273       //
9274       // Fall through
9275 
9276     case VarDecl::DeclarationOnly:
9277       // It's only a declaration.
9278 
9279       // Block scope. C99 6.7p7: If an identifier for an object is
9280       // declared with no linkage (C99 6.2.2p6), the type for the
9281       // object shall be complete.
9282       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9283           !Var->hasLinkage() && !Var->isInvalidDecl() &&
9284           RequireCompleteType(Var->getLocation(), Type,
9285                               diag::err_typecheck_decl_incomplete_type))
9286         Var->setInvalidDecl();
9287 
9288       // Make sure that the type is not abstract.
9289       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9290           RequireNonAbstractType(Var->getLocation(), Type,
9291                                  diag::err_abstract_type_in_decl,
9292                                  AbstractVariableType))
9293         Var->setInvalidDecl();
9294       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9295           Var->getStorageClass() == SC_PrivateExtern) {
9296         Diag(Var->getLocation(), diag::warn_private_extern);
9297         Diag(Var->getLocation(), diag::note_private_extern);
9298       }
9299 
9300       return;
9301 
9302     case VarDecl::TentativeDefinition:
9303       // File scope. C99 6.9.2p2: A declaration of an identifier for an
9304       // object that has file scope without an initializer, and without a
9305       // storage-class specifier or with the storage-class specifier "static",
9306       // constitutes a tentative definition. Note: A tentative definition with
9307       // external linkage is valid (C99 6.2.2p5).
9308       if (!Var->isInvalidDecl()) {
9309         if (const IncompleteArrayType *ArrayT
9310                                     = Context.getAsIncompleteArrayType(Type)) {
9311           if (RequireCompleteType(Var->getLocation(),
9312                                   ArrayT->getElementType(),
9313                                   diag::err_illegal_decl_array_incomplete_type))
9314             Var->setInvalidDecl();
9315         } else if (Var->getStorageClass() == SC_Static) {
9316           // C99 6.9.2p3: If the declaration of an identifier for an object is
9317           // a tentative definition and has internal linkage (C99 6.2.2p3), the
9318           // declared type shall not be an incomplete type.
9319           // NOTE: code such as the following
9320           //     static struct s;
9321           //     struct s { int a; };
9322           // is accepted by gcc. Hence here we issue a warning instead of
9323           // an error and we do not invalidate the static declaration.
9324           // NOTE: to avoid multiple warnings, only check the first declaration.
9325           if (Var->isFirstDecl())
9326             RequireCompleteType(Var->getLocation(), Type,
9327                                 diag::ext_typecheck_decl_incomplete_type);
9328         }
9329       }
9330 
9331       // Record the tentative definition; we're done.
9332       if (!Var->isInvalidDecl())
9333         TentativeDefinitions.push_back(Var);
9334       return;
9335     }
9336 
9337     // Provide a specific diagnostic for uninitialized variable
9338     // definitions with incomplete array type.
9339     if (Type->isIncompleteArrayType()) {
9340       Diag(Var->getLocation(),
9341            diag::err_typecheck_incomplete_array_needs_initializer);
9342       Var->setInvalidDecl();
9343       return;
9344     }
9345 
9346     // Provide a specific diagnostic for uninitialized variable
9347     // definitions with reference type.
9348     if (Type->isReferenceType()) {
9349       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9350         << Var->getDeclName()
9351         << SourceRange(Var->getLocation(), Var->getLocation());
9352       Var->setInvalidDecl();
9353       return;
9354     }
9355 
9356     // Do not attempt to type-check the default initializer for a
9357     // variable with dependent type.
9358     if (Type->isDependentType())
9359       return;
9360 
9361     if (Var->isInvalidDecl())
9362       return;
9363 
9364     if (!Var->hasAttr<AliasAttr>()) {
9365       if (RequireCompleteType(Var->getLocation(),
9366                               Context.getBaseElementType(Type),
9367                               diag::err_typecheck_decl_incomplete_type)) {
9368         Var->setInvalidDecl();
9369         return;
9370       }
9371     } else {
9372       return;
9373     }
9374 
9375     // The variable can not have an abstract class type.
9376     if (RequireNonAbstractType(Var->getLocation(), Type,
9377                                diag::err_abstract_type_in_decl,
9378                                AbstractVariableType)) {
9379       Var->setInvalidDecl();
9380       return;
9381     }
9382 
9383     // Check for jumps past the implicit initializer.  C++0x
9384     // clarifies that this applies to a "variable with automatic
9385     // storage duration", not a "local variable".
9386     // C++11 [stmt.dcl]p3
9387     //   A program that jumps from a point where a variable with automatic
9388     //   storage duration is not in scope to a point where it is in scope is
9389     //   ill-formed unless the variable has scalar type, class type with a
9390     //   trivial default constructor and a trivial destructor, a cv-qualified
9391     //   version of one of these types, or an array of one of the preceding
9392     //   types and is declared without an initializer.
9393     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9394       if (const RecordType *Record
9395             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9396         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9397         // Mark the function for further checking even if the looser rules of
9398         // C++11 do not require such checks, so that we can diagnose
9399         // incompatibilities with C++98.
9400         if (!CXXRecord->isPOD())
9401           getCurFunction()->setHasBranchProtectedScope();
9402       }
9403     }
9404 
9405     // C++03 [dcl.init]p9:
9406     //   If no initializer is specified for an object, and the
9407     //   object is of (possibly cv-qualified) non-POD class type (or
9408     //   array thereof), the object shall be default-initialized; if
9409     //   the object is of const-qualified type, the underlying class
9410     //   type shall have a user-declared default
9411     //   constructor. Otherwise, if no initializer is specified for
9412     //   a non- static object, the object and its subobjects, if
9413     //   any, have an indeterminate initial value); if the object
9414     //   or any of its subobjects are of const-qualified type, the
9415     //   program is ill-formed.
9416     // C++0x [dcl.init]p11:
9417     //   If no initializer is specified for an object, the object is
9418     //   default-initialized; [...].
9419     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9420     InitializationKind Kind
9421       = InitializationKind::CreateDefault(Var->getLocation());
9422 
9423     InitializationSequence InitSeq(*this, Entity, Kind, None);
9424     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9425     if (Init.isInvalid())
9426       Var->setInvalidDecl();
9427     else if (Init.get()) {
9428       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9429       // This is important for template substitution.
9430       Var->setInitStyle(VarDecl::CallInit);
9431     }
9432 
9433     CheckCompleteVariableDeclaration(Var);
9434   }
9435 }
9436 
ActOnCXXForRangeDecl(Decl * D)9437 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9438   VarDecl *VD = dyn_cast<VarDecl>(D);
9439   if (!VD) {
9440     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9441     D->setInvalidDecl();
9442     return;
9443   }
9444 
9445   VD->setCXXForRangeDecl(true);
9446 
9447   // for-range-declaration cannot be given a storage class specifier.
9448   int Error = -1;
9449   switch (VD->getStorageClass()) {
9450   case SC_None:
9451     break;
9452   case SC_Extern:
9453     Error = 0;
9454     break;
9455   case SC_Static:
9456     Error = 1;
9457     break;
9458   case SC_PrivateExtern:
9459     Error = 2;
9460     break;
9461   case SC_Auto:
9462     Error = 3;
9463     break;
9464   case SC_Register:
9465     Error = 4;
9466     break;
9467   case SC_OpenCLWorkGroupLocal:
9468     llvm_unreachable("Unexpected storage class");
9469   }
9470   if (Error != -1) {
9471     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9472       << VD->getDeclName() << Error;
9473     D->setInvalidDecl();
9474   }
9475 }
9476 
9477 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9478 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9479                                  IdentifierInfo *Ident,
9480                                  ParsedAttributes &Attrs,
9481                                  SourceLocation AttrEnd) {
9482   // C++1y [stmt.iter]p1:
9483   //   A range-based for statement of the form
9484   //      for ( for-range-identifier : for-range-initializer ) statement
9485   //   is equivalent to
9486   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9487   DeclSpec DS(Attrs.getPool().getFactory());
9488 
9489   const char *PrevSpec;
9490   unsigned DiagID;
9491   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9492                      getPrintingPolicy());
9493 
9494   Declarator D(DS, Declarator::ForContext);
9495   D.SetIdentifier(Ident, IdentLoc);
9496   D.takeAttributes(Attrs, AttrEnd);
9497 
9498   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9499   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9500                 EmptyAttrs, IdentLoc);
9501   Decl *Var = ActOnDeclarator(S, D);
9502   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9503   FinalizeDeclaration(Var);
9504   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9505                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
9506 }
9507 
CheckCompleteVariableDeclaration(VarDecl * var)9508 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9509   if (var->isInvalidDecl()) return;
9510 
9511   // In ARC, don't allow jumps past the implicit initialization of a
9512   // local retaining variable.
9513   if (getLangOpts().ObjCAutoRefCount &&
9514       var->hasLocalStorage()) {
9515     switch (var->getType().getObjCLifetime()) {
9516     case Qualifiers::OCL_None:
9517     case Qualifiers::OCL_ExplicitNone:
9518     case Qualifiers::OCL_Autoreleasing:
9519       break;
9520 
9521     case Qualifiers::OCL_Weak:
9522     case Qualifiers::OCL_Strong:
9523       getCurFunction()->setHasBranchProtectedScope();
9524       break;
9525     }
9526   }
9527 
9528   // Warn about externally-visible variables being defined without a
9529   // prior declaration.  We only want to do this for global
9530   // declarations, but we also specifically need to avoid doing it for
9531   // class members because the linkage of an anonymous class can
9532   // change if it's later given a typedef name.
9533   if (var->isThisDeclarationADefinition() &&
9534       var->getDeclContext()->getRedeclContext()->isFileContext() &&
9535       var->isExternallyVisible() && var->hasLinkage() &&
9536       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9537                                   var->getLocation())) {
9538     // Find a previous declaration that's not a definition.
9539     VarDecl *prev = var->getPreviousDecl();
9540     while (prev && prev->isThisDeclarationADefinition())
9541       prev = prev->getPreviousDecl();
9542 
9543     if (!prev)
9544       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9545   }
9546 
9547   if (var->getTLSKind() == VarDecl::TLS_Static) {
9548     const Expr *Culprit;
9549     if (var->getType().isDestructedType()) {
9550       // GNU C++98 edits for __thread, [basic.start.term]p3:
9551       //   The type of an object with thread storage duration shall not
9552       //   have a non-trivial destructor.
9553       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9554       if (getLangOpts().CPlusPlus11)
9555         Diag(var->getLocation(), diag::note_use_thread_local);
9556     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9557                !var->getInit()->isConstantInitializer(
9558                    Context, var->getType()->isReferenceType(), &Culprit)) {
9559       // GNU C++98 edits for __thread, [basic.start.init]p4:
9560       //   An object of thread storage duration shall not require dynamic
9561       //   initialization.
9562       // FIXME: Need strict checking here.
9563       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9564         << Culprit->getSourceRange();
9565       if (getLangOpts().CPlusPlus11)
9566         Diag(var->getLocation(), diag::note_use_thread_local);
9567     }
9568 
9569   }
9570 
9571   // Apply section attributes and pragmas to global variables.
9572   bool GlobalStorage = var->hasGlobalStorage();
9573   if (GlobalStorage && var->isThisDeclarationADefinition() &&
9574       ActiveTemplateInstantiations.empty()) {
9575     PragmaStack<StringLiteral *> *Stack = nullptr;
9576     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
9577     if (var->getType().isConstQualified())
9578       Stack = &ConstSegStack;
9579     else if (!var->getInit()) {
9580       Stack = &BSSSegStack;
9581       SectionFlags |= ASTContext::PSF_Write;
9582     } else {
9583       Stack = &DataSegStack;
9584       SectionFlags |= ASTContext::PSF_Write;
9585     }
9586     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
9587       var->addAttr(SectionAttr::CreateImplicit(
9588           Context, SectionAttr::Declspec_allocate,
9589           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
9590     }
9591     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9592       if (UnifySection(SA->getName(), SectionFlags, var))
9593         var->dropAttr<SectionAttr>();
9594 
9595     // Apply the init_seg attribute if this has an initializer.  If the
9596     // initializer turns out to not be dynamic, we'll end up ignoring this
9597     // attribute.
9598     if (CurInitSeg && var->getInit())
9599       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
9600                                                CurInitSegLoc));
9601   }
9602 
9603   // All the following checks are C++ only.
9604   if (!getLangOpts().CPlusPlus) return;
9605 
9606   QualType type = var->getType();
9607   if (type->isDependentType()) return;
9608 
9609   // __block variables might require us to capture a copy-initializer.
9610   if (var->hasAttr<BlocksAttr>()) {
9611     // It's currently invalid to ever have a __block variable with an
9612     // array type; should we diagnose that here?
9613 
9614     // Regardless, we don't want to ignore array nesting when
9615     // constructing this copy.
9616     if (type->isStructureOrClassType()) {
9617       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9618       SourceLocation poi = var->getLocation();
9619       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9620       ExprResult result
9621         = PerformMoveOrCopyInitialization(
9622             InitializedEntity::InitializeBlock(poi, type, false),
9623             var, var->getType(), varRef, /*AllowNRVO=*/true);
9624       if (!result.isInvalid()) {
9625         result = MaybeCreateExprWithCleanups(result);
9626         Expr *init = result.getAs<Expr>();
9627         Context.setBlockVarCopyInits(var, init);
9628       }
9629     }
9630   }
9631 
9632   Expr *Init = var->getInit();
9633   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
9634   QualType baseType = Context.getBaseElementType(type);
9635 
9636   if (!var->getDeclContext()->isDependentContext() &&
9637       Init && !Init->isValueDependent()) {
9638     if (IsGlobal && !var->isConstexpr() &&
9639         !getDiagnostics().isIgnored(diag::warn_global_constructor,
9640                                     var->getLocation())) {
9641       // Warn about globals which don't have a constant initializer.  Don't
9642       // warn about globals with a non-trivial destructor because we already
9643       // warned about them.
9644       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9645       if (!(RD && !RD->hasTrivialDestructor()) &&
9646           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9647         Diag(var->getLocation(), diag::warn_global_constructor)
9648           << Init->getSourceRange();
9649     }
9650 
9651     if (var->isConstexpr()) {
9652       SmallVector<PartialDiagnosticAt, 8> Notes;
9653       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9654         SourceLocation DiagLoc = var->getLocation();
9655         // If the note doesn't add any useful information other than a source
9656         // location, fold it into the primary diagnostic.
9657         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9658               diag::note_invalid_subexpr_in_const_expr) {
9659           DiagLoc = Notes[0].first;
9660           Notes.clear();
9661         }
9662         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9663           << var << Init->getSourceRange();
9664         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9665           Diag(Notes[I].first, Notes[I].second);
9666       }
9667     } else if (var->isUsableInConstantExpressions(Context)) {
9668       // Check whether the initializer of a const variable of integral or
9669       // enumeration type is an ICE now, since we can't tell whether it was
9670       // initialized by a constant expression if we check later.
9671       var->checkInitIsICE();
9672     }
9673   }
9674 
9675   // Require the destructor.
9676   if (const RecordType *recordType = baseType->getAs<RecordType>())
9677     FinalizeVarWithDestructor(var, recordType);
9678 }
9679 
9680 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9681 /// any semantic actions necessary after any initializer has been attached.
9682 void
FinalizeDeclaration(Decl * ThisDecl)9683 Sema::FinalizeDeclaration(Decl *ThisDecl) {
9684   // Note that we are no longer parsing the initializer for this declaration.
9685   ParsingInitForAutoVars.erase(ThisDecl);
9686 
9687   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9688   if (!VD)
9689     return;
9690 
9691   checkAttributesAfterMerging(*this, *VD);
9692 
9693   // Static locals inherit dll attributes from their function.
9694   if (VD->isStaticLocal()) {
9695     if (FunctionDecl *FD =
9696             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9697       if (Attr *A = getDLLAttr(FD)) {
9698         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9699         NewAttr->setInherited(true);
9700         VD->addAttr(NewAttr);
9701       }
9702     }
9703   }
9704 
9705   // Grab the dllimport or dllexport attribute off of the VarDecl.
9706   const InheritableAttr *DLLAttr = getDLLAttr(VD);
9707 
9708   // Imported static data members cannot be defined out-of-line.
9709   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
9710     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9711         VD->isThisDeclarationADefinition()) {
9712       // We allow definitions of dllimport class template static data members
9713       // with a warning.
9714       CXXRecordDecl *Context =
9715         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9716       bool IsClassTemplateMember =
9717           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9718           Context->getDescribedClassTemplate();
9719 
9720       Diag(VD->getLocation(),
9721            IsClassTemplateMember
9722                ? diag::warn_attribute_dllimport_static_field_definition
9723                : diag::err_attribute_dllimport_static_field_definition);
9724       Diag(IA->getLocation(), diag::note_attribute);
9725       if (!IsClassTemplateMember)
9726         VD->setInvalidDecl();
9727     }
9728   }
9729 
9730   // dllimport/dllexport variables cannot be thread local, their TLS index
9731   // isn't exported with the variable.
9732   if (DLLAttr && VD->getTLSKind()) {
9733     Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
9734                                                                   << DLLAttr;
9735     VD->setInvalidDecl();
9736   }
9737 
9738   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9739     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9740       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9741       VD->dropAttr<UsedAttr>();
9742     }
9743   }
9744 
9745   const DeclContext *DC = VD->getDeclContext();
9746   // If there's a #pragma GCC visibility in scope, and this isn't a class
9747   // member, set the visibility of this variable.
9748   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9749     AddPushedVisibilityAttribute(VD);
9750 
9751   // FIXME: Warn on unused templates.
9752   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9753       !isa<VarTemplatePartialSpecializationDecl>(VD))
9754     MarkUnusedFileScopedDecl(VD);
9755 
9756   // Now we have parsed the initializer and can update the table of magic
9757   // tag values.
9758   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9759       !VD->getType()->isIntegralOrEnumerationType())
9760     return;
9761 
9762   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9763     const Expr *MagicValueExpr = VD->getInit();
9764     if (!MagicValueExpr) {
9765       continue;
9766     }
9767     llvm::APSInt MagicValueInt;
9768     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9769       Diag(I->getRange().getBegin(),
9770            diag::err_type_tag_for_datatype_not_ice)
9771         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9772       continue;
9773     }
9774     if (MagicValueInt.getActiveBits() > 64) {
9775       Diag(I->getRange().getBegin(),
9776            diag::err_type_tag_for_datatype_too_large)
9777         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9778       continue;
9779     }
9780     uint64_t MagicValue = MagicValueInt.getZExtValue();
9781     RegisterTypeTagForDatatype(I->getArgumentKind(),
9782                                MagicValue,
9783                                I->getMatchingCType(),
9784                                I->getLayoutCompatible(),
9785                                I->getMustBeNull());
9786   }
9787 }
9788 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)9789 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9790                                                    ArrayRef<Decl *> Group) {
9791   SmallVector<Decl*, 8> Decls;
9792 
9793   if (DS.isTypeSpecOwned())
9794     Decls.push_back(DS.getRepAsDecl());
9795 
9796   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9797   for (unsigned i = 0, e = Group.size(); i != e; ++i)
9798     if (Decl *D = Group[i]) {
9799       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9800         if (!FirstDeclaratorInGroup)
9801           FirstDeclaratorInGroup = DD;
9802       Decls.push_back(D);
9803     }
9804 
9805   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9806     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9807       handleTagNumbering(Tag, S);
9808       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9809         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9810     }
9811   }
9812 
9813   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9814 }
9815 
9816 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
9817 /// group, performing any necessary semantic checking.
9818 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)9819 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9820                            bool TypeMayContainAuto) {
9821   // C++0x [dcl.spec.auto]p7:
9822   //   If the type deduced for the template parameter U is not the same in each
9823   //   deduction, the program is ill-formed.
9824   // FIXME: When initializer-list support is added, a distinction is needed
9825   // between the deduced type U and the deduced type which 'auto' stands for.
9826   //   auto a = 0, b = { 1, 2, 3 };
9827   // is legal because the deduced type U is 'int' in both cases.
9828   if (TypeMayContainAuto && Group.size() > 1) {
9829     QualType Deduced;
9830     CanQualType DeducedCanon;
9831     VarDecl *DeducedDecl = nullptr;
9832     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9833       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9834         AutoType *AT = D->getType()->getContainedAutoType();
9835         // Don't reissue diagnostics when instantiating a template.
9836         if (AT && D->isInvalidDecl())
9837           break;
9838         QualType U = AT ? AT->getDeducedType() : QualType();
9839         if (!U.isNull()) {
9840           CanQualType UCanon = Context.getCanonicalType(U);
9841           if (Deduced.isNull()) {
9842             Deduced = U;
9843             DeducedCanon = UCanon;
9844             DeducedDecl = D;
9845           } else if (DeducedCanon != UCanon) {
9846             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9847                  diag::err_auto_different_deductions)
9848               << (AT->isDecltypeAuto() ? 1 : 0)
9849               << Deduced << DeducedDecl->getDeclName()
9850               << U << D->getDeclName()
9851               << DeducedDecl->getInit()->getSourceRange()
9852               << D->getInit()->getSourceRange();
9853             D->setInvalidDecl();
9854             break;
9855           }
9856         }
9857       }
9858     }
9859   }
9860 
9861   ActOnDocumentableDecls(Group);
9862 
9863   return DeclGroupPtrTy::make(
9864       DeclGroupRef::Create(Context, Group.data(), Group.size()));
9865 }
9866 
ActOnDocumentableDecl(Decl * D)9867 void Sema::ActOnDocumentableDecl(Decl *D) {
9868   ActOnDocumentableDecls(D);
9869 }
9870 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)9871 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9872   // Don't parse the comment if Doxygen diagnostics are ignored.
