1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44
45 /// \brief Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)83 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
84 IdentifierInfo &II,
85 SourceLocation NameLoc,
86 Scope *S, CXXScopeSpec &SS,
87 ParsedType ObjectTypePtr,
88 bool EnteringContext) {
89 // Determine where to perform name lookup.
90
91 // FIXME: This area of the standard is very messy, and the current
92 // wording is rather unclear about which scopes we search for the
93 // destructor name; see core issues 399 and 555. Issue 399 in
94 // particular shows where the current description of destructor name
95 // lookup is completely out of line with existing practice, e.g.,
96 // this appears to be ill-formed:
97 //
98 // namespace N {
99 // template <typename T> struct S {
100 // ~S();
101 // };
102 // }
103 //
104 // void f(N::S<int>* s) {
105 // s->N::S<int>::~S();
106 // }
107 //
108 // See also PR6358 and PR6359.
109 // For this reason, we're currently only doing the C++03 version of this
110 // code; the C++0x version has to wait until we get a proper spec.
111 QualType SearchType;
112 DeclContext *LookupCtx = nullptr;
113 bool isDependent = false;
114 bool LookInScope = false;
115
116 if (SS.isInvalid())
117 return ParsedType();
118
119 // If we have an object type, it's because we are in a
120 // pseudo-destructor-expression or a member access expression, and
121 // we know what type we're looking for.
122 if (ObjectTypePtr)
123 SearchType = GetTypeFromParser(ObjectTypePtr);
124
125 if (SS.isSet()) {
126 NestedNameSpecifier *NNS = SS.getScopeRep();
127
128 bool AlreadySearched = false;
129 bool LookAtPrefix = true;
130 // C++11 [basic.lookup.qual]p6:
131 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
132 // the type-names are looked up as types in the scope designated by the
133 // nested-name-specifier. Similarly, in a qualified-id of the form:
134 //
135 // nested-name-specifier[opt] class-name :: ~ class-name
136 //
137 // the second class-name is looked up in the same scope as the first.
138 //
139 // Here, we determine whether the code below is permitted to look at the
140 // prefix of the nested-name-specifier.
141 DeclContext *DC = computeDeclContext(SS, EnteringContext);
142 if (DC && DC->isFileContext()) {
143 AlreadySearched = true;
144 LookupCtx = DC;
145 isDependent = false;
146 } else if (DC && isa<CXXRecordDecl>(DC)) {
147 LookAtPrefix = false;
148 LookInScope = true;
149 }
150
151 // The second case from the C++03 rules quoted further above.
152 NestedNameSpecifier *Prefix = nullptr;
153 if (AlreadySearched) {
154 // Nothing left to do.
155 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
156 CXXScopeSpec PrefixSS;
157 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
158 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
159 isDependent = isDependentScopeSpecifier(PrefixSS);
160 } else if (ObjectTypePtr) {
161 LookupCtx = computeDeclContext(SearchType);
162 isDependent = SearchType->isDependentType();
163 } else {
164 LookupCtx = computeDeclContext(SS, EnteringContext);
165 isDependent = LookupCtx && LookupCtx->isDependentContext();
166 }
167 } else if (ObjectTypePtr) {
168 // C++ [basic.lookup.classref]p3:
169 // If the unqualified-id is ~type-name, the type-name is looked up
170 // in the context of the entire postfix-expression. If the type T
171 // of the object expression is of a class type C, the type-name is
172 // also looked up in the scope of class C. At least one of the
173 // lookups shall find a name that refers to (possibly
174 // cv-qualified) T.
175 LookupCtx = computeDeclContext(SearchType);
176 isDependent = SearchType->isDependentType();
177 assert((isDependent || !SearchType->isIncompleteType()) &&
178 "Caller should have completed object type");
179
180 LookInScope = true;
181 } else {
182 // Perform lookup into the current scope (only).
183 LookInScope = true;
184 }
185
186 TypeDecl *NonMatchingTypeDecl = nullptr;
187 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
188 for (unsigned Step = 0; Step != 2; ++Step) {
189 // Look for the name first in the computed lookup context (if we
190 // have one) and, if that fails to find a match, in the scope (if
191 // we're allowed to look there).
192 Found.clear();
193 if (Step == 0 && LookupCtx)
194 LookupQualifiedName(Found, LookupCtx);
195 else if (Step == 1 && LookInScope && S)
196 LookupName(Found, S);
197 else
198 continue;
199
200 // FIXME: Should we be suppressing ambiguities here?
201 if (Found.isAmbiguous())
202 return ParsedType();
203
204 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
205 QualType T = Context.getTypeDeclType(Type);
206 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
207
208 if (SearchType.isNull() || SearchType->isDependentType() ||
209 Context.hasSameUnqualifiedType(T, SearchType)) {
210 // We found our type!