9873   if (Group.empty() || !Group[0])
9874     return;
9875 
9876   if (Diags.isIgnored(diag::warn_doc_param_not_found,
9877                       Group[0]->getLocation()) &&
9878       Diags.isIgnored(diag::warn_unknown_comment_command_name,
9879                       Group[0]->getLocation()))
9880     return;
9881 
9882   if (Group.size() >= 2) {
9883     // This is a decl group.  Normally it will contain only declarations
9884     // produced from declarator list.  But in case we have any definitions or
9885     // additional declaration references:
9886     //   'typedef struct S {} S;'
9887     //   'typedef struct S *S;'
9888     //   'struct S *pS;'
9889     // FinalizeDeclaratorGroup adds these as separate declarations.
9890     Decl *MaybeTagDecl = Group[0];
9891     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9892       Group = Group.slice(1);
9893     }
9894   }
9895 
9896   // See if there are any new comments that are not attached to a decl.
9897   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9898   if (!Comments.empty() &&
9899       !Comments.back()->isAttached()) {
9900     // There is at least one comment that not attached to a decl.
9901     // Maybe it should be attached to one of these decls?
9902     //
9903     // Note that this way we pick up not only comments that precede the
9904     // declaration, but also comments that *follow* the declaration -- thanks to
9905     // the lookahead in the lexer: we've consumed the semicolon and looked
9906     // ahead through comments.
9907     for (unsigned i = 0, e = Group.size(); i != e; ++i)
9908       Context.getCommentForDecl(Group[i], &PP);
9909   }
9910 }
9911 
9912 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9913 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)9914 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9915   const DeclSpec &DS = D.getDeclSpec();
9916 
9917   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9918 
9919   // C++03 [dcl.stc]p2 also permits 'auto'.
9920   StorageClass SC = SC_None;
9921   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9922     SC = SC_Register;
9923   } else if (getLangOpts().CPlusPlus &&
9924              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9925     SC = SC_Auto;
9926   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9927     Diag(DS.getStorageClassSpecLoc(),
9928          diag::err_invalid_storage_class_in_func_decl);
9929     D.getMutableDeclSpec().ClearStorageClassSpecs();
9930   }
9931 
9932   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9933     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9934       << DeclSpec::getSpecifierName(TSCS);
9935   if (DS.isConstexprSpecified())
9936     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9937       << 0;
9938 
9939   DiagnoseFunctionSpecifiers(DS);
9940 
9941   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9942   QualType parmDeclType = TInfo->getType();
9943 
9944   if (getLangOpts().CPlusPlus) {
9945     // Check that there are no default arguments inside the type of this
9946     // parameter.
9947     CheckExtraCXXDefaultArguments(D);
9948 
9949     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9950     if (D.getCXXScopeSpec().isSet()) {
9951       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9952         << D.getCXXScopeSpec().getRange();
9953       D.getCXXScopeSpec().clear();
9954     }
9955   }
9956 
9957   // Ensure we have a valid name
9958   IdentifierInfo *II = nullptr;
9959   if (D.hasName()) {
9960     II = D.getIdentifier();
9961     if (!II) {
9962       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9963         << GetNameForDeclarator(D).getName();
9964       D.setInvalidType(true);
9965     }
9966   }
9967 
9968   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9969   if (II) {
9970     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9971                    ForRedeclaration);
9972     LookupName(R, S);
9973     if (R.isSingleResult()) {
9974       NamedDecl *PrevDecl = R.getFoundDecl();
9975       if (PrevDecl->isTemplateParameter()) {
9976         // Maybe we will complain about the shadowed template parameter.
9977         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9978         // Just pretend that we didn't see the previous declaration.
9979         PrevDecl = nullptr;
9980       } else if (S->isDeclScope(PrevDecl)) {
9981         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9982         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9983 
9984         // Recover by removing the name
9985         II = nullptr;
9986         D.SetIdentifier(nullptr, D.getIdentifierLoc());
9987         D.setInvalidType(true);
9988       }
9989     }
9990   }
9991 
9992   // Temporarily put parameter variables in the translation unit, not
9993   // the enclosing context.  This prevents them from accidentally
9994   // looking like class members in C++.
9995   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9996                                     D.getLocStart(),
9997                                     D.getIdentifierLoc(), II,
9998                                     parmDeclType, TInfo,
9999                                     SC);
10000 
10001   if (D.isInvalidType())
10002     New->setInvalidDecl();
10003 
10004   assert(S->isFunctionPrototypeScope());
10005   assert(S->getFunctionPrototypeDepth() >= 1);
10006   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10007                     S->getNextFunctionPrototypeIndex());
10008 
10009   // Add the parameter declaration into this scope.
10010   S->AddDecl(New);
10011   if (II)
10012     IdResolver.AddDecl(New);
10013 
10014   ProcessDeclAttributes(S, New, D);
10015 
10016   if (D.getDeclSpec().isModulePrivateSpecified())
10017     Diag(New->getLocation(), diag::err_module_private_local)
10018       << 1 << New->getDeclName()
10019       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10020       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10021 
10022   if (New->hasAttr<BlocksAttr>()) {
10023     Diag(New->getLocation(), diag::err_block_on_nonlocal);
10024   }
10025   return New;
10026 }
10027 
10028 /// \brief Synthesizes a variable for a parameter arising from a
10029 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)10030 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10031                                               SourceLocation Loc,
10032                                               QualType T) {
10033   /* FIXME: setting StartLoc == Loc.
10034      Would it be worth to modify callers so as to provide proper source
10035      location for the unnamed parameters, embedding the parameter's type? */
10036   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10037                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
10038                                            SC_None, nullptr);
10039   Param->setImplicit();
10040   return Param;
10041 }
10042 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)10043 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10044                                     ParmVarDecl * const *ParamEnd) {
10045   // Don't diagnose unused-parameter errors in template instantiations; we
10046   // will already have done so in the template itself.
10047   if (!ActiveTemplateInstantiations.empty())
10048     return;
10049 
10050   for (; Param != ParamEnd; ++Param) {
10051     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10052         !(*Param)->hasAttr<UnusedAttr>()) {
10053       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10054         << (*Param)->getDeclName();
10055     }
10056   }
10057 }
10058 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)10059 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10060                                                   ParmVarDecl * const *ParamEnd,
10061                                                   QualType ReturnTy,
10062                                                   NamedDecl *D) {
10063   if (LangOpts.NumLargeByValueCopy == 0) // No check.
10064     return;
10065 
10066   // Warn if the return value is pass-by-value and larger than the specified
10067   // threshold.
10068   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10069     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10070     if (Size > LangOpts.NumLargeByValueCopy)
10071       Diag(D->getLocation(), diag::warn_return_value_size)
10072           << D->getDeclName() << Size;
10073   }
10074 
10075   // Warn if any parameter is pass-by-value and larger than the specified
10076   // threshold.
10077   for (; Param != ParamEnd; ++Param) {
10078     QualType T = (*Param)->getType();
10079     if (T->isDependentType() || !T.isPODType(Context))
10080       continue;
10081     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10082     if (Size > LangOpts.NumLargeByValueCopy)
10083       Diag((*Param)->getLocation(), diag::warn_parameter_size)
10084           << (*Param)->getDeclName() << Size;
10085   }
10086 }
10087 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)10088 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10089                                   SourceLocation NameLoc, IdentifierInfo *Name,
10090                                   QualType T, TypeSourceInfo *TSInfo,
10091                                   StorageClass SC) {
10092   // In ARC, infer a lifetime qualifier for appropriate parameter types.
10093   if (getLangOpts().ObjCAutoRefCount &&
10094       T.getObjCLifetime() == Qualifiers::OCL_None &&
10095       T->isObjCLifetimeType()) {
10096 
10097     Qualifiers::ObjCLifetime lifetime;
10098 
10099     // Special cases for arrays:
10100     //   - if it's const, use __unsafe_unretained
10101     //   - otherwise, it's an error
10102     if (T->isArrayType()) {
10103       if (!T.isConstQualified()) {
10104         DelayedDiagnostics.add(
10105             sema::DelayedDiagnostic::makeForbiddenType(
10106             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10107       }
10108       lifetime = Qualifiers::OCL_ExplicitNone;
10109     } else {
10110       lifetime = T->getObjCARCImplicitLifetime();
10111     }
10112     T = Context.getLifetimeQualifiedType(T, lifetime);
10113   }
10114 
10115   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10116                                          Context.getAdjustedParameterType(T),
10117                                          TSInfo, SC, nullptr);
10118 
10119   // Parameters can not be abstract class types.
10120   // For record types, this is done by the AbstractClassUsageDiagnoser once
10121   // the class has been completely parsed.
10122   if (!CurContext->isRecord() &&
10123       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10124                              AbstractParamType))
10125     New->setInvalidDecl();
10126 
10127   // Parameter declarators cannot be interface types. All ObjC objects are
10128   // passed by reference.
10129   if (T->isObjCObjectType()) {
10130     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10131     Diag(NameLoc,
10132          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10133       << FixItHint::CreateInsertion(TypeEndLoc, "*");
10134     T = Context.getObjCObjectPointerType(T);
10135     New->setType(T);
10136   }
10137 
10138   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10139   // duration shall not be qualified by an address-space qualifier."
10140   // Since all parameters have automatic store duration, they can not have
10141   // an address space.
10142   if (T.getAddressSpace() != 0) {
10143     // OpenCL allows function arguments declared to be an array of a type
10144     // to be qualified with an address space.
10145     if (!(getLangOpts().OpenCL && T->isArrayType())) {
10146       Diag(NameLoc, diag::err_arg_with_address_space);
10147       New->setInvalidDecl();
10148     }
10149   }
10150 
10151   return New;
10152 }
10153 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)10154 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10155                                            SourceLocation LocAfterDecls) {
10156   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10157 
10158   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10159   // for a K&R function.
10160   if (!FTI.hasPrototype) {
10161     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10162       --i;
10163       if (FTI.Params[i].Param == nullptr) {
10164         SmallString<256> Code;
10165         llvm::raw_svector_ostream(Code)
10166             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
10167         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10168             << FTI.Params[i].Ident
10169             << FixItHint::CreateInsertion(LocAfterDecls, Code);
10170 
10171         // Implicitly declare the argument as type 'int' for lack of a better
10172         // type.
10173         AttributeFactory attrs;
10174         DeclSpec DS(attrs);
10175         const char* PrevSpec; // unused
10176         unsigned DiagID; // unused
10177         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10178                            DiagID, Context.getPrintingPolicy());
10179         // Use the identifier location for the type source range.
10180         DS.SetRangeStart(FTI.Params[i].IdentLoc);
10181         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10182         Declarator ParamD(DS, Declarator::KNRTypeListContext);
10183         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10184         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10185       }
10186     }
10187   }
10188 }
10189 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)10190 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
10191   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10192   assert(D.isFunctionDeclarator() && "Not a function declarator!");
10193   Scope *ParentScope = FnBodyScope->getParent();
10194 
10195   D.setFunctionDefinitionKind(FDK_Definition);
10196   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
10197   return ActOnStartOfFunctionDef(FnBodyScope, DP);
10198 }
10199 
ActOnFinishInlineMethodDef(CXXMethodDecl * D)10200 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10201   Consumer.HandleInlineMethodDefinition(D);
10202 }
10203 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)10204 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10205                              const FunctionDecl*& PossibleZeroParamPrototype) {
10206   // Don't warn about invalid declarations.
10207   if (FD->isInvalidDecl())
10208     return false;
10209 
10210   // Or declarations that aren't global.
10211   if (!FD->isGlobal())
10212     return false;
10213 
10214   // Don't warn about C++ member functions.
10215   if (isa<CXXMethodDecl>(FD))
10216     return false;
10217 
10218   // Don't warn about 'main'.
10219   if (FD->isMain())
10220     return false;
10221 
10222   // Don't warn about inline functions.
10223   if (FD->isInlined())
10224     return false;
10225 
10226   // Don't warn about function templates.
10227   if (FD->getDescribedFunctionTemplate())
10228     return false;
10229 
10230   // Don't warn about function template specializations.
10231   if (FD->isFunctionTemplateSpecialization())
10232     return false;
10233 
10234   // Don't warn for OpenCL kernels.
10235   if (FD->hasAttr<OpenCLKernelAttr>())
10236     return false;
10237 
10238   // Don't warn on explicitly deleted functions.
10239   if (FD->isDeleted())
10240     return false;
10241 
10242   bool MissingPrototype = true;
10243   for (const FunctionDecl *Prev = FD->getPreviousDecl();
10244        Prev; Prev = Prev->getPreviousDecl()) {
10245     // Ignore any declarations that occur in function or method
10246     // scope, because they aren't visible from the header.
10247     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10248       continue;
10249 
10250     MissingPrototype = !Prev->getType()->isFunctionProtoType();
10251     if (FD->getNumParams() == 0)
10252       PossibleZeroParamPrototype = Prev;
10253     break;
10254   }
10255 
10256   return MissingPrototype;
10257 }
10258 
10259 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition)10260 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10261                                    const FunctionDecl *EffectiveDefinition) {
10262   // Don't complain if we're in GNU89 mode and the previous definition
10263   // was an extern inline function.
10264   const FunctionDecl *Definition = EffectiveDefinition;
10265   if (!Definition)
10266     if (!FD->isDefined(Definition))
10267       return;
10268 
10269   if (canRedefineFunction(Definition, getLangOpts()))
10270     return;
10271 
10272   // If we don't have a visible definition of the function, and it's inline or
10273   // a template, it's OK to form another definition of it.
10274   //
10275   // FIXME: Should we skip the body of the function and use the old definition
10276   // in this case? That may be necessary for functions that return local types
10277   // through a deduced return type, or instantiate templates with local types.
10278   if (!hasVisibleDefinition(Definition) &&
10279       (Definition->isInlineSpecified() ||
10280        Definition->getDescribedFunctionTemplate() ||
10281        Definition->getNumTemplateParameterLists()))
10282     return;
10283 
10284   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10285       Definition->getStorageClass() == SC_Extern)
10286     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10287         << FD->getDeclName() << getLangOpts().CPlusPlus;
10288   else
10289     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10290 
10291   Diag(Definition->getLocation(), diag::note_previous_definition);
10292   FD->setInvalidDecl();
10293 }
10294 
10295 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)10296 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10297                                    Sema &S) {
10298   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10299 
10300   LambdaScopeInfo *LSI = S.PushLambdaScope();
10301   LSI->CallOperator = CallOperator;
10302   LSI->Lambda = LambdaClass;
10303   LSI->ReturnType = CallOperator->getReturnType();
10304   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10305 
10306   if (LCD == LCD_None)
10307     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10308   else if (LCD == LCD_ByCopy)
10309     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10310   else if (LCD == LCD_ByRef)
10311     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10312   DeclarationNameInfo DNI = CallOperator->getNameInfo();
10313 
10314   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10315   LSI->Mutable = !CallOperator->isConst();
10316 
10317   // Add the captures to the LSI so they can be noted as already
10318   // captured within tryCaptureVar.
10319   auto I = LambdaClass->field_begin();
10320   for (const auto &C : LambdaClass->captures()) {
10321     if (C.capturesVariable()) {
10322       VarDecl *VD = C.getCapturedVar();
10323       if (VD->isInitCapture())
10324         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10325       QualType CaptureType = VD->getType();
10326       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10327       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10328           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10329           /*EllipsisLoc*/C.isPackExpansion()
10330                          ? C.getEllipsisLoc() : SourceLocation(),
10331           CaptureType, /*Expr*/ nullptr);
10332 
10333     } else if (C.capturesThis()) {
10334       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10335                               S.getCurrentThisType(), /*Expr*/ nullptr);
10336     } else {
10337       LSI->addVLATypeCapture(C.getLocation(), I->getType());
10338     }
10339     ++I;
10340   }
10341 }
10342 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)10343 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
10344   // Clear the last template instantiation error context.
10345   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10346 
10347   if (!D)
10348     return D;
10349   FunctionDecl *FD = nullptr;
10350 
10351   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10352     FD = FunTmpl->getTemplatedDecl();
10353   else
10354     FD = cast<FunctionDecl>(D);
10355   // If we are instantiating a generic lambda call operator, push
10356   // a LambdaScopeInfo onto the function stack.  But use the information
10357   // that's already been calculated (ActOnLambdaExpr) to prime the current
10358   // LambdaScopeInfo.
10359   // When the template operator is being specialized, the LambdaScopeInfo,
10360   // has to be properly restored so that tryCaptureVariable doesn't try
10361   // and capture any new variables. In addition when calculating potential
10362   // captures during transformation of nested lambdas, it is necessary to
10363   // have the LSI properly restored.
10364   if (isGenericLambdaCallOperatorSpecialization(FD)) {
10365     assert(ActiveTemplateInstantiations.size() &&
10366       "There should be an active template instantiation on the stack "
10367       "when instantiating a generic lambda!");
10368     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10369   }
10370   else
10371     // Enter a new function scope
10372     PushFunctionScope();
10373 
10374   // See if this is a redefinition.
10375   if (!FD->isLateTemplateParsed())
10376     CheckForFunctionRedefinition(FD);
10377 
10378   // Builtin functions cannot be defined.
10379   if (unsigned BuiltinID = FD->getBuiltinID()) {
10380     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10381         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10382       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10383       FD->setInvalidDecl();
10384     }
10385   }
10386 
10387   // The return type of a function definition must be complete
10388   // (C99 6.9.1p3, C++ [dcl.fct]p6).
10389   QualType ResultType = FD->getReturnType();
10390   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10391       !FD->isInvalidDecl() &&
10392       RequireCompleteType(FD->getLocation(), ResultType,
10393                           diag::err_func_def_incomplete_result))
10394     FD->setInvalidDecl();
10395 
10396   if (FnBodyScope)
10397     PushDeclContext(FnBodyScope, FD);
10398 
10399   // Check the validity of our function parameters
10400   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10401                            /*CheckParameterNames=*/true);
10402 
10403   // Introduce our parameters into the function scope
10404   for (auto Param : FD->params()) {
10405     Param->setOwningFunction(FD);
10406 
10407     // If this has an identifier, add it to the scope stack.
10408     if (Param->getIdentifier() && FnBodyScope) {
10409       CheckShadow(FnBodyScope, Param);
10410 
10411       PushOnScopeChains(Param, FnBodyScope);
10412     }
10413   }
10414 
10415   // If we had any tags defined in the function prototype,
10416   // introduce them into the function scope.
10417   if (FnBodyScope) {
10418     for (ArrayRef<NamedDecl *>::iterator
10419              I = FD->getDeclsInPrototypeScope().begin(),
10420              E = FD->getDeclsInPrototypeScope().end();
10421          I != E; ++I) {
10422       NamedDecl *D = *I;
10423 
10424       // Some of these decls (like enums) may have been pinned to the
10425       // translation unit for lack of a real context earlier. If so, remove
10426       // from the translation unit and reattach to the current context.
10427       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10428         // Is the decl actually in the context?
10429         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10430           if (DI == D) {
10431             Context.getTranslationUnitDecl()->removeDecl(D);
10432             break;
10433           }
10434         }
10435         // Either way, reassign the lexical decl context to our FunctionDecl.
10436         D->setLexicalDeclContext(CurContext);
10437       }
10438 
10439       // If the decl has a non-null name, make accessible in the current scope.
10440       if (!D->getName().empty())
10441         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10442 
10443       // Similarly, dive into enums and fish their constants out, making them
10444       // accessible in this scope.
10445       if (auto *ED = dyn_cast<EnumDecl>(D)) {
10446         for (auto *EI : ED->enumerators())
10447           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10448       }
10449     }
10450   }
10451 
10452   // Ensure that the function's exception specification is instantiated.
10453   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10454     ResolveExceptionSpec(D->getLocation(), FPT);
10455 
10456   // dllimport cannot be applied to non-inline function definitions.
10457   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10458       !FD->isTemplateInstantiation()) {
10459     assert(!FD->hasAttr<DLLExportAttr>());
10460     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10461     FD->setInvalidDecl();
10462     return D;
10463   }
10464   // We want to attach documentation to original Decl (which might be
10465   // a function template).
10466   ActOnDocumentableDecl(D);
10467   if (getCurLexicalContext()->isObjCContainer() &&
10468       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10469       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10470     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10471 
10472   return D;
10473 }
10474 
10475 /// \brief Given the set of return statements within a function body,
10476 /// compute the variables that are subject to the named return value
10477 /// optimization.
10478 ///
10479 /// Each of the variables that is subject to the named return value
10480 /// optimization will be marked as NRVO variables in the AST, and any
10481 /// return statement that has a marked NRVO variable as its NRVO candidate can
10482 /// use the named return value optimization.
10483 ///
10484 /// This function applies a very simplistic algorithm for NRVO: if every return
10485 /// statement in the scope of a variable has the same NRVO candidate, that
10486 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10487 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10488   ReturnStmt **Returns = Scope->Returns.data();
10489 
10490   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10491     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10492       if (!NRVOCandidate->isNRVOVariable())
10493         Returns[I]->setNRVOCandidate(nullptr);
10494     }
10495   }
10496 }
10497 
canDelayFunctionBody(const Declarator & D)10498 bool Sema::canDelayFunctionBody(const Declarator &D) {
10499   // We can't delay parsing the body of a constexpr function template (yet).
10500   if (D.getDeclSpec().isConstexprSpecified())
10501     return false;
10502 
10503   // We can't delay parsing the body of a function template with a deduced
10504   // return type (yet).
10505   if (D.getDeclSpec().containsPlaceholderType()) {
10506     // If the placeholder introduces a non-deduced trailing return type,
10507     // we can still delay parsing it.
10508     if (D.getNumTypeObjects()) {
10509       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10510       if (Outer.Kind == DeclaratorChunk::Function &&
10511           Outer.Fun.hasTrailingReturnType()) {
10512         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10513         return Ty.isNull() || !Ty->isUndeducedType();
10514       }
10515     }
10516     return false;
10517   }
10518 
10519   return true;
10520 }
10521 
canSkipFunctionBody(Decl * D)10522 bool Sema::canSkipFunctionBody(Decl *D) {
10523   // We cannot skip the body of a function (or function template) which is
10524   // constexpr, since we may need to evaluate its body in order to parse the
10525   // rest of the file.
10526   // We cannot skip the body of a function with an undeduced return type,
10527   // because any callers of that function need to know the type.
10528   if (const FunctionDecl *FD = D->getAsFunction())
10529     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10530       return false;
10531   return Consumer.shouldSkipFunctionBody(D);
10532 }
10533 
ActOnSkippedFunctionBody(Decl * Decl)10534 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10535   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10536     FD->setHasSkippedBody();
10537   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10538     MD->setHasSkippedBody();
10539   return ActOnFinishFunctionBody(Decl, nullptr);
10540 }
10541 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)10542 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10543   return ActOnFinishFunctionBody(D, BodyArg, false);
10544 }
10545 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)10546 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10547                                     bool IsInstantiation) {
10548   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10549 
10550   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10551   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10552 
10553   if (FD) {
10554     FD->setBody(Body);
10555 
10556     if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
10557         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10558       // If the function has a deduced result type but contains no 'return'
10559       // statements, the result type as written must be exactly 'auto', and
10560       // the deduced result type is 'void'.
10561       if (!FD->getReturnType()->getAs<AutoType>()) {
10562         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10563             << FD->getReturnType();
10564         FD->setInvalidDecl();
10565       } else {
10566         // Substitute 'void' for the 'auto' in the type.
10567         TypeLoc ResultType = getReturnTypeLoc(FD);
10568         Context.adjustDeducedFunctionResultType(
10569             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10570       }
10571     }
10572 
10573     // The only way to be included in UndefinedButUsed is if there is an
10574     // ODR use before the definition. Avoid the expensive map lookup if this
10575     // is the first declaration.
10576     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10577       if (!FD->isExternallyVisible())
10578         UndefinedButUsed.erase(FD);
10579       else if (FD->isInlined() &&
10580                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10581                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10582         UndefinedButUsed.erase(FD);
10583     }
10584 
10585     // If the function implicitly returns zero (like 'main') or is naked,
10586     // don't complain about missing return statements.
10587     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10588       WP.disableCheckFallThrough();
10589 
10590     // MSVC permits the use of pure specifier (=0) on function definition,
10591     // defined at class scope, warn about this non-standard construct.
10592     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10593       Diag(FD->getLocation(), diag::ext_pure_function_definition);
10594 
10595     if (!FD->isInvalidDecl()) {
10596       // Don't diagnose unused parameters of defaulted or deleted functions.
10597       if (!FD->isDeleted() && !FD->isDefaulted())
10598         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10599       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10600                                              FD->getReturnType(), FD);
10601 
10602       // If this is a structor, we need a vtable.
10603       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10604         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10605       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
10606         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
10607 
10608       // Try to apply the named return value optimization. We have to check
10609       // if we can do this here because lambdas keep return statements around
10610       // to deduce an implicit return type.
10611       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10612           !FD->isDependentContext())
10613         computeNRVO(Body, getCurFunction());
10614     }
10615 
10616     // GNU warning -Wmissing-prototypes:
10617     //   Warn if a global function is defined without a previous
10618     //   prototype declaration. This warning is issued even if the
10619     //   definition itself provides a prototype. The aim is to detect
10620     //   global functions that fail to be declared in header files.
10621     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
10622     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
10623       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
10624 
10625       if (PossibleZeroParamPrototype) {
10626         // We found a declaration that is not a prototype,
10627         // but that could be a zero-parameter prototype
10628         if (TypeSourceInfo *TI =
10629                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
10630           TypeLoc TL = TI->getTypeLoc();
10631           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
10632             Diag(PossibleZeroParamPrototype->getLocation(),
10633                  diag::note_declaration_not_a_prototype)
10634                 << PossibleZeroParamPrototype
10635                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
10636         }
10637       }
10638     }
10639 
10640     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10641       const CXXMethodDecl *KeyFunction;
10642       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
10643           MD->isVirtual() &&
10644           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
10645           MD == KeyFunction->getCanonicalDecl()) {
10646         // Update the key-function state if necessary for this ABI.
10647         if (FD->isInlined() &&
10648             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10649           Context.setNonKeyFunction(MD);
10650 
10651           // If the newly-chosen key function is already defined, then we
10652           // need to mark the vtable as used retroactively.
10653           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
10654           const FunctionDecl *Definition;
10655           if (KeyFunction && KeyFunction->isDefined(Definition))
10656             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
10657         } else {
10658           // We just defined they key function; mark the vtable as used.
10659           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
10660         }
10661       }
10662     }
10663 
10664     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10665            "Function parsing confused");
10666   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10667     assert(MD == getCurMethodDecl() && "Method parsing confused");
10668     MD->setBody(Body);
10669     if (!MD->isInvalidDecl()) {
10670       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10671       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10672                                              MD->getReturnType(), MD);
10673 
10674       if (Body)
10675         computeNRVO(Body, getCurFunction());
10676     }
10677     if (getCurFunction()->ObjCShouldCallSuper) {
10678       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10679         << MD->getSelector().getAsString();
10680       getCurFunction()->ObjCShouldCallSuper = false;
10681     }
10682     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10683       const ObjCMethodDecl *InitMethod = nullptr;
10684       bool isDesignated =
10685           MD->isDesignatedInitializerForTheInterface(&InitMethod);
10686       assert(isDesignated && InitMethod);
10687       (void)isDesignated;
10688 
10689       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10690         auto IFace = MD->getClassInterface();
10691         if (!IFace)
10692           return false;
10693         auto SuperD = IFace->getSuperClass();
10694         if (!SuperD)
10695           return false;
10696         return SuperD->getIdentifier() ==
10697             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10698       };
10699       // Don't issue this warning for unavailable inits or direct subclasses
10700       // of NSObject.
10701       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10702         Diag(MD->getLocation(),
10703              diag::warn_objc_designated_init_missing_super_call);
10704         Diag(InitMethod->getLocation(),
10705              diag::note_objc_designated_init_marked_here);
10706       }
10707       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10708     }
10709     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10710       // Don't issue this warning for unavaialable inits.
10711       if (!MD->isUnavailable())
10712         Diag(MD->getLocation(),
10713              diag::warn_objc_secondary_init_missing_init_call);
10714       getCurFunction()->ObjCWarnForNoInitDelegation = false;
10715     }
10716   } else {
10717     return nullptr;
10718   }
10719 
10720   assert(!getCurFunction()->ObjCShouldCallSuper &&
10721          "This should only be set for ObjC methods, which should have been "
10722          "handled in the block above.");
10723 
10724   // Verify and clean out per-function state.
10725   if (Body && (!FD || !FD->isDefaulted())) {
10726     // C++ constructors that have function-try-blocks can't have return
10727     // statements in the handlers of that block. (C++ [except.handle]p14)
10728     // Verify this.
10729     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10730       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10731 
10732     // Verify that gotos and switch cases don't jump into scopes illegally.
10733     if (getCurFunction()->NeedsScopeChecking() &&
10734         !PP.isCodeCompletionEnabled())
10735       DiagnoseInvalidJumps(Body);
10736 
10737     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10738       if (!Destructor->getParent()->isDependentType())
10739         CheckDestructor(Destructor);
10740 
10741       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10742                                              Destructor->getParent());
10743     }
10744 
10745     // If any errors have occurred, clear out any temporaries that may have
10746     // been leftover. This ensures that these temporaries won't be picked up for
10747     // deletion in some later function.
10748     if (getDiagnostics().hasErrorOccurred() ||
10749         getDiagnostics().getSuppressAllDiagnostics()) {
10750       DiscardCleanupsInEvaluationContext();
10751     }
10752     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10753         !isa<FunctionTemplateDecl>(dcl)) {
10754       // Since the body is valid, issue any analysis-based warnings that are
10755       // enabled.
10756       ActivePolicy = &WP;
10757     }
10758 
10759     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10760         (!CheckConstexprFunctionDecl(FD) ||
10761          !CheckConstexprFunctionBody(FD, Body)))
10762       FD->setInvalidDecl();
10763 
10764     if (FD && FD->hasAttr<NakedAttr>()) {
10765       for (const Stmt *S : Body->children()) {
10766         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
10767           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
10768           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
10769           FD->setInvalidDecl();
10770           break;
10771         }
10772       }
10773     }
10774 
10775     assert(ExprCleanupObjects.size() ==
10776                ExprEvalContexts.back().NumCleanupObjects &&
10777            "Leftover temporaries in function");
10778     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10779     assert(MaybeODRUseExprs.empty() &&
10780            "Leftover expressions for odr-use checking");
10781   }
10782 
10783   if (!IsInstantiation)
10784     PopDeclContext();
10785 
10786   PopFunctionScopeInfo(ActivePolicy, dcl);
10787   // If any errors have occurred, clear out any temporaries that may have
10788   // been leftover. This ensures that these temporaries won't be picked up for
10789   // deletion in some later function.
10790   if (getDiagnostics().hasErrorOccurred()) {
10791     DiscardCleanupsInEvaluationContext();
10792   }
10793 
10794   return dcl;
10795 }
10796 
10797 
10798 /// When we finish delayed parsing of an attribute, we must attach it to the
10799 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)10800 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10801                                        ParsedAttributes &Attrs) {
10802   // Always attach attributes to the underlying decl.
10803   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10804     D = TD->getTemplatedDecl();
10805   ProcessDeclAttributeList(S, D, Attrs.getList());
10806 
10807   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10808     if (Method->isStatic())
10809       checkThisInStaticMemberFunctionAttributes(Method);
10810 }
10811 
10812 
10813 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10814 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)10815 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10816                                           IdentifierInfo &II, Scope *S) {
10817   // Before we produce a declaration for an implicitly defined
10818   // function, see whether there was a locally-scoped declaration of
10819   // this name as a function or variable. If so, use that
10820   // (non-visible) declaration, and complain about it.
10821   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10822     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10823     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10824     return ExternCPrev;
10825   }
10826 
10827   // Extension in C99.  Legal in C90, but warn about it.
10828   unsigned diag_id;
10829   if (II.getName().startswith("__builtin_"))
10830     diag_id = diag::warn_builtin_unknown;
10831   else if (getLangOpts().C99)
10832     diag_id = diag::ext_implicit_function_decl;
10833   else
10834     diag_id = diag::warn_implicit_function_decl;
10835   Diag(Loc, diag_id) << &II;
10836 
10837   // Because typo correction is expensive, only do it if the implicit
10838   // function declaration is going to be treated as an error.
10839   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10840     TypoCorrection Corrected;
10841     if (S &&
10842         (Corrected = CorrectTypo(
10843              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
10844              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
10845       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10846                    /*ErrorRecovery*/false);
10847   }
10848 
10849   // Set a Declarator for the implicit definition: int foo();
10850   const char *Dummy;
10851   AttributeFactory attrFactory;
10852   DeclSpec DS(attrFactory);
10853   unsigned DiagID;
10854   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10855                                   Context.getPrintingPolicy());
10856   (void)Error; // Silence warning.
10857   assert(!Error && "Error setting up implicit decl!");
10858   SourceLocation NoLoc;
10859   Declarator D(DS, Declarator::BlockContext);
10860   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10861                                              /*IsAmbiguous=*/false,
10862                                              /*LParenLoc=*/NoLoc,
10863                                              /*Params=*/nullptr,
10864                                              /*NumParams=*/0,
10865                                              /*EllipsisLoc=*/NoLoc,
10866                                              /*RParenLoc=*/NoLoc,
10867                                              /*TypeQuals=*/0,
10868                                              /*RefQualifierIsLvalueRef=*/true,
10869                                              /*RefQualifierLoc=*/NoLoc,
10870                                              /*ConstQualifierLoc=*/NoLoc,
10871                                              /*VolatileQualifierLoc=*/NoLoc,
10872                                              /*RestrictQualifierLoc=*/NoLoc,
10873                                              /*MutableLoc=*/NoLoc,
10874                                              EST_None,
10875                                              /*ESpecLoc=*/NoLoc,
10876                                              /*Exceptions=*/nullptr,
10877                                              /*ExceptionRanges=*/nullptr,
10878                                              /*NumExceptions=*/0,
10879                                              /*NoexceptExpr=*/nullptr,
10880                                              /*ExceptionSpecTokens=*/nullptr,
10881                                              Loc, Loc, D),
10882                 DS.getAttributes(),
10883                 SourceLocation());
10884   D.SetIdentifier(&II, Loc);
10885 
10886   // Insert this function into translation-unit scope.
10887 
10888   DeclContext *PrevDC = CurContext;
10889   CurContext = Context.getTranslationUnitDecl();
10890 
10891   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10892   FD->setImplicit();
10893 
10894   CurContext = PrevDC;
10895 
10896   AddKnownFunctionAttributes(FD);
10897 
10898   return FD;
10899 }
10900 
10901 /// \brief Adds any function attributes that we know a priori based on
10902 /// the declaration of this function.
10903 ///
10904 /// These attributes can apply both to implicitly-declared builtins
10905 /// (like __builtin___printf_chk) or to library-declared functions
10906 /// like NSLog or printf.
10907 ///
10908 /// We need to check for duplicate attributes both here and where user-written
10909 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)10910 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10911   if (FD->isInvalidDecl())
10912     return;
10913 
10914   // If this is a built-in function, map its builtin attributes to
10915   // actual attributes.
10916   if (unsigned BuiltinID = FD->getBuiltinID()) {
10917     // Handle printf-formatting attributes.
10918     unsigned FormatIdx;
10919     bool HasVAListArg;
10920     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10921       if (!FD->hasAttr<FormatAttr>()) {
10922         const char *fmt = "printf";
10923         unsigned int NumParams = FD->getNumParams();
10924         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10925             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10926           fmt = "NSString";
10927         FD->addAttr(FormatAttr::CreateImplicit(Context,
10928                                                &Context.Idents.get(fmt),
10929                                                FormatIdx+1,
10930                                                HasVAListArg ? 0 : FormatIdx+2,
10931                                                FD->getLocation()));
10932       }
10933     }
10934     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10935                                              HasVAListArg)) {
10936      if (!FD->hasAttr<FormatAttr>())
10937        FD->addAttr(FormatAttr::CreateImplicit(Context,
10938                                               &Context.Idents.get("scanf"),
10939                                               FormatIdx+1,
10940                                               HasVAListArg ? 0 : FormatIdx+2,
10941                                               FD->getLocation()));
10942     }
10943 
10944     // Mark const if we don't care about errno and that is the only
10945     // thing preventing the function from being const. This allows
10946     // IRgen to use LLVM intrinsics for such functions.
10947     if (!getLangOpts().MathErrno &&
10948         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10949       if (!FD->hasAttr<ConstAttr>())
10950         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10951     }
10952 
10953     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10954         !FD->hasAttr<ReturnsTwiceAttr>())
10955       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10956                                          FD->getLocation()));
10957     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10958       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10959     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10960       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10961   }
10962 
10963   IdentifierInfo *Name = FD->getIdentifier();
10964   if (!Name)
10965     return;
10966   if ((!getLangOpts().CPlusPlus &&
10967        FD->getDeclContext()->isTranslationUnit()) ||
10968       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10969        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10970        LinkageSpecDecl::lang_c)) {
10971     // Okay: this could be a libc/libm/Objective-C function we know
10972     // about.
10973   } else
10974     return;
10975 
10976   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10977     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10978     // target-specific builtins, perhaps?
10979     if (!FD->hasAttr<FormatAttr>())
10980       FD->addAttr(FormatAttr::CreateImplicit(Context,
10981                                              &Context.Idents.get("printf"), 2,
10982                                              Name->isStr("vasprintf") ? 0 : 3,
10983                                              FD->getLocation()));
10984   }
10985 
10986   if (Name->isStr("__CFStringMakeConstantString")) {
10987     // We already have a __builtin___CFStringMakeConstantString,
10988     // but builds that use -fno-constant-cfstrings don't go through that.
10989     if (!FD->hasAttr<FormatArgAttr>())
10990       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10991                                                 FD->getLocation()));
10992   }
10993 }
10994 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)10995 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10996                                     TypeSourceInfo *TInfo) {
10997   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10998   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10999 
11000   if (!TInfo) {
11001     assert(D.isInvalidType() && "no declarator info for valid type");
11002     TInfo = Context.getTrivialTypeSourceInfo(T);
11003   }
11004 
11005   // Scope manipulation handled by caller.
11006   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11007                                            D.getLocStart(),
11008                                            D.getIdentifierLoc(),
11009                                            D.getIdentifier(),
11010                                            TInfo);
11011 
11012   // Bail out immediately if we have an invalid declaration.
11013   if (D.isInvalidType()) {
11014     NewTD->setInvalidDecl();
11015     return NewTD;
11016   }
11017 
11018   if (D.getDeclSpec().isModulePrivateSpecified()) {
11019     if (CurContext->isFunctionOrMethod())
11020       Diag(NewTD->getLocation(), diag::err_module_private_local)
11021         << 2 << NewTD->getDeclName()
11022         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11023         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11024     else
11025       NewTD->setModulePrivate();
11026   }
11027 
11028   // C++ [dcl.typedef]p8:
11029   //   If the typedef declaration defines an unnamed class (or
11030   //   enum), the first typedef-name declared by the declaration
11031   //   to be that class type (or enum type) is used to denote the
11032   //   class type (or enum type) for linkage purposes only.
11033   // We need to check whether the type was declared in the declaration.
11034   switch (D.getDeclSpec().getTypeSpecType()) {
11035   case TST_enum:
11036   case TST_struct:
11037   case TST_interface:
11038   case TST_union:
11039   case TST_class: {
11040     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11041     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11042     break;
11043   }
11044 
11045   default:
11046     break;
11047   }
11048 
11049   return NewTD;
11050 }
11051 
11052 
11053 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)11054 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11055   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11056   QualType T = TI->getType();
11057 
11058   if (T->isDependentType())
11059     return false;
11060 
11061   if (const BuiltinType *BT = T->getAs<BuiltinType>())
11062     if (BT->isInteger())
11063       return false;
11064 
11065   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11066   return true;
11067 }
11068 
11069 /// Check whether this is a valid redeclaration of a previous enumeration.
11070 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)11071 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
11072                                   QualType EnumUnderlyingTy,
11073                                   const EnumDecl *Prev) {
11074   bool IsFixed = !EnumUnderlyingTy.isNull();
11075 
11076   if (IsScoped != Prev->isScoped()) {
11077     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11078       << Prev->isScoped();
11079     Diag(Prev->getLocation(), diag::note_previous_declaration);
11080     return true;
11081   }
11082 
11083   if (IsFixed && Prev->isFixed()) {
11084     if (!EnumUnderlyingTy->isDependentType() &&
11085         !Prev->getIntegerType()->isDependentType() &&
11086         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11087                                         Prev->getIntegerType())) {
11088       // TODO: Highlight the underlying type of the redeclaration.
11089       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11090         << EnumUnderlyingTy << Prev->getIntegerType();
11091       Diag(Prev->getLocation(), diag::note_previous_declaration)
11092           << Prev->getIntegerTypeRange();
11093       return true;
11094     }
11095   } else if (IsFixed != Prev->isFixed()) {
11096     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11097       << Prev->isFixed();
11098     Diag(Prev->getLocation(), diag::note_previous_declaration);
11099     return true;
11100   }
11101 
11102   return false;
11103 }
11104 
11105 /// \brief Get diagnostic %select index for tag kind for
11106 /// redeclaration diagnostic message.
11107 /// WARNING: Indexes apply to particular diagnostics only!
11108 ///
11109 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)11110 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11111   switch (Tag) {
11112   case TTK_Struct: return 0;
11113   case TTK_Interface: return 1;
11114   case TTK_Class:  return 2;
11115   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11116   }
11117 }
11118 
11119 /// \brief Determine if tag kind is a class-key compatible with
11120 /// class for redeclaration (class, struct, or __interface).
11121 ///
11122 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)11123 static bool isClassCompatTagKind(TagTypeKind Tag)
11124 {
11125   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11126 }
11127 
11128 /// \brief Determine whether a tag with a given kind is acceptable
11129 /// as a redeclaration of the given tag declaration.
11130 ///
11131 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)11132 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11133                                         TagTypeKind NewTag, bool isDefinition,
11134                                         SourceLocation NewTagLoc,
11135                                         const IdentifierInfo &Name) {
11136   // C++ [dcl.type.elab]p3:
11137   //   The class-key or enum keyword present in the
11138   //   elaborated-type-specifier shall agree in kind with the
11139   //   declaration to which the name in the elaborated-type-specifier
11140   //   refers. This rule also applies to the form of
11141   //   elaborated-type-specifier that declares a class-name or
11142   //   friend class since it can be construed as referring to the
11143   //   definition of the class. Thus, in any
11144   //   elaborated-type-specifier, the enum keyword shall be used to
11145   //   refer to an enumeration (7.2), the union class-key shall be
11146   //   used to refer to a union (clause 9), and either the class or
11147   //   struct class-key shall be used to refer to a class (clause 9)
11148   //   declared using the class or struct class-key.
11149   TagTypeKind OldTag = Previous->getTagKind();
11150   if (!isDefinition || !isClassCompatTagKind(NewTag))
11151     if (OldTag == NewTag)
11152       return true;
11153 
11154   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11155     // Warn about the struct/class tag mismatch.
11156     bool isTemplate = false;
11157     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11158       isTemplate = Record->getDescribedClassTemplate();
11159 
11160     if (!ActiveTemplateInstantiations.empty()) {
11161       // In a template instantiation, do not offer fix-its for tag mismatches
11162       // since they usually mess up the template instead of fixing the problem.
11163       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11164         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11165         << getRedeclDiagFromTagKind(OldTag);
11166       return true;
11167     }
11168 
11169     if (isDefinition) {
11170       // On definitions, check previous tags and issue a fix-it for each
11171       // one that doesn't match the current tag.
11172       if (Previous->getDefinition()) {
11173         // Don't suggest fix-its for redefinitions.
11174         return true;
11175       }
11176 
11177       bool previousMismatch = false;
11178       for (auto I : Previous->redecls()) {
11179         if (I->getTagKind() != NewTag) {
11180           if (!previousMismatch) {
11181             previousMismatch = true;
11182             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11183               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11184               << getRedeclDiagFromTagKind(I->getTagKind());
11185           }
11186           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11187             << getRedeclDiagFromTagKind(NewTag)
11188             << FixItHint::CreateReplacement(I->getInnerLocStart(),
11189                  TypeWithKeyword::getTagTypeKindName(NewTag));
11190         }
11191       }
11192       return true;
11193     }
11194 
11195     // Check for a previous definition.  If current tag and definition
11196     // are same type, do nothing.  If no definition, but disagree with
11197     // with previous tag type, give a warning, but no fix-it.
11198     const TagDecl *Redecl = Previous->getDefinition() ?
11199                             Previous->getDefinition() : Previous;
11200     if (Redecl->getTagKind() == NewTag) {
11201       return true;
11202     }
11203 
11204     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11205       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11206       << getRedeclDiagFromTagKind(OldTag);
11207     Diag(Redecl->getLocation(), diag::note_previous_use);
11208 
11209     // If there is a previous definition, suggest a fix-it.
11210     if (Previous->getDefinition()) {
11211         Diag(NewTagLoc, diag::note_struct_class_suggestion)
11212           << getRedeclDiagFromTagKind(Redecl->getTagKind())
11213           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11214                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11215     }
11216 
11217     return true;
11218   }
11219   return false;
11220 }
11221 
11222 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11223 /// from an outer enclosing namespace or file scope inside a friend declaration.
11224 /// This should provide the commented out code in the following snippet:
11225 ///   namespace N {
11226 ///     struct X;
11227 ///     namespace M {
11228 ///       struct Y { friend struct /*N::*/ X; };
11229 ///     }
11230 ///   }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)11231 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11232                                          SourceLocation NameLoc) {
11233   // While the decl is in a namespace, do repeated lookup of that name and see
11234   // if we get the same namespace back.  If we do not, continue until
11235   // translation unit scope, at which point we have a fully qualified NNS.
11236   SmallVector<IdentifierInfo *, 4> Namespaces;
11237   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11238   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11239     // This tag should be declared in a namespace, which can only be enclosed by
11240     // other namespaces.  Bail if there's an anonymous namespace in the chain.
11241     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11242     if (!Namespace || Namespace->isAnonymousNamespace())
11243       return FixItHint();
11244     IdentifierInfo *II = Namespace->getIdentifier();
11245     Namespaces.push_back(II);
11246     NamedDecl *Lookup = SemaRef.LookupSingleName(
11247         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11248     if (Lookup == Namespace)
11249       break;
11250   }
11251 
11252   // Once we have all the namespaces, reverse them to go outermost first, and
11253   // build an NNS.
11254   SmallString<64> Insertion;
11255   llvm::raw_svector_ostream OS(Insertion);
11256   if (DC->isTranslationUnit())
11257     OS << "::";
11258   std::reverse(Namespaces.begin(), Namespaces.end());
11259   for (auto *II : Namespaces)
11260     OS << II->getName() << "::";
11261   OS.flush();
11262   return FixItHint::CreateInsertion(NameLoc, Insertion);
11263 }
11264 
11265 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
11266 /// former case, Name will be non-null.  In the later case, Name will be null.
11267 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11268 /// reference/declaration/definition of a tag.
11269 ///
11270 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
11271 /// trailing-type-specifier) other than one in an alias-declaration.
11272 ///
11273 /// \param SkipBody If non-null, will be set to true if the caller should skip
11274 /// the definition of this tag, and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,bool * SkipBody)11275 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11276                      SourceLocation KWLoc, CXXScopeSpec &SS,
11277                      IdentifierInfo *Name, SourceLocation NameLoc,
11278                      AttributeList *Attr, AccessSpecifier AS,
11279                      SourceLocation ModulePrivateLoc,
11280                      MultiTemplateParamsArg TemplateParameterLists,
11281                      bool &OwnedDecl, bool &IsDependent,
11282                      SourceLocation ScopedEnumKWLoc,
11283                      bool ScopedEnumUsesClassTag,
11284                      TypeResult UnderlyingType,
11285                      bool IsTypeSpecifier, bool *SkipBody) {
11286   // If this is not a definition, it must have a name.
11287   IdentifierInfo *OrigName = Name;
11288   assert((Name != nullptr || TUK == TUK_Definition) &&
11289          "Nameless record must be a definition!");
11290   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11291 
11292   OwnedDecl = false;
11293   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11294   bool ScopedEnum = ScopedEnumKWLoc.isValid();
11295 
11296   // FIXME: Check explicit specializations more carefully.
11297   bool isExplicitSpecialization = false;
11298   bool Invalid = false;
11299 
11300   // We only need to do this matching if we have template parameters
11301   // or a scope specifier, which also conveniently avoids this work
11302   // for non-C++ cases.
11303   if (TemplateParameterLists.size() > 0 ||
11304       (SS.isNotEmpty() && TUK != TUK_Reference)) {
11305     if (TemplateParameterList *TemplateParams =
11306             MatchTemplateParametersToScopeSpecifier(
11307                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11308                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11309       if (Kind == TTK_Enum) {
11310         Diag(KWLoc, diag::err_enum_template);
11311         return nullptr;
11312       }
11313 
11314       if (TemplateParams->size() > 0) {
11315         // This is a declaration or definition of a class template (which may
11316         // be a member of another template).
11317 
11318         if (Invalid)
11319           return nullptr;
11320 
11321         OwnedDecl = false;
11322         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11323                                                SS, Name, NameLoc, Attr,
11324                                                TemplateParams, AS,
11325                                                ModulePrivateLoc,
11326                                                /*FriendLoc*/SourceLocation(),
11327                                                TemplateParameterLists.size()-1,
11328                                                TemplateParameterLists.data(),
11329                                                SkipBody);
11330         return Result.get();
11331       } else {
11332         // The "template<>" header is extraneous.
11333         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11334           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11335         isExplicitSpecialization = true;
11336       }
11337     }
11338   }
11339 
11340   // Figure out the underlying type if this a enum declaration. We need to do
11341   // this early, because it's needed to detect if this is an incompatible
11342   // redeclaration.
11343   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11344 
11345   if (Kind == TTK_Enum) {
11346     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11347       // No underlying type explicitly specified, or we failed to parse the
11348       // type, default to int.
11349       EnumUnderlying = Context.IntTy.getTypePtr();
11350     else if (UnderlyingType.get()) {
11351       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11352       // integral type; any cv-qualification is ignored.
11353       TypeSourceInfo *TI = nullptr;
11354       GetTypeFromParser(UnderlyingType.get(), &TI);
11355       EnumUnderlying = TI;
11356 
11357       if (CheckEnumUnderlyingType(TI))
11358         // Recover by falling back to int.
11359         EnumUnderlying = Context.IntTy.getTypePtr();
11360 
11361       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11362                                           UPPC_FixedUnderlyingType))
11363         EnumUnderlying = Context.IntTy.getTypePtr();
11364 
11365     } else if (getLangOpts().MSVCCompat)
11366       // Microsoft enums are always of int type.
11367       EnumUnderlying = Context.IntTy.getTypePtr();
11368   }
11369 
11370   DeclContext *SearchDC = CurContext;
11371   DeclContext *DC = CurContext;
11372   bool isStdBadAlloc = false;
11373 
11374   RedeclarationKind Redecl = ForRedeclaration;
11375   if (TUK == TUK_Friend || TUK == TUK_Reference)
11376     Redecl = NotForRedeclaration;
11377 
11378   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11379   if (Name && SS.isNotEmpty()) {
11380     // We have a nested-name tag ('struct foo::bar').
11381 
11382     // Check for invalid 'foo::'.
11383     if (SS.isInvalid()) {
11384       Name = nullptr;
11385       goto CreateNewDecl;
11386     }
11387 
11388     // If this is a friend or a reference to a class in a dependent
11389     // context, don't try to make a decl for it.
11390     if (TUK == TUK_Friend || TUK == TUK_Reference) {
11391       DC = computeDeclContext(SS, false);
11392       if (!DC) {
11393         IsDependent = true;
11394         return nullptr;
11395       }
11396     } else {
11397       DC = computeDeclContext(SS, true);
11398       if (!DC) {
11399         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11400           << SS.getRange();
11401         return nullptr;
11402       }
11403     }
11404 
11405     if (RequireCompleteDeclContext(SS, DC))
11406       return nullptr;
11407 
11408     SearchDC = DC;
11409     // Look-up name inside 'foo::'.
11410     LookupQualifiedName(Previous, DC);
11411 
11412     if (Previous.isAmbiguous())
11413       return nullptr;
11414 
11415     if (Previous.empty()) {
11416       // Name lookup did not find anything. However, if the
11417       // nested-name-specifier refers to the current instantiation,
11418       // and that current instantiation has any dependent base
11419       // classes, we might find something at instantiation time: treat
11420       // this as a dependent elaborated-type-specifier.
11421       // But this only makes any sense for reference-like lookups.
11422       if (Previous.wasNotFoundInCurrentInstantiation() &&
11423           (TUK == TUK_Reference || TUK == TUK_Friend)) {
11424         IsDependent = true;
11425         return nullptr;
11426       }
11427 
11428       // A tag 'foo::bar' must already exist.
11429       Diag(NameLoc, diag::err_not_tag_in_scope)
11430         << Kind << Name << DC << SS.getRange();
11431       Name = nullptr;
11432       Invalid = true;
11433       goto CreateNewDecl;
11434     }
11435   } else if (Name) {
11436     // If this is a named struct, check to see if there was a previous forward
11437     // declaration or definition.
11438     // FIXME: We're looking into outer scopes here, even when we
11439     // shouldn't be. Doing so can result in ambiguities that we
11440     // shouldn't be diagnosing.
11441     LookupName(Previous, S);
11442 
11443     // When declaring or defining a tag, ignore ambiguities introduced
11444     // by types using'ed into this scope.
11445     if (Previous.isAmbiguous() &&
11446         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
11447       LookupResult::Filter F = Previous.makeFilter();
11448       while (F.hasNext()) {
11449         NamedDecl *ND = F.next();
11450         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
11451           F.erase();
11452       }
11453       F.done();
11454     }
11455 
11456     // C++11 [namespace.memdef]p3:
11457     //   If the name in a friend declaration is neither qualified nor
11458     //   a template-id and the declaration is a function or an
11459     //   elaborated-type-specifier, the lookup to determine whether
11460     //   the entity has been previously declared shall not consider
11461     //   any scopes outside the innermost enclosing namespace.
11462     //
11463     // MSVC doesn't implement the above rule for types, so a friend tag
11464     // declaration may be a redeclaration of a type declared in an enclosing
11465     // scope.  They do implement this rule for friend functions.
11466     //
11467     // Does it matter that this should be by scope instead of by
11468     // semantic context?
11469     if (!Previous.empty() && TUK == TUK_Friend) {
11470       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
11471       LookupResult::Filter F = Previous.makeFilter();
11472       bool FriendSawTagOutsideEnclosingNamespace = false;
11473       while (F.hasNext()) {
11474         NamedDecl *ND = F.next();
11475         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11476         if (DC->isFileContext() &&
11477             !EnclosingNS->Encloses(ND->getDeclContext())) {
11478           if (getLangOpts().MSVCCompat)
11479             FriendSawTagOutsideEnclosingNamespace = true;
11480           else
11481             F.erase();
11482         }
11483       }
11484       F.done();
11485 
11486       // Diagnose this MSVC extension in the easy case where lookup would have
11487       // unambiguously found something outside the enclosing namespace.
11488       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
11489         NamedDecl *ND = Previous.getFoundDecl();
11490         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
11491             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
11492       }
11493     }
11494 
11495     // Note:  there used to be some attempt at recovery here.
11496     if (Previous.isAmbiguous())
11497       return nullptr;
11498 
11499     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
11500       // FIXME: This makes sure that we ignore the contexts associated
11501       // with C structs, unions, and enums when looking for a matching
11502       // tag declaration or definition. See the similar lookup tweak
11503       // in Sema::LookupName; is there a better way to deal with this?
11504       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
11505         SearchDC = SearchDC->getParent();
11506     }
11507   }
11508 
11509   if (Previous.isSingleResult() &&
11510       Previous.getFoundDecl()->isTemplateParameter()) {
11511     // Maybe we will complain about the shadowed template parameter.
11512     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
11513     // Just pretend that we didn't see the previous declaration.
11514     Previous.clear();
11515   }
11516 
11517   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
11518       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
11519     // This is a declaration of or a reference to "std::bad_alloc".
11520     isStdBadAlloc = true;
11521 
11522     if (Previous.empty() && StdBadAlloc) {
11523       // std::bad_alloc has been implicitly declared (but made invisible to
11524       // name lookup). Fill in this implicit declaration as the previous
11525       // declaration, so that the declarations get chained appropriately.
11526       Previous.addDecl(getStdBadAlloc());
11527     }
11528   }
11529 
11530   // If we didn't find a previous declaration, and this is a reference
11531   // (or friend reference), move to the correct scope.  In C++, we
11532   // also need to do a redeclaration lookup there, just in case
11533   // there's a shadow friend decl.
11534   if (Name && Previous.empty() &&
11535       (TUK == TUK_Reference || TUK == TUK_Friend)) {
11536     if (Invalid) goto CreateNewDecl;
11537     assert(SS.isEmpty());
11538 
11539     if (TUK == TUK_Reference) {
11540       // C++ [basic.scope.pdecl]p5:
11541       //   -- for an elaborated-type-specifier of the form
11542       //
11543       //          class-key identifier
11544       //
11545       //      if the elaborated-type-specifier is used in the
11546       //      decl-specifier-seq or parameter-declaration-clause of a
11547       //      function defined in namespace scope, the identifier is
11548       //      declared as a class-name in the namespace that contains
11549       //      the declaration; otherwise, except as a friend
11550       //      declaration, the identifier is declared in the smallest
11551       //      non-class, non-function-prototype scope that contains the
11552       //      declaration.
11553       //
11554       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
11555       // C structs and unions.
11556       //
11557       // It is an error in C++ to declare (rather than define) an enum
11558       // type, including via an elaborated type specifier.  We'll
11559       // diagnose that later; for now, declare the enum in the same
11560       // scope as we would have picked for any other tag type.
11561       //
11562       // GNU C also supports this behavior as part of its incomplete
11563       // enum types extension, while GNU C++ does not.
11564       //
11565       // Find the context where we'll be declaring the tag.
11566       // FIXME: We would like to maintain the current DeclContext as the
11567       // lexical context,
11568       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11569         SearchDC = SearchDC->getParent();
11570 
11571       // Find the scope where we'll be declaring the tag.
11572       while (S->isClassScope() ||
11573              (getLangOpts().CPlusPlus &&
11574               S->isFunctionPrototypeScope()) ||
11575              ((S->getFlags() & Scope::DeclScope) == 0) ||
11576              (S->getEntity() && S->getEntity()->isTransparentContext()))
11577         S = S->getParent();
11578     } else {
11579       assert(TUK == TUK_Friend);
11580       // C++ [namespace.memdef]p3:
11581       //   If a friend declaration in a non-local class first declares a
11582       //   class or function, the friend class or function is a member of
11583       //   the innermost enclosing namespace.
11584       SearchDC = SearchDC->getEnclosingNamespaceContext();
11585     }
11586 
11587     // In C++, we need to do a redeclaration lookup to properly
11588     // diagnose some problems.
11589     if (getLangOpts().CPlusPlus) {
11590       Previous.setRedeclarationKind(ForRedeclaration);
11591       LookupQualifiedName(Previous, SearchDC);
11592     }
11593   }
11594 
11595   if (!Previous.empty()) {
11596     NamedDecl *PrevDecl = Previous.getFoundDecl();
11597     NamedDecl *DirectPrevDecl =
11598         getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11599 
11600     // It's okay to have a tag decl in the same scope as a typedef
11601     // which hides a tag decl in the same scope.  Finding this
11602     // insanity with a redeclaration lookup can only actually happen
11603     // in C++.
11604     //
11605     // This is also okay for elaborated-type-specifiers, which is
11606     // technically forbidden by the current standard but which is
11607     // okay according to the likely resolution of an open issue;
11608     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11609     if (getLangOpts().CPlusPlus) {
11610       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11611         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11612           TagDecl *Tag = TT->getDecl();
11613           if (Tag->getDeclName() == Name &&
11614               Tag->getDeclContext()->getRedeclContext()
11615                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
11616             PrevDecl = Tag;
11617             Previous.clear();
11618             Previous.addDecl(Tag);
11619             Previous.resolveKind();
11620           }
11621         }
11622       }
11623     }
11624 
11625     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11626       // If this is a use of a previous tag, or if the tag is already declared
11627       // in the same scope (so that the definition/declaration completes or
11628       // rementions the tag), reuse the decl.
11629       if (TUK == TUK_Reference || TUK == TUK_Friend ||
11630           isDeclInScope(DirectPrevDecl, SearchDC, S,
11631                         SS.isNotEmpty() || isExplicitSpecialization)) {
11632         // Make sure that this wasn't declared as an enum and now used as a
11633         // struct or something similar.
11634         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11635                                           TUK == TUK_Definition, KWLoc,
11636                                           *Name)) {
11637           bool SafeToContinue
11638             = (PrevTagDecl->getTagKind() != TTK_Enum &&
11639                Kind != TTK_Enum);
11640           if (SafeToContinue)
11641             Diag(KWLoc, diag::err_use_with_wrong_tag)
11642               << Name
11643               << FixItHint::CreateReplacement(SourceRange(KWLoc),
11644                                               PrevTagDecl->getKindName());
11645           else
11646             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11647           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11648 
11649           if (SafeToContinue)
11650             Kind = PrevTagDecl->getTagKind();
11651           else {
11652             // Recover by making this an anonymous redefinition.
11653             Name = nullptr;
11654             Previous.clear();
11655             Invalid = true;
11656           }
11657         }
11658 
11659         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11660           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11661 
11662           // If this is an elaborated-type-specifier for a scoped enumeration,
11663           // the 'class' keyword is not necessary and not permitted.
11664           if (TUK == TUK_Reference || TUK == TUK_Friend) {
11665             if (ScopedEnum)
11666               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11667                 << PrevEnum->isScoped()
11668                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11669             return PrevTagDecl;
11670           }
11671 
11672           QualType EnumUnderlyingTy;
11673           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11674             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11675           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11676             EnumUnderlyingTy = QualType(T, 0);
11677 
11678           // All conflicts with previous declarations are recovered by
11679           // returning the previous declaration, unless this is a definition,
11680           // in which case we want the caller to bail out.
11681           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11682                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
11683             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11684         }
11685 
11686         // C++11 [class.mem]p1:
11687         //   A member shall not be declared twice in the member-specification,
11688         //   except that a nested class or member class template can be declared
11689         //   and then later defined.
11690         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11691             S->isDeclScope(PrevDecl)) {
11692           Diag(NameLoc, diag::ext_member_redeclared);
11693           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11694         }
11695 
11696         if (!Invalid) {
11697           // If this is a use, just return the declaration we found, unless
11698           // we have attributes.
11699 
11700           // FIXME: In the future, return a variant or some other clue
11701           // for the consumer of this Decl to know it doesn't own it.
11702           // For our current ASTs this shouldn't be a problem, but will
11703           // need to be changed with DeclGroups.
11704           if (!Attr &&
11705               ((TUK == TUK_Reference &&
11706                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11707                || TUK == TUK_Friend))
11708             return PrevTagDecl;
11709 
11710           // Diagnose attempts to redefine a tag.
11711           if (TUK == TUK_Definition) {
11712             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
11713               // If we're defining a specialization and the previous definition
11714               // is from an implicit instantiation, don't emit an error
11715               // here; we'll catch this in the general case below.
11716               bool IsExplicitSpecializationAfterInstantiation = false;
11717               if (isExplicitSpecialization) {
11718                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11719                   IsExplicitSpecializationAfterInstantiation =
11720                     RD->getTemplateSpecializationKind() !=
11721                     TSK_ExplicitSpecialization;
11722                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11723                   IsExplicitSpecializationAfterInstantiation =
11724                     ED->getTemplateSpecializationKind() !=
11725                     TSK_ExplicitSpecialization;
11726               }
11727 
11728               NamedDecl *Hidden = nullptr;
11729               if (SkipBody && getLangOpts().CPlusPlus &&
11730                   !hasVisibleDefinition(Def, &Hidden)) {
11731                 // There is a definition of this tag, but it is not visible. We
11732                 // explicitly make use of C++'s one definition rule here, and
11733                 // assume that this definition is identical to the hidden one
11734                 // we already have. Make the existing definition visible and
11735                 // use it in place of this one.
11736                 *SkipBody = true;
11737                 if (auto *Listener = getASTMutationListener())
11738                   Listener->RedefinedHiddenDefinition(Hidden, KWLoc);
11739                 Hidden->setHidden(false);
11740                 return Def;
11741               } else if (!IsExplicitSpecializationAfterInstantiation) {
11742                 // A redeclaration in function prototype scope in C isn't
11743                 // visible elsewhere, so merely issue a warning.
11744                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11745                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11746                 else
11747                   Diag(NameLoc, diag::err_redefinition) << Name;
11748                 Diag(Def->getLocation(), diag::note_previous_definition);
11749                 // If this is a redefinition, recover by making this
11750                 // struct be anonymous, which will make any later
11751                 // references get the previous definition.
11752                 Name = nullptr;
11753                 Previous.clear();
11754                 Invalid = true;
11755               }
11756             } else {
11757               // If the type is currently being defined, complain
11758               // about a nested redefinition.
11759               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
11760               if (TD->isBeingDefined()) {
11761                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
11762                 Diag(PrevTagDecl->getLocation(),
11763                      diag::note_previous_definition);
11764                 Name = nullptr;
11765                 Previous.clear();
11766                 Invalid = true;
11767               }
11768             }
11769 
11770             // Okay, this is definition of a previously declared or referenced
11771             // tag. We're going to create a new Decl for it.
11772           }
11773 
11774           // Okay, we're going to make a redeclaration.  If this is some kind
11775           // of reference, make sure we build the redeclaration in the same DC
11776           // as the original, and ignore the current access specifier.
11777           if (TUK == TUK_Friend || TUK == TUK_Reference) {
11778             SearchDC = PrevTagDecl->getDeclContext();
11779             AS = AS_none;
11780           }
11781         }
11782         // If we get here we have (another) forward declaration or we
11783         // have a definition.  Just create a new decl.
11784 
11785       } else {
11786         // If we get here, this is a definition of a new tag type in a nested
11787         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11788         // new decl/type.  We set PrevDecl to NULL so that the entities
11789         // have distinct types.
11790         Previous.clear();
11791       }
11792       // If we get here, we're going to create a new Decl. If PrevDecl
11793       // is non-NULL, it's a definition of the tag declared by
11794       // PrevDecl. If it's NULL, we have a new definition.
11795 
11796 
11797     // Otherwise, PrevDecl is not a tag, but was found with tag
11798     // lookup.  This is only actually possible in C++, where a few
11799     // things like templates still live in the tag namespace.
11800     } else {
11801       // Use a better diagnostic if an elaborated-type-specifier
11802       // found the wrong kind of type on the first
11803       // (non-redeclaration) lookup.
11804       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11805           !Previous.isForRedeclaration()) {
11806         unsigned Kind = 0;
11807         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11808         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11809         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11810         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11811         Diag(PrevDecl->getLocation(), diag::note_declared_at);
11812         Invalid = true;
11813 
11814       // Otherwise, only diagnose if the declaration is in scope.
11815       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11816                                 SS.isNotEmpty() || isExplicitSpecialization)) {
11817         // do nothing
11818 
11819       // Diagnose implicit declarations introduced by elaborated types.
11820       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11821         unsigned Kind = 0;
11822         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11823         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11824         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11825         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11826         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11827         Invalid = true;
11828 
11829       // Otherwise it's a declaration.  Call out a particularly common
11830       // case here.
11831       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11832         unsigned Kind = 0;
11833         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11834         Diag(NameLoc, diag::err_tag_definition_of_typedef)
11835           << Name << Kind << TND->getUnderlyingType();
11836         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11837         Invalid = true;
11838 
11839       // Otherwise, diagnose.
11840       } else {
11841         // The tag name clashes with something else in the target scope,
11842         // issue an error and recover by making this tag be anonymous.
11843         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11844         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11845         Name = nullptr;
11846         Invalid = true;
11847       }
11848 
11849       // The existing declaration isn't relevant to us; we're in a
11850       // new scope, so clear out the previous declaration.
11851       Previous.clear();
11852     }
11853   }
11854 
11855 CreateNewDecl:
11856 
11857   TagDecl *PrevDecl = nullptr;
11858   if (Previous.isSingleResult())
11859     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11860 
11861   // If there is an identifier, use the location of the identifier as the
11862   // location of the decl, otherwise use the location of the struct/union
11863   // keyword.
11864   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11865 
11866   // Otherwise, create a new declaration. If there is a previous
11867   // declaration of the same entity, the two will be linked via
11868   // PrevDecl.
11869   TagDecl *New;
11870 
11871   bool IsForwardReference = false;
11872   if (Kind == TTK_Enum) {
11873     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11874     // enum X { A, B, C } D;    D should chain to X.
11875     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11876                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11877                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11878     // If this is an undefined enum, warn.
11879     if (TUK != TUK_Definition && !Invalid) {
11880       TagDecl *Def;
11881       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11882           cast<EnumDecl>(New)->isFixed()) {
11883         // C++0x: 7.2p2: opaque-enum-declaration.
11884         // Conflicts are diagnosed above. Do nothing.
11885       }
11886       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11887         Diag(Loc, diag::ext_forward_ref_enum_def)
11888           << New;
11889         Diag(Def->getLocation(), diag::note_previous_definition);
11890       } else {
11891         unsigned DiagID = diag::ext_forward_ref_enum;
11892         if (getLangOpts().MSVCCompat)
11893           DiagID = diag::ext_ms_forward_ref_enum;
11894         else if (getLangOpts().CPlusPlus)
11895           DiagID = diag::err_forward_ref_enum;
11896         Diag(Loc, DiagID);
11897 
11898         // If this is a forward-declared reference to an enumeration, make a
11899         // note of it; we won't actually be introducing the declaration into
11900         // the declaration context.
11901         if (TUK == TUK_Reference)
11902           IsForwardReference = true;
11903       }
11904     }
11905 
11906     if (EnumUnderlying) {
11907       EnumDecl *ED = cast<EnumDecl>(New);
11908       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11909         ED->setIntegerTypeSourceInfo(TI);
11910       else
11911         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11912       ED->setPromotionType(ED->getIntegerType());
11913     }
11914 
11915   } else {
11916     // struct/union/class
11917 
11918     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11919     // struct X { int A; } D;    D should chain to X.
11920     if (getLangOpts().CPlusPlus) {
11921       // FIXME: Look for a way to use RecordDecl for simple structs.
11922       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11923                                   cast_or_null<CXXRecordDecl>(PrevDecl));
11924 
11925       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11926         StdBadAlloc = cast<CXXRecordDecl>(New);
11927     } else
11928       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11929                                cast_or_null<RecordDecl>(PrevDecl));
11930   }
11931 
11932   // C++11 [dcl.type]p3:
11933   //   A type-specifier-seq shall not define a class or enumeration [...].
11934   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11935     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11936       << Context.getTagDeclType(New);
11937     Invalid = true;
11938   }
11939 
11940   // Maybe add qualifier info.
11941   if (SS.isNotEmpty()) {
11942     if (SS.isSet()) {
11943       // If this is either a declaration or a definition, check the
11944       // nested-name-specifier against the current context. We don't do this
11945       // for explicit specializations, because they have similar checking
11946       // (with more specific diagnostics) in the call to
11947       // CheckMemberSpecialization, below.
11948       if (!isExplicitSpecialization &&
11949           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11950           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
11951         Invalid = true;
11952 
11953       New->setQualifierInfo(SS.getWithLocInContext(Context));
11954       if (TemplateParameterLists.size() > 0) {
11955         New->setTemplateParameterListsInfo(Context,
11956                                            TemplateParameterLists.size(),
11957                                            TemplateParameterLists.data());
11958       }
11959     }
11960     else
11961       Invalid = true;
11962   }
11963 
11964   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11965     // Add alignment attributes if necessary; these attributes are checked when
11966     // the ASTContext lays out the structure.
11967     //
11968     // It is important for implementing the correct semantics that this
11969     // happen here (in act on tag decl). The #pragma pack stack is
11970     // maintained as a result of parser callbacks which can occur at
11971     // many points during the parsing of a struct declaration (because
11972     // the #pragma tokens are effectively skipped over during the
11973     // parsing of the struct).
11974     if (TUK == TUK_Definition) {
11975       AddAlignmentAttributesForRecord(RD);
11976       AddMsStructLayoutForRecord(RD);
11977     }
11978   }
11979 
11980   if (ModulePrivateLoc.isValid()) {
11981     if (isExplicitSpecialization)
11982       Diag(New->getLocation(), diag::err_module_private_specialization)
11983         << 2
11984         << FixItHint::CreateRemoval(ModulePrivateLoc);
11985     // __module_private__ does not apply to local classes. However, we only
11986     // diagnose this as an error when the declaration specifiers are
11987     // freestanding. Here, we just ignore the __module_private__.
11988     else if (!SearchDC->isFunctionOrMethod())
11989       New->setModulePrivate();
11990   }
11991 
11992   // If this is a specialization of a member class (of a class template),
11993   // check the specialization.
11994   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11995     Invalid = true;
11996 
11997   // If we're declaring or defining a tag in function prototype scope in C,
11998   // note that this type can only be used within the function and add it to
11999   // the list of decls to inject into the function definition scope.
12000   if ((Name || Kind == TTK_Enum) &&
12001       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12002     if (getLangOpts().CPlusPlus) {
12003       // C++ [dcl.fct]p6:
12004       //   Types shall not be defined in return or parameter types.
12005       if (TUK == TUK_Definition && !IsTypeSpecifier) {
12006         Diag(Loc, diag::err_type_defined_in_param_type)
12007             << Name;
12008         Invalid = true;
12009       }
12010     } else {
12011       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12012     }
12013     DeclsInPrototypeScope.push_back(New);
12014   }
12015 
12016   if (Invalid)
12017     New->setInvalidDecl();
12018 
12019   if (Attr)
12020     ProcessDeclAttributeList(S, New, Attr);
12021 
12022   // Set the lexical context. If the tag has a C++ scope specifier, the
12023   // lexical context will be different from the semantic context.
12024   New->setLexicalDeclContext(CurContext);
12025 
12026   // Mark this as a friend decl if applicable.
12027   // In Microsoft mode, a friend declaration also acts as a forward
12028   // declaration so we always pass true to setObjectOfFriendDecl to make
12029   // the tag name visible.
12030   if (TUK == TUK_Friend)
12031     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12032 
12033   // Set the access specifier.
12034   if (!Invalid && SearchDC->isRecord())
12035     SetMemberAccessSpecifier(New, PrevDecl, AS);
12036 
12037   if (TUK == TUK_Definition)
12038     New->startDefinition();
12039 
12040   // If this has an identifier, add it to the scope stack.
12041   if (TUK == TUK_Friend) {
12042     // We might be replacing an existing declaration in the lookup tables;
12043     // if so, borrow its access specifier.
12044     if (PrevDecl)
12045       New->setAccess(PrevDecl->getAccess());
12046 
12047     DeclContext *DC = New->getDeclContext()->getRedeclContext();
12048     DC->makeDeclVisibleInContext(New);
12049     if (Name) // can be null along some error paths
12050       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12051         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12052   } else if (Name) {
12053     S = getNonFieldDeclScope(S);
12054     PushOnScopeChains(New, S, !IsForwardReference);
12055     if (IsForwardReference)
12056       SearchDC->makeDeclVisibleInContext(New);
12057 
12058   } else {
12059     CurContext->addDecl(New);
12060   }
12061 
12062   // If this is the C FILE type, notify the AST context.
12063   if (IdentifierInfo *II = New->getIdentifier())
12064     if (!New->isInvalidDecl() &&
12065         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12066         II->isStr("FILE"))
12067       Context.setFILEDecl(New);
12068 
12069   if (PrevDecl)
12070     mergeDeclAttributes(New, PrevDecl);
12071 
12072   // If there's a #pragma GCC visibility in scope, set the visibility of this
12073   // record.
12074   AddPushedVisibilityAttribute(New);
12075 
12076   OwnedDecl = true;
12077   // In C++, don't return an invalid declaration. We can't recover well from
12078   // the cases where we make the type anonymous.
12079   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12080 }
12081 
ActOnTagStartDefinition(Scope * S,Decl * TagD)12082 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12083   AdjustDeclIfTemplate(TagD);
12084   TagDecl *Tag = cast<TagDecl>(TagD);
12085 
12086   // Enter the tag context.
12087   PushDeclContext(S, Tag);
12088 
12089   ActOnDocumentableDecl(TagD);
12090 
12091   // If there's a #pragma GCC visibility in scope, set the visibility of this
12092   // record.
12093   AddPushedVisibilityAttribute(Tag);
12094 }
12095 
ActOnObjCContainerStartDefinition(Decl * IDecl)12096 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12097   assert(isa<ObjCContainerDecl>(IDecl) &&
12098          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12099   DeclContext *OCD = cast<DeclContext>(IDecl);
12100   assert(getContainingDC(OCD) == CurContext &&
12101       "The next DeclContext should be lexically contained in the current one.");
12102   CurContext = OCD;
12103   return IDecl;
12104 }
12105 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)12106 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12107                                            SourceLocation FinalLoc,
12108                                            bool IsFinalSpelledSealed,
12109                                            SourceLocation LBraceLoc) {
12110   AdjustDeclIfTemplate(TagD);
12111   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12112 
12113   FieldCollector->StartClass();
12114 
12115   if (!Record->getIdentifier())
12116     return;
12117 
12118   if (FinalLoc.isValid())
12119     Record->addAttr(new (Context)
12120                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12121 
12122   // C++ [class]p2:
12123   //   [...] The class-name is also inserted into the scope of the
12124   //   class itself; this is known as the injected-class-name. For
12125   //   purposes of access checking, the injected-class-name is treated
12126   //   as if it were a public member name.
12127   CXXRecordDecl *InjectedClassName
12128     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12129                             Record->getLocStart(), Record->getLocation(),
12130                             Record->getIdentifier(),
12131                             /*PrevDecl=*/nullptr,
12132                             /*DelayTypeCreation=*/true);
12133   Context.getTypeDeclType(InjectedClassName, Record);
12134   InjectedClassName->setImplicit();
12135   InjectedClassName->setAccess(AS_public);
12136   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12137       InjectedClassName->setDescribedClassTemplate(Template);
12138   PushOnScopeChains(InjectedClassName, S);
12139   assert(InjectedClassName->isInjectedClassName() &&
12140          "Broken injected-class-name");
12141 }
12142 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)12143 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12144                                     SourceLocation RBraceLoc) {
12145   AdjustDeclIfTemplate(TagD);
12146   TagDecl *Tag = cast<TagDecl>(TagD);
12147   Tag->setRBraceLoc(RBraceLoc);
12148 
12149   // Make sure we "complete" the definition even it is invalid.
12150   if (Tag->isBeingDefined()) {
12151     assert(Tag->isInvalidDecl() && "We should already have completed it");
12152     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12153       RD->completeDefinition();
12154   }
12155 
12156   if (isa<CXXRecordDecl>(Tag))
12157     FieldCollector->FinishClass();
12158 
12159   // Exit this scope of this tag's definition.
12160   PopDeclContext();
12161 
12162   if (getCurLexicalContext()->isObjCContainer() &&
12163       Tag->getDeclContext()->isFileContext())
12164     Tag->setTopLevelDeclInObjCContainer();
12165 
12166   // Notify the consumer that we've defined a tag.
12167   if (!Tag->isInvalidDecl())
12168     Consumer.HandleTagDeclDefinition(Tag);
12169 }
12170 
ActOnObjCContainerFinishDefinition()12171 void Sema::ActOnObjCContainerFinishDefinition() {
12172   // Exit this scope of this interface definition.
12173   PopDeclContext();
12174 }
12175 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)12176 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12177   assert(DC == CurContext && "Mismatch of container contexts");
12178   OriginalLexicalContext = DC;
12179   ActOnObjCContainerFinishDefinition();
12180 }
12181 
ActOnObjCReenterContainerContext(DeclContext * DC)12182 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12183   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12184   OriginalLexicalContext = nullptr;
12185 }
12186 
ActOnTagDefinitionError(Scope * S,Decl * TagD)12187 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12188   AdjustDeclIfTemplate(TagD);
12189   TagDecl *Tag = cast<TagDecl>(TagD);
12190   Tag->setInvalidDecl();
12191 
12192   // Make sure we "complete" the definition even it is invalid.
12193   if (Tag->isBeingDefined()) {
12194     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12195       RD->completeDefinition();
12196   }
12197 
12198   // We're undoing ActOnTagStartDefinition here, not
12199   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12200   // the FieldCollector.
12201 
12202   PopDeclContext();
12203 }
12204 
12205 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)12206 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12207                                 IdentifierInfo *FieldName,
12208                                 QualType FieldTy, bool IsMsStruct,
12209                                 Expr *BitWidth, bool *ZeroWidth) {
12210   // Default to true; that shouldn't confuse checks for emptiness
12211   if (ZeroWidth)
12212     *ZeroWidth = true;
12213 
12214   // C99 6.7.2.1p4 - verify the field type.
12215   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12216   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12217     // Handle incomplete types with specific error.
12218     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12219       return ExprError();
12220     if (FieldName)
12221       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12222         << FieldName << FieldTy << BitWidth->getSourceRange();
12223     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12224       << FieldTy << BitWidth->getSourceRange();
12225   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12226                                              UPPC_BitFieldWidth))
12227     return ExprError();
12228 
12229   // If the bit-width is type- or value-dependent, don't try to check
12230   // it now.
12231   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12232     return BitWidth;
12233 
12234   llvm::APSInt Value;
12235   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12236   if (ICE.isInvalid())
12237     return ICE;
12238   BitWidth = ICE.get();
12239 
12240   if (Value != 0 && ZeroWidth)
12241     *ZeroWidth = false;
12242 
12243   // Zero-width bitfield is ok for anonymous field.
12244   if (Value == 0 && FieldName)
12245     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12246 
12247   if (Value.isSigned() && Value.isNegative()) {
12248     if (FieldName)
12249       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12250                << FieldName << Value.toString(10);
12251     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12252       << Value.toString(10);
12253   }
12254 
12255   if (!FieldTy->isDependentType()) {
12256     uint64_t TypeSize = Context.getTypeSize(FieldTy);
12257     if (Value.getZExtValue() > TypeSize) {
12258       if (!getLangOpts().CPlusPlus || IsMsStruct ||
12259           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12260         if (FieldName)
12261           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
12262             << FieldName << (unsigned)Value.getZExtValue()
12263             << (unsigned)TypeSize;
12264 
12265         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
12266           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12267       }
12268 
12269       if (FieldName)
12270         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
12271           << FieldName << (unsigned)Value.getZExtValue()
12272           << (unsigned)TypeSize;
12273       else
12274         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
12275           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12276     }
12277   }
12278 
12279   return BitWidth;
12280 }
12281 
12282 /// ActOnField - Each field of a C struct/union is passed into this in order
12283 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)12284 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12285                        Declarator &D, Expr *BitfieldWidth) {
12286   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12287                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12288                                /*InitStyle=*/ICIS_NoInit, AS_public);
12289   return Res;
12290 }
12291 
12292 /// HandleField - Analyze a field of a C struct or a C++ data member.
12293 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)12294 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12295                              SourceLocation DeclStart,
12296                              Declarator &D, Expr *BitWidth,
12297                              InClassInitStyle InitStyle,
12298                              AccessSpecifier AS) {
12299   IdentifierInfo *II = D.getIdentifier();
12300   SourceLocation Loc = DeclStart;
12301   if (II) Loc = D.getIdentifierLoc();
12302 
12303   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12304   QualType T = TInfo->getType();
12305   if (getLangOpts().CPlusPlus) {
12306     CheckExtraCXXDefaultArguments(D);
12307 
12308     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12309                                         UPPC_DataMemberType)) {
12310       D.setInvalidType();
12311       T = Context.IntTy;
12312       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12313     }
12314   }
12315 
12316   // TR 18037 does not allow fields to be declared with address spaces.
12317   if (T.getQualifiers().hasAddressSpace()) {
12318     Diag(Loc, diag::err_field_with_address_space);
12319     D.setInvalidType();
12320   }
12321 
12322   // OpenCL 1.2 spec, s6.9 r:
12323   // The event type cannot be used to declare a structure or union field.
12324   if (LangOpts.OpenCL && T->isEventT()) {
12325     Diag(Loc, diag::err_event_t_struct_field);
12326     D.setInvalidType();
12327   }
12328 
12329   DiagnoseFunctionSpecifiers(D.getDeclSpec());
12330 
12331   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12332     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12333          diag::err_invalid_thread)
12334       << DeclSpec::getSpecifierName(TSCS);
12335 
12336   // Check to see if this name was declared as a member previously
12337   NamedDecl *PrevDecl = nullptr;
12338   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12339   LookupName(Previous, S);
12340   switch (Previous.getResultKind()) {
12341     case LookupResult::Found:
12342     case LookupResult::FoundUnresolvedValue:
12343       PrevDecl = Previous.getAsSingle<NamedDecl>();
12344       break;
12345 
12346     case LookupResult::FoundOverloaded:
12347       PrevDecl = Previous.getRepresentativeDecl();
12348       break;
12349 
12350     case LookupResult::NotFound:
12351     case LookupResult::NotFoundInCurrentInstantiation:
12352     case LookupResult::Ambiguous:
12353       break;
12354   }
12355   Previous.suppressDiagnostics();
12356 
12357   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12358     // Maybe we will complain about the shadowed template parameter.
12359     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12360     // Just pretend that we didn't see the previous declaration.
12361     PrevDecl = nullptr;
12362   }
12363 
12364   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12365     PrevDecl = nullptr;
12366 
12367   bool Mutable
12368     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12369   SourceLocation TSSL = D.getLocStart();
12370   FieldDecl *NewFD
12371     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12372                      TSSL, AS, PrevDecl, &D);
12373 
12374   if (NewFD->isInvalidDecl())
12375     Record->setInvalidDecl();
12376 
12377   if (D.getDeclSpec().isModulePrivateSpecified())
12378     NewFD->setModulePrivate();
12379 
12380   if (NewFD->isInvalidDecl() && PrevDecl) {
12381     // Don't introduce NewFD into scope; there's already something
12382     // with the same name in the same scope.
12383   } else if (II) {
12384     PushOnScopeChains(NewFD, S);
12385   } else
12386     Record->addDecl(NewFD);
12387 
12388   return NewFD;
12389 }
12390 
12391 /// \brief Build a new FieldDecl and check its well-formedness.
12392 ///
12393 /// This routine builds a new FieldDecl given the fields name, type,
12394 /// record, etc. \p PrevDecl should refer to any previous declaration
12395 /// with the same name and in the same scope as the field to be
12396 /// created.
12397 ///
12398 /// \returns a new FieldDecl.
12399 ///
12400 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)12401 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12402                                 TypeSourceInfo *TInfo,
12403                                 RecordDecl *Record, SourceLocation Loc,
12404                                 bool Mutable, Expr *BitWidth,
12405                                 InClassInitStyle InitStyle,
12406                                 SourceLocation TSSL,
12407                                 AccessSpecifier AS, NamedDecl *PrevDecl,
12408                                 Declarator *D) {
12409   IdentifierInfo *II = Name.getAsIdentifierInfo();
12410   bool InvalidDecl = false;
12411   if (D) InvalidDecl = D->isInvalidType();
12412 
12413   // If we receive a broken type, recover by assuming 'int' and
12414   // marking this declaration as invalid.
12415   if (T.isNull()) {
12416     InvalidDecl = true;
12417     T = Context.IntTy;
12418   }
12419 
12420   QualType EltTy = Context.getBaseElementType(T);
12421   if (!EltTy->isDependentType()) {
12422     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
12423       // Fields of incomplete type force their record to be invalid.
12424       Record->setInvalidDecl();
12425       InvalidDecl = true;
12426     } else {
12427       NamedDecl *Def;
12428       EltTy->isIncompleteType(&Def);
12429       if (Def && Def->isInvalidDecl()) {
12430         Record->setInvalidDecl();
12431         InvalidDecl = true;
12432       }
12433     }
12434   }
12435 
12436   // OpenCL v1.2 s6.9.c: bitfields are not supported.
12437   if (BitWidth && getLangOpts().OpenCL) {
12438     Diag(Loc, diag::err_opencl_bitfields);
12439     InvalidDecl = true;
12440   }
12441 
12442   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12443   // than a variably modified type.
12444   if (!InvalidDecl && T->isVariablyModifiedType()) {
12445     bool SizeIsNegative;
12446     llvm::APSInt Oversized;
12447 
12448     TypeSourceInfo *FixedTInfo =
12449       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
12450                                                     SizeIsNegative,
12451                                                     Oversized);
12452     if (FixedTInfo) {
12453       Diag(Loc, diag::warn_illegal_constant_array_size);
12454       TInfo = FixedTInfo;
12455       T = FixedTInfo->getType();
12456     } else {
12457       if (SizeIsNegative)
12458         Diag(Loc, diag::err_typecheck_negative_array_size);
12459       else if (Oversized.getBoolValue())
12460         Diag(Loc, diag::err_array_too_large)
12461           << Oversized.toString(10);
12462       else
12463         Diag(Loc, diag::err_typecheck_field_variable_size);
12464       InvalidDecl = true;
12465     }
12466   }
12467 
12468   // Fields can not have abstract class types
12469   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
12470                                              diag::err_abstract_type_in_decl,
12471                                              AbstractFieldType))
12472     InvalidDecl = true;
12473 
12474   bool ZeroWidth = false;
12475   // If this is declared as a bit-field, check the bit-field.
12476   if (!InvalidDecl && BitWidth) {
12477     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
12478                               &ZeroWidth).get();
12479     if (!BitWidth) {
12480       InvalidDecl = true;
12481       BitWidth = nullptr;
12482       ZeroWidth = false;
12483     }
12484   }
12485 
12486   // Check that 'mutable' is consistent with the type of the declaration.
12487   if (!InvalidDecl && Mutable) {
12488     unsigned DiagID = 0;
12489     if (T->isReferenceType())
12490       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
12491                                         : diag::err_mutable_reference;
12492     else if (T.isConstQualified())
12493       DiagID = diag::err_mutable_const;
12494 
12495     if (DiagID) {
12496       SourceLocation ErrLoc = Loc;
12497       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
12498         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
12499       Diag(ErrLoc, DiagID);
12500       if (DiagID != diag::ext_mutable_reference) {
12501         Mutable = false;
12502         InvalidDecl = true;
12503       }
12504     }
12505   }
12506 
12507   // C++11 [class.union]p8 (DR1460):
12508   //   At most one variant member of a union may have a
12509   //   brace-or-equal-initializer.
12510   if (InitStyle != ICIS_NoInit)
12511     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
12512 
12513   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
12514                                        BitWidth, Mutable, InitStyle);
12515   if (InvalidDecl)
12516     NewFD->setInvalidDecl();
12517 
12518   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
12519     Diag(Loc, diag::err_duplicate_member) << II;
12520     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12521     NewFD->setInvalidDecl();
12522   }
12523 
12524   if (!InvalidDecl && getLangOpts().CPlusPlus) {
12525     if (Record->isUnion()) {
12526       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12527         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
12528         if (RDecl->getDefinition()) {
12529           // C++ [class.union]p1: An object of a class with a non-trivial
12530           // constructor, a non-trivial copy constructor, a non-trivial
12531           // destructor, or a non-trivial copy assignment operator
12532           // cannot be a member of a union, nor can an array of such
12533           // objects.
12534           if (CheckNontrivialField(NewFD))
12535             NewFD->setInvalidDecl();
12536         }
12537       }
12538 
12539       // C++ [class.union]p1: If a union contains a member of reference type,
12540       // the program is ill-formed, except when compiling with MSVC extensions
12541       // enabled.
12542       if (EltTy->isReferenceType()) {
12543         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
12544                                     diag::ext_union_member_of_reference_type :
12545                                     diag::err_union_member_of_reference_type)
12546           << NewFD->getDeclName() << EltTy;
12547         if (!getLangOpts().MicrosoftExt)
12548           NewFD->setInvalidDecl();
12549       }
12550     }
12551   }
12552 
12553   // FIXME: We need to pass in the attributes given an AST
12554   // representation, not a parser representation.
12555   if (D) {
12556     // FIXME: The current scope is almost... but not entirely... correct here.
12557     ProcessDeclAttributes(getCurScope(), NewFD, *D);
12558 
12559     if (NewFD->hasAttrs())
12560       CheckAlignasUnderalignment(NewFD);
12561   }
12562 
12563   // In auto-retain/release, infer strong retension for fields of
12564   // retainable type.
12565   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
12566     NewFD->setInvalidDecl();
12567 
12568   if (T.isObjCGCWeak())
12569     Diag(Loc, diag::warn_attribute_weak_on_field);
12570 
12571   NewFD->setAccess(AS);
12572   return NewFD;
12573 }
12574 
CheckNontrivialField(FieldDecl * FD)12575 bool Sema::CheckNontrivialField(FieldDecl *FD) {
12576   assert(FD);
12577   assert(getLangOpts().CPlusPlus && "valid check only for C++");
12578 
12579   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12580     return false;
12581 
12582   QualType EltTy = Context.getBaseElementType(FD->getType());
12583   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12584     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12585     if (RDecl->getDefinition()) {
12586       // We check for copy constructors before constructors
12587       // because otherwise we'll never get complaints about
12588       // copy constructors.
12589 
12590       CXXSpecialMember member = CXXInvalid;
12591       // We're required to check for any non-trivial constructors. Since the
12592       // implicit default constructor is suppressed if there are any
12593       // user-declared constructors, we just need to check that there is a
12594       // trivial default constructor and a trivial copy constructor. (We don't
12595       // worry about move constructors here, since this is a C++98 check.)
12596       if (RDecl->hasNonTrivialCopyConstructor())
12597         member = CXXCopyConstructor;
12598       else if (!RDecl->hasTrivialDefaultConstructor())
12599         member = CXXDefaultConstructor;
12600       else if (RDecl->hasNonTrivialCopyAssignment())
12601         member = CXXCopyAssignment;
12602       else if (RDecl->hasNonTrivialDestructor())
12603         member = CXXDestructor;
12604 
12605       if (member != CXXInvalid) {
12606         if (!getLangOpts().CPlusPlus11 &&
12607             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12608           // Objective-C++ ARC: it is an error to have a non-trivial field of
12609           // a union. However, system headers in Objective-C programs
12610           // occasionally have Objective-C lifetime objects within unions,
12611           // and rather than cause the program to fail, we make those
12612           // members unavailable.
12613           SourceLocation Loc = FD->getLocation();
12614           if (getSourceManager().isInSystemHeader(Loc)) {
12615             if (!FD->hasAttr<UnavailableAttr>())
12616               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12617                                   "this system field has retaining ownership",
12618                                   Loc));
12619             return false;
12620           }
12621         }
12622 
12623         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12624                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12625                diag::err_illegal_union_or_anon_struct_member)
12626           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12627         DiagnoseNontrivial(RDecl, member);
12628         return !getLangOpts().CPlusPlus11;
12629       }
12630     }
12631   }
12632 
12633   return false;
12634 }
12635 
12636 /// TranslateIvarVisibility - Translate visibility from a token ID to an
12637 ///  AST enum value.
12638 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)12639 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12640   switch (ivarVisibility) {
12641   default: llvm_unreachable("Unknown visitibility kind");
12642   case tok::objc_private: return ObjCIvarDecl::Private;
12643   case tok::objc_public: return ObjCIvarDecl::Public;
12644   case tok::objc_protected: return ObjCIvarDecl::Protected;
12645   case tok::objc_package: return ObjCIvarDecl::Package;
12646   }
12647 }
12648 
12649 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
12650 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)12651 Decl *Sema::ActOnIvar(Scope *S,
12652                                 SourceLocation DeclStart,
12653                                 Declarator &D, Expr *BitfieldWidth,
12654                                 tok::ObjCKeywordKind Visibility) {
12655 
12656   IdentifierInfo *II = D.getIdentifier();
12657   Expr *BitWidth = (Expr*)BitfieldWidth;
12658   SourceLocation Loc = DeclStart;
12659   if (II) Loc = D.getIdentifierLoc();
12660 
12661   // FIXME: Unnamed fields can be handled in various different ways, for
12662   // example, unnamed unions inject all members into the struct namespace!
12663 
12664   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12665   QualType T = TInfo->getType();
12666 
12667   if (BitWidth) {
12668     // 6.7.2.1p3, 6.7.2.1p4
12669     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12670     if (!BitWidth)
12671       D.setInvalidType();
12672   } else {
12673     // Not a bitfield.
12674 
12675     // validate II.
12676 
12677   }
12678   if (T->isReferenceType()) {
12679     Diag(Loc, diag::err_ivar_reference_type);
12680     D.setInvalidType();
12681   }
12682   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12683   // than a variably modified type.
12684   else if (T->isVariablyModifiedType()) {
12685     Diag(Loc, diag::err_typecheck_ivar_variable_size);
12686     D.setInvalidType();
12687   }
12688 
12689   // Get the visibility (access control) for this ivar.
12690   ObjCIvarDecl::AccessControl ac =
12691     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12692                                         : ObjCIvarDecl::None;
12693   // Must set ivar's DeclContext to its enclosing interface.
12694   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12695   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12696     return nullptr;
12697   ObjCContainerDecl *EnclosingContext;
12698   if (ObjCImplementationDecl *IMPDecl =
12699       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12700     if (LangOpts.ObjCRuntime.isFragile()) {
12701     // Case of ivar declared in an implementation. Context is that of its class.
12702       EnclosingContext = IMPDecl->getClassInterface();
12703       assert(EnclosingContext && "Implementation has no class interface!");
12704     }
12705     else
12706       EnclosingContext = EnclosingDecl;
12707   } else {
12708     if (ObjCCategoryDecl *CDecl =
12709         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12710       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12711         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12712         return nullptr;
12713       }
12714     }
12715     EnclosingContext = EnclosingDecl;
12716   }
12717 
12718   // Construct the decl.
12719   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12720                                              DeclStart, Loc, II, T,
12721                                              TInfo, ac, (Expr *)BitfieldWidth);
12722 
12723   if (II) {
12724     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12725                                            ForRedeclaration);
12726     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12727         && !isa<TagDecl>(PrevDecl)) {
12728       Diag(Loc, diag::err_duplicate_member) << II;
12729       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12730       NewID->setInvalidDecl();
12731     }
12732   }
12733 
12734   // Process attributes attached to the ivar.
12735   ProcessDeclAttributes(S, NewID, D);
12736 
12737   if (D.isInvalidType())
12738     NewID->setInvalidDecl();
12739 
12740   // In ARC, infer 'retaining' for ivars of retainable type.
12741   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12742     NewID->setInvalidDecl();
12743 
12744   if (D.getDeclSpec().isModulePrivateSpecified())
12745     NewID->setModulePrivate();
12746 
12747   if (II) {
12748     // FIXME: When interfaces are DeclContexts, we'll need to add
12749     // these to the interface.
12750     S->AddDecl(NewID);
12751     IdResolver.AddDecl(NewID);
12752   }
12753 
12754   if (LangOpts.ObjCRuntime.isNonFragile() &&
12755       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12756     Diag(Loc, diag::warn_ivars_in_interface);
12757 
12758   return NewID;
12759 }
12760 
12761 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12762 /// class and class extensions. For every class \@interface and class
12763 /// extension \@interface, if the last ivar is a bitfield of any type,
12764 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)12765 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12766                              SmallVectorImpl<Decl *> &AllIvarDecls) {
12767   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12768     return;
12769 
12770   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12771   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12772 
12773   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12774     return;
12775   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12776   if (!ID) {
12777     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12778       if (!CD->IsClassExtension())
12779         return;
12780     }
12781     // No need to add this to end of @implementation.
12782     else
12783       return;
12784   }
12785   // All conditions are met. Add a new bitfield to the tail end of ivars.
12786   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12787   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12788 
12789   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12790                               DeclLoc, DeclLoc, nullptr,
12791                               Context.CharTy,
12792                               Context.getTrivialTypeSourceInfo(Context.CharTy,
12793                                                                DeclLoc),
12794                               ObjCIvarDecl::Private, BW,
12795                               true);
12796   AllIvarDecls.push_back(Ivar);
12797 }
12798 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)12799 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12800                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
12801                        SourceLocation RBrac, AttributeList *Attr) {
12802   assert(EnclosingDecl && "missing record or interface decl");
12803 
12804   // If this is an Objective-C @implementation or category and we have
12805   // new fields here we should reset the layout of the interface since
12806   // it will now change.
12807   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12808     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12809     switch (DC->getKind()) {
12810     default: break;
12811     case Decl::ObjCCategory:
12812       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12813       break;
12814     case Decl::ObjCImplementation:
12815       Context.
12816         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12817       break;
12818     }
12819   }
12820 
12821   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12822 
12823   // Start counting up the number of named members; make sure to include
12824   // members of anonymous structs and unions in the total.
12825   unsigned NumNamedMembers = 0;
12826   if (Record) {
12827     for (const auto *I : Record->decls()) {
12828       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12829         if (IFD->getDeclName())
12830           ++NumNamedMembers;
12831     }
12832   }
12833 
12834   // Verify that all the fields are okay.
12835   SmallVector<FieldDecl*, 32> RecFields;
12836 
12837   bool ARCErrReported = false;
12838   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12839        i != end; ++i) {
12840     FieldDecl *FD = cast<FieldDecl>(*i);
12841 
12842     // Get the type for the field.
12843     const Type *FDTy = FD->getType().getTypePtr();
12844 
12845     if (!FD->isAnonymousStructOrUnion()) {
12846       // Remember all fields written by the user.
12847       RecFields.push_back(FD);
12848     }
12849 
12850     // If the field is already invalid for some reason, don't emit more
12851     // diagnostics about it.
12852     if (FD->isInvalidDecl()) {
12853       EnclosingDecl->setInvalidDecl();
12854       continue;
12855     }
12856 
12857     // C99 6.7.2.1p2:
12858     //   A structure or union shall not contain a member with
12859     //   incomplete or function type (hence, a structure shall not
12860     //   contain an instance of itself, but may contain a pointer to
12861     //   an instance of itself), except that the last member of a
12862     //   structure with more than one named member may have incomplete
12863     //   array type; such a structure (and any union containing,
12864     //   possibly recursively, a member that is such a structure)
12865     //   shall not be a member of a structure or an element of an
12866     //   array.
12867     if (FDTy->isFunctionType()) {
12868       // Field declared as a function.
12869       Diag(FD->getLocation(), diag::err_field_declared_as_function)
12870         << FD->getDeclName();
12871       FD->setInvalidDecl();
12872       EnclosingDecl->setInvalidDecl();
12873       continue;
12874     } else if (FDTy->isIncompleteArrayType() && Record &&
12875                ((i + 1 == Fields.end() && !Record->isUnion()) ||
12876                 ((getLangOpts().MicrosoftExt ||
12877                   getLangOpts().CPlusPlus) &&
12878                  (i + 1 == Fields.end() || Record->isUnion())))) {
12879       // Flexible array member.
12880       // Microsoft and g++ is more permissive regarding flexible array.
12881       // It will accept flexible array in union and also
12882       // as the sole element of a struct/class.
12883       unsigned DiagID = 0;
12884       if (Record->isUnion())
12885         DiagID = getLangOpts().MicrosoftExt
12886                      ? diag::ext_flexible_array_union_ms
12887                      : getLangOpts().CPlusPlus
12888                            ? diag::ext_flexible_array_union_gnu
12889                            : diag::err_flexible_array_union;
12890       else if (Fields.size() == 1)
12891         DiagID = getLangOpts().MicrosoftExt
12892                      ? diag::ext_flexible_array_empty_aggregate_ms
12893                      : getLangOpts().CPlusPlus
12894                            ? diag::ext_flexible_array_empty_aggregate_gnu
12895                            : NumNamedMembers < 1
12896                                  ? diag::err_flexible_array_empty_aggregate
12897                                  : 0;
12898 
12899       if (DiagID)
12900         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12901                                         << Record->getTagKind();
12902       // While the layout of types that contain virtual bases is not specified
12903       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12904       // virtual bases after the derived members.  This would make a flexible
12905       // array member declared at the end of an object not adjacent to the end
12906       // of the type.
12907       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12908         if (RD->getNumVBases() != 0)
12909           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12910             << FD->getDeclName() << Record->getTagKind();
12911       if (!getLangOpts().C99)
12912         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12913           << FD->getDeclName() << Record->getTagKind();
12914 
12915       // If the element type has a non-trivial destructor, we would not
12916       // implicitly destroy the elements, so disallow it for now.
12917       //
12918       // FIXME: GCC allows this. We should probably either implicitly delete
12919       // the destructor of the containing class, or just allow this.
12920       QualType BaseElem = Context.getBaseElementType(FD->getType());
12921       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12922         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12923           << FD->getDeclName() << FD->getType();
12924         FD->setInvalidDecl();
12925         EnclosingDecl->setInvalidDecl();
12926         continue;
12927       }
12928       // Okay, we have a legal flexible array member at the end of the struct.
12929       Record->setHasFlexibleArrayMember(true);
12930     } else if (!FDTy->isDependentType() &&
12931                RequireCompleteType(FD->getLocation(), FD->getType(),
12932                                    diag::err_field_incomplete)) {
12933       // Incomplete type
12934       FD->setInvalidDecl();
12935       EnclosingDecl->setInvalidDecl();
12936       continue;
12937     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12938       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
12939         // A type which contains a flexible array member is considered to be a
12940         // flexible array member.
12941         Record->setHasFlexibleArrayMember(true);
12942         if (!Record->isUnion()) {
12943           // If this is a struct/class and this is not the last element, reject
12944           // it.  Note that GCC supports variable sized arrays in the middle of
12945           // structures.
12946           if (i + 1 != Fields.end())
12947             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12948               << FD->getDeclName() << FD->getType();
12949           else {
12950             // We support flexible arrays at the end of structs in
12951             // other structs as an extension.
12952             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12953               << FD->getDeclName();
12954           }
12955         }
12956       }
12957       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12958           RequireNonAbstractType(FD->getLocation(), FD->getType(),
12959                                  diag::err_abstract_type_in_decl,
12960                                  AbstractIvarType)) {
12961         // Ivars can not have abstract class types
12962         FD->setInvalidDecl();
12963       }
12964       if (Record && FDTTy->getDecl()->hasObjectMember())
12965         Record->setHasObjectMember(true);
12966       if (Record && FDTTy->getDecl()->hasVolatileMember())
12967         Record->setHasVolatileMember(true);
12968     } else if (FDTy->isObjCObjectType()) {
12969       /// A field cannot be an Objective-c object
12970       Diag(FD->getLocation(), diag::err_statically_allocated_object)
12971         << FixItHint::CreateInsertion(FD->getLocation(), "*");
12972       QualType T = Context.getObjCObjectPointerType(FD->getType());
12973       FD->setType(T);
12974     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12975                (!getLangOpts().CPlusPlus || Record->isUnion())) {
12976       // It's an error in ARC if a field has lifetime.
12977       // We don't want to report this in a system header, though,
12978       // so we just make the field unavailable.
12979       // FIXME: that's really not sufficient; we need to make the type
12980       // itself invalid to, say, initialize or copy.
12981       QualType T = FD->getType();
12982       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12983       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12984         SourceLocation loc = FD->getLocation();
12985         if (getSourceManager().isInSystemHeader(loc)) {
12986           if (!FD->hasAttr<UnavailableAttr>()) {
12987             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12988                               "this system field has retaining ownership",
12989                               loc));
12990           }
12991         } else {
12992           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12993             << T->isBlockPointerType() << Record->getTagKind();
12994         }
12995         ARCErrReported = true;
12996       }
12997     } else if (getLangOpts().ObjC1 &&
12998                getLangOpts().getGC() != LangOptions::NonGC &&
12999                Record && !Record->hasObjectMember()) {
13000       if (FD->getType()->isObjCObjectPointerType() ||
13001           FD->getType().isObjCGCStrong())
13002         Record->setHasObjectMember(true);
13003       else if (Context.getAsArrayType(FD->getType())) {
13004         QualType BaseType = Context.getBaseElementType(FD->getType());
13005         if (BaseType->isRecordType() &&
13006             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13007           Record->setHasObjectMember(true);
13008         else if (BaseType->isObjCObjectPointerType() ||
13009                  BaseType.isObjCGCStrong())
13010                Record->setHasObjectMember(true);
13011       }
13012     }
13013     if (Record && FD->getType().isVolatileQualified())
13014       Record->setHasVolatileMember(true);
13015     // Keep track of the number of named members.
13016     if (FD->getIdentifier())
13017       ++NumNamedMembers;
13018   }
13019 
13020   // Okay, we successfully defined 'Record'.
13021   if (Record) {
13022     bool Completed = false;
13023     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13024       if (!CXXRecord->isInvalidDecl()) {
13025         // Set access bits correctly on the directly-declared conversions.
13026         for (CXXRecordDecl::conversion_iterator
13027                I = CXXRecord->conversion_begin(),
13028                E = CXXRecord->conversion_end(); I != E; ++I)
13029           I.setAccess((*I)->getAccess());
13030 
13031         if (!CXXRecord->isDependentType()) {
13032           if (CXXRecord->hasUserDeclaredDestructor()) {
13033             // Adjust user-defined destructor exception spec.
13034             if (getLangOpts().CPlusPlus11)
13035               AdjustDestructorExceptionSpec(CXXRecord,
13036                                             CXXRecord->getDestructor());
13037           }
13038 
13039           // Add any implicitly-declared members to this class.
13040           AddImplicitlyDeclaredMembersToClass(CXXRecord);
13041 
13042           // If we have virtual base classes, we may end up finding multiple
13043           // final overriders for a given virtual function. Check for this
13044           // problem now.
13045           if (CXXRecord->getNumVBases()) {
13046             CXXFinalOverriderMap FinalOverriders;
13047             CXXRecord->getFinalOverriders(FinalOverriders);
13048 
13049             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13050                                              MEnd = FinalOverriders.end();
13051                  M != MEnd; ++M) {
13052               for (OverridingMethods::iterator SO = M->second.begin(),
13053                                             SOEnd = M->second.end();
13054                    SO != SOEnd; ++SO) {
13055                 assert(SO->second.size() > 0 &&
13056                        "Virtual function without overridding functions?");
13057                 if (SO->second.size() == 1)
13058                   continue;
13059 
13060                 // C++ [class.virtual]p2:
13061                 //   In a derived class, if a virtual member function of a base
13062                 //   class subobject has more than one final overrider the
13063                 //   program is ill-formed.
13064                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13065                   << (const NamedDecl *)M->first << Record;
13066                 Diag(M->first->getLocation(),
13067                      diag::note_overridden_virtual_function);
13068                 for (OverridingMethods::overriding_iterator
13069                           OM = SO->second.begin(),
13070                        OMEnd = SO->second.end();
13071                      OM != OMEnd; ++OM)
13072                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
13073                     << (const NamedDecl *)M->first << OM->Method->getParent();
13074 
13075                 Record->setInvalidDecl();
13076               }
13077             }
13078             CXXRecord->completeDefinition(&FinalOverriders);
13079             Completed = true;
13080           }
13081         }
13082       }
13083     }
13084 
13085     if (!Completed)
13086       Record->completeDefinition();
13087 
13088     if (Record->hasAttrs()) {
13089       CheckAlignasUnderalignment(Record);
13090 
13091       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13092         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13093                                            IA->getRange(), IA->getBestCase(),
13094                                            IA->getSemanticSpelling());
13095     }
13096 
13097     // Check if the structure/union declaration is a type that can have zero
13098     // size in C. For C this is a language extension, for C++ it may cause
13099     // compatibility problems.
13100     bool CheckForZeroSize;
13101     if (!getLangOpts().CPlusPlus) {
13102       CheckForZeroSize = true;
13103     } else {
13104       // For C++ filter out types that cannot be referenced in C code.
13105       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13106       CheckForZeroSize =
13107           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13108           !CXXRecord->isDependentType() &&
13109           CXXRecord->isCLike();
13110     }
13111     if (CheckForZeroSize) {
13112       bool ZeroSize = true;
13113       bool IsEmpty = true;
13114       unsigned NonBitFields = 0;
13115       for (RecordDecl::field_iterator I = Record->field_begin(),
13116                                       E = Record->field_end();
13117            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13118         IsEmpty = false;
13119         if (I->isUnnamedBitfield()) {
13120           if (I->getBitWidthValue(Context) > 0)
13121             ZeroSize = false;
13122         } else {
13123           ++NonBitFields;
13124           QualType FieldType = I->getType();
13125           if (FieldType->isIncompleteType() ||
13126               !Context.getTypeSizeInChars(FieldType).isZero())
13127             ZeroSize = false;
13128         }
13129       }
13130 
13131       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13132       // allowed in C++, but warn if its declaration is inside
13133       // extern "C" block.
13134       if (ZeroSize) {
13135         Diag(RecLoc, getLangOpts().CPlusPlus ?
13136                          diag::warn_zero_size_struct_union_in_extern_c :
13137                          diag::warn_zero_size_struct_union_compat)
13138           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13139       }
13140 
13141       // Structs without named members are extension in C (C99 6.7.2.1p7),
13142       // but are accepted by GCC.
13143       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13144         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13145                                diag::ext_no_named_members_in_struct_union)
13146           << Record->isUnion();
13147       }
13148     }
13149   } else {
13150     ObjCIvarDecl **ClsFields =
13151       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13152     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13153       ID->setEndOfDefinitionLoc(RBrac);
13154       // Add ivar's to class's DeclContext.
13155       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13156         ClsFields[i]->setLexicalDeclContext(ID);
13157         ID->addDecl(ClsFields[i]);
13158       }
13159       // Must enforce the rule that ivars in the base classes may not be
13160       // duplicates.
13161       if (ID->getSuperClass())
13162         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13163     } else if (ObjCImplementationDecl *IMPDecl =
13164                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13165       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13166       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13167         // Ivar declared in @implementation never belongs to the implementation.
13168         // Only it is in implementation's lexical context.
13169         ClsFields[I]->setLexicalDeclContext(IMPDecl);
13170       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13171       IMPDecl->setIvarLBraceLoc(LBrac);
13172       IMPDecl->setIvarRBraceLoc(RBrac);
13173     } else if (ObjCCategoryDecl *CDecl =
13174                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13175       // case of ivars in class extension; all other cases have been
13176       // reported as errors elsewhere.
13177       // FIXME. Class extension does not have a LocEnd field.
13178       // CDecl->setLocEnd(RBrac);
13179       // Add ivar's to class extension's DeclContext.
13180       // Diagnose redeclaration of private ivars.
13181       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13182       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13183         if (IDecl) {
13184           if (const ObjCIvarDecl *ClsIvar =
13185               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13186             Diag(ClsFields[i]->getLocation(),
13187                  diag::err_duplicate_ivar_declaration);
13188             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13189             continue;
13190           }
13191           for (const auto *Ext : IDecl->known_extensions()) {
13192             if (const ObjCIvarDecl *ClsExtIvar
13193                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13194               Diag(ClsFields[i]->getLocation(),
13195                    diag::err_duplicate_ivar_declaration);
13196               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13197               continue;
13198             }
13199           }
13200         }
13201         ClsFields[i]->setLexicalDeclContext(CDecl);
13202         CDecl->addDecl(ClsFields[i]);
13203       }
13204       CDecl->setIvarLBraceLoc(LBrac);
13205       CDecl->setIvarRBraceLoc(RBrac);
13206     }
13207   }
13208 
13209   if (Attr)
13210     ProcessDeclAttributeList(S, Record, Attr);
13211 }
13212 
13213 /// \brief Determine whether the given integral value is representable within
13214 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)13215 static bool isRepresentableIntegerValue(ASTContext &Context,
13216                                         llvm::APSInt &Value,
13217                                         QualType T) {
13218   assert(T->isIntegralType(Context) && "Integral type required!");
13219   unsigned BitWidth = Context.getIntWidth(T);
13220 
13221   if (Value.isUnsigned() || Value.isNonNegative()) {
13222     if (T->isSignedIntegerOrEnumerationType())
13223       --BitWidth;
13224     return Value.getActiveBits() <= BitWidth;
13225   }
13226   return Value.getMinSignedBits() <= BitWidth;
13227 }
13228 
13229 // \brief Given an integral type, return the next larger integral type
13230 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)13231 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13232   // FIXME: Int128/UInt128 support, which also needs to be introduced into
13233   // enum checking below.
13234   assert(T->isIntegralType(Context) && "Integral type required!");
13235   const unsigned NumTypes = 4;
13236   QualType SignedIntegralTypes[NumTypes] = {
13237     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13238   };
13239   QualType UnsignedIntegralTypes[NumTypes] = {
13240     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13241     Context.UnsignedLongLongTy
13242   };
13243 
13244   unsigned BitWidth = Context.getTypeSize(T);
13245   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13246                                                         : UnsignedIntegralTypes;
13247   for (unsigned I = 0; I != NumTypes; ++I)
13248     if (Context.getTypeSize(Types[I]) > BitWidth)
13249       return Types[I];
13250 
13251   return QualType();
13252 }
13253 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)13254 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13255                                           EnumConstantDecl *LastEnumConst,
13256                                           SourceLocation IdLoc,
13257                                           IdentifierInfo *Id,
13258                                           Expr *Val) {
13259   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13260   llvm::APSInt EnumVal(IntWidth);
13261   QualType EltTy;
13262 
13263   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13264     Val = nullptr;
13265 
13266   if (Val)
13267     Val = DefaultLvalueConversion(Val).get();
13268 
13269   if (Val) {
13270     if (Enum->isDependentType() || Val->isTypeDependent())
13271       EltTy = Context.DependentTy;
13272     else {
13273       SourceLocation ExpLoc;
13274       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13275           !getLangOpts().MSVCCompat) {
13276         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13277         // constant-expression in the enumerator-definition shall be a converted
13278         // constant expression of the underlying type.
13279         EltTy = Enum->getIntegerType();
13280         ExprResult Converted =
13281           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13282                                            CCEK_Enumerator);
13283         if (Converted.isInvalid())
13284           Val = nullptr;
13285         else
13286           Val = Converted.get();
13287       } else if (!Val->isValueDependent() &&
13288                  !(Val = VerifyIntegerConstantExpression(Val,
13289                                                          &EnumVal).get())) {
13290         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13291       } else {
13292         if (Enum->isFixed()) {
13293           EltTy = Enum->getIntegerType();
13294 
13295           // In Obj-C and Microsoft mode, require the enumeration value to be
13296           // representable in the underlying type of the enumeration. In C++11,
13297           // we perform a non-narrowing conversion as part of converted constant
13298           // expression checking.
13299           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13300             if (getLangOpts().MSVCCompat) {
13301               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13302               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13303             } else
13304               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13305           } else
13306             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13307         } else if (getLangOpts().CPlusPlus) {
13308           // C++11 [dcl.enum]p5:
13309           //   If the underlying type is not fixed, the type of each enumerator
13310           //   is the type of its initializing value:
13311           //     - If an initializer is specified for an enumerator, the
13312           //       initializing value has the same type as the expression.
13313           EltTy = Val->getType();
13314         } else {
13315           // C99 6.7.2.2p2:
13316           //   The expression that defines the value of an enumeration constant
13317           //   shall be an integer constant expression that has a value
13318           //   representable as an int.
13319 
13320           // Complain if the value is not representable in an int.
13321           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13322             Diag(IdLoc, diag::ext_enum_value_not_int)
13323               << EnumVal.toString(10) << Val->getSourceRange()
13324               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13325           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13326             // Force the type of the expression to 'int'.
13327             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13328           }
13329           EltTy = Val->getType();
13330         }
13331       }
13332     }
13333   }
13334 
13335   if (!Val) {
13336     if (Enum->isDependentType())
13337       EltTy = Context.DependentTy;
13338     else if (!LastEnumConst) {
13339       // C++0x [dcl.enum]p5:
13340       //   If the underlying type is not fixed, the type of each enumerator
13341       //   is the type of its initializing value:
13342       //     - If no initializer is specified for the first enumerator, the
13343       //       initializing value has an unspecified integral type.
13344       //
13345       // GCC uses 'int' for its unspecified integral type, as does
13346       // C99 6.7.2.2p3.
13347       if (Enum->isFixed()) {
13348         EltTy = Enum->getIntegerType();
13349       }
13350       else {
13351         EltTy = Context.IntTy;
13352       }
13353     } else {
13354       // Assign the last value + 1.
13355       EnumVal = LastEnumConst->getInitVal();
13356       ++EnumVal;
13357       EltTy = LastEnumConst->getType();
13358 
13359       // Check for overflow on increment.
13360       if (EnumVal < LastEnumConst->getInitVal()) {
13361         // C++0x [dcl.enum]p5:
13362         //   If the underlying type is not fixed, the type of each enumerator
13363         //   is the type of its initializing value:
13364         //
13365         //     - Otherwise the type of the initializing value is the same as
13366         //       the type of the initializing value of the preceding enumerator
13367         //       unless the incremented value is not representable in that type,
13368         //       in which case the type is an unspecified integral type
13369         //       sufficient to contain the incremented value. If no such type
13370         //       exists, the program is ill-formed.
13371         QualType T = getNextLargerIntegralType(Context, EltTy);
13372         if (T.isNull() || Enum->isFixed()) {
13373           // There is no integral type larger enough to represent this
13374           // value. Complain, then allow the value to wrap around.
13375           EnumVal = LastEnumConst->getInitVal();
13376           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13377           ++EnumVal;
13378           if (Enum->isFixed())
13379             // When the underlying type is fixed, this is ill-formed.
13380             Diag(IdLoc, diag::err_enumerator_wrapped)
13381               << EnumVal.toString(10)
13382               << EltTy;
13383           else
13384             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13385               << EnumVal.toString(10);
13386         } else {
13387           EltTy = T;
13388         }
13389 
13390         // Retrieve the last enumerator's value, extent that type to the
13391         // type that is supposed to be large enough to represent the incremented
13392         // value, then increment.
13393         EnumVal = LastEnumConst->getInitVal();
13394         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13395         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13396         ++EnumVal;
13397 
13398         // If we're not in C++, diagnose the overflow of enumerator values,
13399         // which in C99 means that the enumerator value is not representable in
13400         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13401         // permits enumerator values that are representable in some larger
13402         // integral type.
13403         if (!getLangOpts().CPlusPlus && !T.isNull())
13404           Diag(IdLoc, diag::warn_enum_value_overflow);
13405       } else if (!getLangOpts().CPlusPlus &&
13406                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13407         // Enforce C99 6.7.2.2p2 even when we compute the next value.
13408         Diag(IdLoc, diag::ext_enum_value_not_int)
13409           << EnumVal.toString(10) << 1;
13410       }
13411     }
13412   }
13413 
13414   if (!EltTy->isDependentType()) {
13415     // Make the enumerator value match the signedness and size of the
13416     // enumerator's type.
13417     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
13418     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13419   }
13420 
13421   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
13422                                   Val, EnumVal);
13423 }
13424 
13425 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)13426 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
13427                               SourceLocation IdLoc, IdentifierInfo *Id,
13428                               AttributeList *Attr,
13429                               SourceLocation EqualLoc, Expr *Val) {
13430   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
13431   EnumConstantDecl *LastEnumConst =
13432     cast_or_null<EnumConstantDecl>(lastEnumConst);
13433 
13434   // The scope passed in may not be a decl scope.  Zip up the scope tree until
13435   // we find one that is.
13436   S = getNonFieldDeclScope(S);
13437 
13438   // Verify that there isn't already something declared with this name in this
13439   // scope.
13440   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
13441                                          ForRedeclaration);
13442   if (PrevDecl && PrevDecl->isTemplateParameter()) {
13443     // Maybe we will complain about the shadowed template parameter.
13444     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
13445     // Just pretend that we didn't see the previous declaration.
13446     PrevDecl = nullptr;
13447   }
13448 
13449   if (PrevDecl) {
13450     // When in C++, we may get a TagDecl with the same name; in this case the
13451     // enum constant will 'hide' the tag.
13452     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
13453            "Received TagDecl when not in C++!");
13454     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
13455       if (isa<EnumConstantDecl>(PrevDecl))
13456         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
13457       else
13458         Diag(IdLoc, diag::err_redefinition) << Id;
13459       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13460       return nullptr;
13461     }
13462   }
13463 
13464   // C++ [class.mem]p15:
13465   // If T is the name of a class, then each of the following shall have a name
13466   // different from T:
13467   // - every enumerator of every member of class T that is an unscoped
13468   // enumerated type
13469   if (CXXRecordDecl *Record
13470                       = dyn_cast<CXXRecordDecl>(
13471                              TheEnumDecl->getDeclContext()->getRedeclContext()))
13472     if (!TheEnumDecl->isScoped() &&
13473         Record->getIdentifier() && Record->getIdentifier() == Id)
13474       Diag(IdLoc, diag::err_member_name_of_class) << Id;
13475 
13476   EnumConstantDecl *New =
13477     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
13478 
13479   if (New) {
13480     // Process attributes.
13481     if (Attr) ProcessDeclAttributeList(S, New, Attr);
13482 
13483     // Register this decl in the current scope stack.
13484     New->setAccess(TheEnumDecl->getAccess());
13485     PushOnScopeChains(New, S);
13486   }
13487 
13488   ActOnDocumentableDecl(New);
13489 
13490   return New;
13491 }
13492 
13493 // Returns true when the enum initial expression does not trigger the
13494 // duplicate enum warning.  A few common cases are exempted as follows:
13495 // Element2 = Element1
13496 // Element2 = Element1 + 1
13497 // Element2 = Element1 - 1
13498 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)13499 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
13500   Expr *InitExpr = ECD->getInitExpr();
13501   if (!InitExpr)
13502     return true;
13503   InitExpr = InitExpr->IgnoreImpCasts();
13504 
13505   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
13506     if (!BO->isAdditiveOp())
13507       return true;
13508     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
13509     if (!IL)
13510       return true;
13511     if (IL->getValue() != 1)
13512       return true;
13513 
13514     InitExpr = BO->getLHS();
13515   }
13516 
13517   // This checks if the elements are from the same enum.
13518   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
13519   if (!DRE)
13520     return true;
13521 
13522   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
13523   if (!EnumConstant)
13524     return true;
13525 
13526   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
13527       Enum)
13528     return true;
13529 
13530   return false;
13531 }
13532 
13533 struct DupKey {
13534   int64_t val;
13535   bool isTombstoneOrEmptyKey;
DupKeyDupKey13536   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
13537     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
13538 };
13539 
GetDupKey(const llvm::APSInt & Val)13540 static DupKey GetDupKey(const llvm::APSInt& Val) {
13541   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
13542                 false);
13543 }
13544 
13545 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey13546   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey13547   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey13548   static unsigned getHashValue(const DupKey Key) {
13549     return (unsigned)(Key.val * 37);
13550   }
isEqualDenseMapInfoDupKey13551   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
13552     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
13553            LHS.val == RHS.val;
13554   }
13555 };
13556 
13557 // Emits a warning when an element is implicitly set a value that
13558 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)13559 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
13560                                         EnumDecl *Enum,
13561                                         QualType EnumType) {
13562   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
13563     return;
13564   // Avoid anonymous enums
13565   if (!Enum->getIdentifier())
13566     return;
13567 
13568   // Only check for small enums.
13569   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
13570     return;
13571 
13572   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
13573   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13574 
13575   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13576   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13577           ValueToVectorMap;
13578 
13579   DuplicatesVector DupVector;
13580   ValueToVectorMap EnumMap;
13581 
13582   // Populate the EnumMap with all values represented by enum constants without
13583   // an initialier.
13584   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13585     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13586 
13587     // Null EnumConstantDecl means a previous diagnostic has been emitted for
13588     // this constant.  Skip this enum since it may be ill-formed.
13589     if (!ECD) {
13590       return;
13591     }
13592 
13593     if (ECD->getInitExpr())
13594       continue;
13595 
13596     DupKey Key = GetDupKey(ECD->getInitVal());
13597     DeclOrVector &Entry = EnumMap[Key];
13598 
13599     // First time encountering this value.
13600     if (Entry.isNull())
13601       Entry = ECD;
13602   }
13603 
13604   // Create vectors for any values that has duplicates.
13605   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13606     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13607     if (!ValidDuplicateEnum(ECD, Enum))
13608       continue;
13609 
13610     DupKey Key = GetDupKey(ECD->getInitVal());
13611 
13612     DeclOrVector& Entry = EnumMap[Key];
13613     if (Entry.isNull())
13614       continue;
13615 
13616     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13617       // Ensure constants are different.
13618       if (D == ECD)
13619         continue;
13620 
13621       // Create new vector and push values onto it.
13622       ECDVector *Vec = new ECDVector();
13623       Vec->push_back(D);
13624       Vec->push_back(ECD);
13625 
13626       // Update entry to point to the duplicates vector.
13627       Entry = Vec;
13628 
13629       // Store the vector somewhere we can consult later for quick emission of
13630       // diagnostics.
13631       DupVector.push_back(Vec);
13632       continue;
13633     }
13634 
13635     ECDVector *Vec = Entry.get<ECDVector*>();
13636     // Make sure constants are not added more than once.
13637     if (*Vec->begin() == ECD)
13638       continue;
13639 
13640     Vec->push_back(ECD);
13641   }
13642 
13643   // Emit diagnostics.
13644   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13645                                   DupVectorEnd = DupVector.end();
13646        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13647     ECDVector *Vec = *DupVectorIter;
13648     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13649 
13650     // Emit warning for one enum constant.
13651     ECDVector::iterator I = Vec->begin();
13652     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13653       << (*I)->getName() << (*I)->getInitVal().toString(10)
13654       << (*I)->getSourceRange();
13655     ++I;
13656 
13657     // Emit one note for each of the remaining enum constants with
13658     // the same value.
13659     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13660       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13661         << (*I)->getName() << (*I)->getInitVal().toString(10)
13662         << (*I)->getSourceRange();
13663     delete Vec;
13664   }
13665 }
13666 
13667 bool
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const13668 Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
13669                         bool AllowMask) const {
13670   FlagEnumAttr *FEAttr = ED->getAttr<FlagEnumAttr>();
13671   assert(FEAttr && "looking for value in non-flag enum");
13672 
13673   llvm::APInt FlagMask = ~FEAttr->getFlagBits();
13674   unsigned Width = FlagMask.getBitWidth();
13675 
13676   // We will try a zero-extended value for the regular check first.
13677   llvm::APInt ExtVal = Val.zextOrSelf(Width);
13678 
13679   // A value is in a flag enum if either its bits are a subset of the enum's
13680   // flag bits (the first condition) or we are allowing masks and the same is
13681   // true of its complement (the second condition). When masks are allowed, we
13682   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
13683   //
13684   // While it's true that any value could be used as a mask, the assumption is
13685   // that a mask will have all of the insignificant bits set. Anything else is
13686   // likely a logic error.
13687   if (!(FlagMask & ExtVal))
13688     return true;
13689 
13690   if (AllowMask) {
13691     // Try a one-extended value instead. This can happen if the enum is wider
13692     // than the constant used, in C with extensions to allow for wider enums.
13693     // The mask will still have the correct behaviour, so we give the user the
13694     // benefit of the doubt.
13695     //
13696     // FIXME: This heuristic can cause weird results if the enum was extended
13697     // to a larger type and is signed, because then bit-masks of smaller types
13698     // that get extended will fall out of range (e.g. ~0x1u). We currently don't
13699     // detect that case and will get a false positive for it. In most cases,
13700     // though, it can be fixed by making it a signed type (e.g. ~0x1), so it may
13701     // be fine just to accept this as a warning.
13702     ExtVal |= llvm::APInt::getHighBitsSet(Width, Width - Val.getBitWidth());
13703     if (!(FlagMask & ~ExtVal))
13704       return true;
13705   }
13706 
13707   return false;
13708 }
13709 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)13710 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13711                          SourceLocation RBraceLoc, Decl *EnumDeclX,
13712                          ArrayRef<Decl *> Elements,
13713                          Scope *S, AttributeList *Attr) {
13714   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13715   QualType EnumType = Context.getTypeDeclType(Enum);
13716 
13717   if (Attr)
13718     ProcessDeclAttributeList(S, Enum, Attr);
13719 
13720   if (Enum->isDependentType()) {
13721     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13722       EnumConstantDecl *ECD =
13723         cast_or_null<EnumConstantDecl>(Elements[i]);
13724       if (!ECD) continue;
13725 
13726       ECD->setType(EnumType);
13727     }
13728 
13729     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13730     return;
13731   }
13732 
13733   // TODO: If the result value doesn't fit in an int, it must be a long or long
13734   // long value.  ISO C does not support this, but GCC does as an extension,
13735   // emit a warning.
13736   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13737   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13738   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13739 
13740   // Verify that all the values are okay, compute the size of the values, and
13741   // reverse the list.
13742   unsigned NumNegativeBits = 0;
13743   unsigned NumPositiveBits = 0;
13744 
13745   // Keep track of whether all elements have type int.
13746   bool AllElementsInt = true;
13747 
13748   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13749     EnumConstantDecl *ECD =
13750       cast_or_null<EnumConstantDecl>(Elements[i]);
13751     if (!ECD) continue;  // Already issued a diagnostic.
13752 
13753     const llvm::APSInt &InitVal = ECD->getInitVal();
13754 
13755     // Keep track of the size of positive and negative values.
13756     if (InitVal.isUnsigned() || InitVal.isNonNegative())
13757       NumPositiveBits = std::max(NumPositiveBits,
13758                                  (unsigned)InitVal.getActiveBits());
13759     else
13760       NumNegativeBits = std::max(NumNegativeBits,
13761                                  (unsigned)InitVal.getMinSignedBits());
13762 
13763     // Keep track of whether every enum element has type int (very commmon).
13764     if (AllElementsInt)
13765       AllElementsInt = ECD->getType() == Context.IntTy;
13766   }
13767 
13768   // Figure out the type that should be used for this enum.
13769   QualType BestType;
13770   unsigned BestWidth;
13771 
13772   // C++0x N3000 [conv.prom]p3:
13773   //   An rvalue of an unscoped enumeration type whose underlying
13774   //   type is not fixed can be converted to an rvalue of the first
13775   //   of the following types that can represent all the values of
13776   //   the enumeration: int, unsigned int, long int, unsigned long
13777   //   int, long long int, or unsigned long long int.
13778   // C99 6.4.4.3p2:
13779   //   An identifier declared as an enumeration constant has type int.
13780   // The C99 rule is modified by a gcc extension
13781   QualType BestPromotionType;
13782 
13783   bool Packed = Enum->hasAttr<PackedAttr>();
13784   // -fshort-enums is the equivalent to specifying the packed attribute on all
13785   // enum definitions.
13786   if (LangOpts.ShortEnums)
13787     Packed = true;
13788 
13789   if (Enum->isFixed()) {
13790     BestType = Enum->getIntegerType();
13791     if (BestType->isPromotableIntegerType())
13792       BestPromotionType = Context.getPromotedIntegerType(BestType);
13793     else
13794       BestPromotionType = BestType;
13795 
13796     BestWidth = Context.getIntWidth(BestType);
13797   }
13798   else if (NumNegativeBits) {
13799     // If there is a negative value, figure out the smallest integer type (of
13800     // int/long/longlong) that fits.
13801     // If it's packed, check also if it fits a char or a short.
13802     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13803       BestType = Context.SignedCharTy;
13804       BestWidth = CharWidth;
13805     } else if (Packed && NumNegativeBits <= ShortWidth &&
13806                NumPositiveBits < ShortWidth) {
13807       BestType = Context.ShortTy;
13808       BestWidth = ShortWidth;
13809     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13810       BestType = Context.IntTy;
13811       BestWidth = IntWidth;
13812     } else {
13813       BestWidth = Context.getTargetInfo().getLongWidth();
13814 
13815       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13816         BestType = Context.LongTy;
13817       } else {
13818         BestWidth = Context.getTargetInfo().getLongLongWidth();
13819 
13820         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13821           Diag(Enum->getLocation(), diag::ext_enum_too_large);
13822         BestType = Context.LongLongTy;
13823       }
13824     }
13825     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13826   } else {
13827     // If there is no negative value, figure out the smallest type that fits
13828     // all of the enumerator values.
13829     // If it's packed, check also if it fits a char or a short.
13830     if (Packed && NumPositiveBits <= CharWidth) {
13831       BestType = Context.UnsignedCharTy;
13832       BestPromotionType = Context.IntTy;
13833       BestWidth = CharWidth;
13834     } else if (Packed && NumPositiveBits <= ShortWidth) {
13835       BestType = Context.UnsignedShortTy;
13836       BestPromotionType = Context.IntTy;
13837       BestWidth = ShortWidth;
13838     } else if (NumPositiveBits <= IntWidth) {
13839       BestType = Context.UnsignedIntTy;
13840       BestWidth = IntWidth;
13841       BestPromotionType
13842         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13843                            ? Context.UnsignedIntTy : Context.IntTy;
13844     } else if (NumPositiveBits <=
13845                (BestWidth = Context.getTargetInfo().getLongWidth())) {
13846       BestType = Context.UnsignedLongTy;
13847       BestPromotionType
13848         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13849                            ? Context.UnsignedLongTy : Context.LongTy;
13850     } else {
13851       BestWidth = Context.getTargetInfo().getLongLongWidth();
13852       assert(NumPositiveBits <= BestWidth &&
13853              "How could an initializer get larger than ULL?");
13854       BestType = Context.UnsignedLongLongTy;
13855       BestPromotionType
13856         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13857                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
13858     }
13859   }
13860 
13861   FlagEnumAttr *FEAttr = Enum->getAttr<FlagEnumAttr>();
13862   if (FEAttr)
13863     FEAttr->getFlagBits() = llvm::APInt(BestWidth, 0);
13864 
13865   // Loop over all of the enumerator constants, changing their types to match
13866   // the type of the enum if needed. If we have a flag type, we also prepare the
13867   // FlagBits cache.
13868   for (auto *D : Elements) {
13869     auto *ECD = cast_or_null<EnumConstantDecl>(D);
13870     if (!ECD) continue;  // Already issued a diagnostic.
13871 
13872     // Standard C says the enumerators have int type, but we allow, as an
13873     // extension, the enumerators to be larger than int size.  If each
13874     // enumerator value fits in an int, type it as an int, otherwise type it the
13875     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
13876     // that X has type 'int', not 'unsigned'.
13877 
13878     // Determine whether the value fits into an int.
13879     llvm::APSInt InitVal = ECD->getInitVal();
13880 
13881     // If it fits into an integer type, force it.  Otherwise force it to match
13882     // the enum decl type.
13883     QualType NewTy;
13884     unsigned NewWidth;
13885     bool NewSign;
13886     if (!getLangOpts().CPlusPlus &&
13887         !Enum->isFixed() &&
13888         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13889       NewTy = Context.IntTy;
13890       NewWidth = IntWidth;
13891       NewSign = true;
13892     } else if (ECD->getType() == BestType) {
13893       // Already the right type!
13894       if (getLangOpts().CPlusPlus)
13895         // C++ [dcl.enum]p4: Following the closing brace of an
13896         // enum-specifier, each enumerator has the type of its
13897         // enumeration.
13898         ECD->setType(EnumType);
13899       goto flagbits;
13900     } else {
13901       NewTy = BestType;
13902       NewWidth = BestWidth;
13903       NewSign = BestType->isSignedIntegerOrEnumerationType();
13904     }
13905 
13906     // Adjust the APSInt value.
13907     InitVal = InitVal.extOrTrunc(NewWidth);
13908     InitVal.setIsSigned(NewSign);
13909     ECD->setInitVal(InitVal);
13910 
13911     // Adjust the Expr initializer and type.
13912     if (ECD->getInitExpr() &&
13913         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13914       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13915                                                 CK_IntegralCast,
13916                                                 ECD->getInitExpr(),
13917                                                 /*base paths*/ nullptr,
13918                                                 VK_RValue));
13919     if (getLangOpts().CPlusPlus)
13920       // C++ [dcl.enum]p4: Following the closing brace of an
13921       // enum-specifier, each enumerator has the type of its
13922       // enumeration.
13923       ECD->setType(EnumType);
13924     else
13925       ECD->setType(NewTy);
13926 
13927 flagbits:
13928     // Check to see if we have a constant with exactly one bit set. Note that x
13929     // & (x - 1) will be nonzero if and only if x has more than one bit set.
13930     if (FEAttr) {
13931       llvm::APInt ExtVal = InitVal.zextOrSelf(BestWidth);
13932       if (ExtVal != 0 && !(ExtVal & (ExtVal - 1))) {
13933         FEAttr->getFlagBits() |= ExtVal;
13934       }
13935     }
13936   }
13937 
13938   if (FEAttr) {
13939     for (Decl *D : Elements) {
13940       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
13941       if (!ECD) continue;  // Already issued a diagnostic.
13942 
13943       llvm::APSInt InitVal = ECD->getInitVal();
13944       if (InitVal != 0 && !IsValueInFlagEnum(Enum, InitVal, true))
13945         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
13946           << ECD << Enum;
13947     }
13948   }
13949 
13950 
13951 
13952   Enum->completeDefinition(BestType, BestPromotionType,
13953                            NumPositiveBits, NumNegativeBits);
13954 
13955   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13956 
13957   // Now that the enum type is defined, ensure it's not been underaligned.
13958   if (Enum->hasAttrs())
13959     CheckAlignasUnderalignment(Enum);
13960 }
13961 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)13962 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13963                                   SourceLocation StartLoc,
13964                                   SourceLocation EndLoc) {
13965   StringLiteral *AsmString = cast<StringLiteral>(expr);
13966 
13967   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13968                                                    AsmString, StartLoc,
13969                                                    EndLoc);
13970   CurContext->addDecl(New);
13971   return New;
13972 }
13973 
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC)13974 static void checkModuleImportContext(Sema &S, Module *M,
13975                                      SourceLocation ImportLoc,
13976                                      DeclContext *DC) {
13977   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13978     switch (LSD->getLanguage()) {
13979     case LinkageSpecDecl::lang_c:
13980       if (!M->IsExternC) {
13981         S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13982           << M->getFullModuleName();
13983         S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13984         return;
13985       }
13986       break;
13987     case LinkageSpecDecl::lang_cxx:
13988       break;
13989     }
13990     DC = LSD->getParent();
13991   }
13992 
13993   while (isa<LinkageSpecDecl>(DC))
13994     DC = DC->getParent();
13995   if (!isa<TranslationUnitDecl>(DC)) {
13996     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13997       << M->getFullModuleName() << DC;
13998     S.Diag(cast<Decl>(DC)->getLocStart(),
13999            diag::note_module_import_not_at_top_level)
14000       << DC;
14001   }
14002 }
14003 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)14004 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14005                                    SourceLocation ImportLoc,
14006                                    ModuleIdPath Path) {
14007   Module *Mod =
14008       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14009                                    /*IsIncludeDirective=*/false);
14010   if (!Mod)
14011     return true;
14012 
14013   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14014 
14015   // FIXME: we should support importing a submodule within a different submodule
14016   // of the same top-level module. Until we do, make it an error rather than
14017   // silently ignoring the import.
14018   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14019     Diag(ImportLoc, diag::err_module_self_import)
14020         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14021   else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14022     Diag(ImportLoc, diag::err_module_import_in_implementation)
14023         << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14024 
14025   SmallVector<SourceLocation, 2> IdentifierLocs;
14026   Module *ModCheck = Mod;
14027   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14028     // If we've run out of module parents, just drop the remaining identifiers.
14029     // We need the length to be consistent.
14030     if (!ModCheck)
14031       break;
14032     ModCheck = ModCheck->Parent;
14033 
14034     IdentifierLocs.push_back(Path[I].second);
14035   }
14036 
14037   ImportDecl *Import = ImportDecl::Create(Context,
14038                                           Context.getTranslationUnitDecl(),
14039                                           AtLoc.isValid()? AtLoc : ImportLoc,
14040                                           Mod, IdentifierLocs);
14041   Context.getTranslationUnitDecl()->addDecl(Import);
14042   return Import;
14043 }
14044 
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)14045 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14046   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14047 
14048   // FIXME: Should we synthesize an ImportDecl here?
14049   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
14050                                       /*Complain=*/true);
14051 }
14052 
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)14053 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14054                                                       Module *Mod) {
14055   // Bail if we're not allowed to implicitly import a module here.
14056   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14057     return;
14058 
14059   // Create the implicit import declaration.
14060   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14061   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14062                                                    Loc, Mod, Loc);
14063   TU->addDecl(ImportD);
14064   Consumer.HandleImplicitImportDecl(ImportD);
14065 
14066   // Make the module visible.
14067   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
14068                                       /*Complain=*/false);
14069 }
14070 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14071 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14072                                       IdentifierInfo* AliasName,
14073                                       SourceLocation PragmaLoc,
14074                                       SourceLocation NameLoc,
14075                                       SourceLocation AliasNameLoc) {
14076   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14077                                     LookupOrdinaryName);
14078   AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
14079                                                     AliasName->getName(), 0);
14080 
14081   if (PrevDecl)
14082     PrevDecl->addAttr(Attr);
14083   else
14084     (void)ExtnameUndeclaredIdentifiers.insert(
14085       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
14086 }
14087 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)14088 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14089                              SourceLocation PragmaLoc,
14090                              SourceLocation NameLoc) {
14091   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14092 
14093   if (PrevDecl) {
14094     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14095   } else {
14096     (void)WeakUndeclaredIdentifiers.insert(
14097       std::pair<IdentifierInfo*,WeakInfo>
14098         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14099   }
14100 }
14101 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14102 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14103                                 IdentifierInfo* AliasName,
14104                                 SourceLocation PragmaLoc,
14105                                 SourceLocation NameLoc,
14106                                 SourceLocation AliasNameLoc) {
14107   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14108                                     LookupOrdinaryName);
14109   WeakInfo W = WeakInfo(Name, NameLoc);
14110 
14111   if (PrevDecl) {
14112     if (!PrevDecl->hasAttr<AliasAttr>())
14113       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14114         DeclApplyPragmaWeak(TUScope, ND, W);
14115   } else {
14116     (void)WeakUndeclaredIdentifiers.insert(
14117       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14118   }
14119 }
14120 
getObjCDeclContext() const14121 Decl *Sema::getObjCDeclContext() const {
14122   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14123 }
14124 
getCurContextAvailability() const14125 AvailabilityResult Sema::getCurContextAvailability() const {
14126   const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14127   if (!D)
14128     return AR_Available;
14129 
14130   // If we are within an Objective-C method, we should consult
14131   // both the availability of the method as well as the
14132   // enclosing class.  If the class is (say) deprecated,
14133   // the entire method is considered deprecated from the
14134   // purpose of checking if the current context is deprecated.
14135   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14136     AvailabilityResult R = MD->getAvailability();
14137     if (R != AR_Available)
14138       return R;
14139     D = MD->getClassInterface();
14140   }
14141   // If we are within an Objective-c @implementation, it
14142   // gets the same availability context as the @interface.
14143   else if (const ObjCImplementationDecl *ID =
14144             dyn_cast<ObjCImplementationDecl>(D)) {
14145     D = ID->getClassInterface();
14146   }
14147   // Recover from user error.
14148   return D ? D->getAvailability() : AR_Available;
14149 }
14150