211
212 return CreateParsedType(T,
213 Context.getTrivialTypeSourceInfo(T, NameLoc));
214 }
215
216 if (!SearchType.isNull())
217 NonMatchingTypeDecl = Type;
218 }
219
220 // If the name that we found is a class template name, and it is
221 // the same name as the template name in the last part of the
222 // nested-name-specifier (if present) or the object type, then
223 // this is the destructor for that class.
224 // FIXME: This is a workaround until we get real drafting for core
225 // issue 399, for which there isn't even an obvious direction.
226 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
227 QualType MemberOfType;
228 if (SS.isSet()) {
229 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
230 // Figure out the type of the context, if it has one.
231 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
232 MemberOfType = Context.getTypeDeclType(Record);
233 }
234 }
235 if (MemberOfType.isNull())
236 MemberOfType = SearchType;
237
238 if (MemberOfType.isNull())
239 continue;
240
241 // We're referring into a class template specialization. If the
242 // class template we found is the same as the template being
243 // specialized, we found what we are looking for.
244 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
245 if (ClassTemplateSpecializationDecl *Spec
246 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
247 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
248 Template->getCanonicalDecl())
249 return CreateParsedType(
250 MemberOfType,
251 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
252 }
253
254 continue;
255 }
256
257 // We're referring to an unresolved class template
258 // specialization. Determine whether we class template we found
259 // is the same as the template being specialized or, if we don't
260 // know which template is being specialized, that it at least
261 // has the same name.
262 if (const TemplateSpecializationType *SpecType
263 = MemberOfType->getAs<TemplateSpecializationType>()) {
264 TemplateName SpecName = SpecType->getTemplateName();
265
266 // The class template we found is the same template being
267 // specialized.
268 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
269 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
270 return CreateParsedType(
271 MemberOfType,
272 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
273
274 continue;
275 }
276
277 // The class template we found has the same name as the
278 // (dependent) template name being specialized.
279 if (DependentTemplateName *DepTemplate
280 = SpecName.getAsDependentTemplateName()) {
281 if (DepTemplate->isIdentifier() &&
282 DepTemplate->getIdentifier() == Template->getIdentifier())
283 return CreateParsedType(
284 MemberOfType,
285 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
286
287 continue;
288 }
289 }
290 }
291 }
292
293 if (isDependent) {
294 // We didn't find our type, but that's okay: it's dependent
295 // anyway.
296
297 // FIXME: What if we have no nested-name-specifier?
298 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
299 SS.getWithLocInContext(Context),
300 II, NameLoc);
301 return ParsedType::make(T);
302 }
303
304 if (NonMatchingTypeDecl) {
305 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
306 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
307 << T << SearchType;
308 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
309 << T;
310 } else if (ObjectTypePtr)
311 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
312 << &II;
313 else {
314 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
315 diag::err_destructor_class_name);
316 if (S) {
317 const DeclContext *Ctx = S->getEntity();
318 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
319 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
320 Class->getNameAsString());
321 }
322 }
323
324 return ParsedType();
325 }
326
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)327 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
328 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
329 return ParsedType();
330 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
331 && "only get destructor types from declspecs");
332 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
333 QualType SearchType = GetTypeFromParser(ObjectType);
334 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
335 return ParsedType::make(T);
336 }
337
338 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
339 << T << SearchType;
340 return ParsedType();
341 }
342
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)343 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
344 const UnqualifiedId &Name) {
345 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
346
347 if (!SS.isValid())
348 return false;
349
350 switch (SS.getScopeRep()->getKind()) {
351 case NestedNameSpecifier::Identifier:
352 case NestedNameSpecifier::TypeSpec:
353 case NestedNameSpecifier::TypeSpecWithTemplate:
354 // Per C++11 [over.literal]p2, literal operators can only be declared at
355 // namespace scope. Therefore, this unqualified-id cannot name anything.
356 // Reject it early, because we have no AST representation for this in the
357 // case where the scope is dependent.
358 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
359 << SS.getScopeRep();
360 return true;
361
362 case NestedNameSpecifier::Global:
363 case NestedNameSpecifier::Super:
364 case NestedNameSpecifier::Namespace:
365 case NestedNameSpecifier::NamespaceAlias:
366 return false;
367 }
368
369 llvm_unreachable("unknown nested name specifier kind");
370 }
371
372 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)373 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
374 SourceLocation TypeidLoc,
375 TypeSourceInfo *Operand,
376 SourceLocation RParenLoc) {
377 // C++ [expr.typeid]p4:
378 // The top-level cv-qualifiers of the lvalue expression or the type-id
379 // that is the operand of typeid are always ignored.
380 // If the type of the type-id is a class type or a reference to a class
381 // type, the class shall be completely-defined.
382 Qualifiers Quals;
383 QualType T
384 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
385 Quals);
386 if (T->getAs<RecordType>() &&
387 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
388 return ExprError();
389
390 if (T->isVariablyModifiedType())
391 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
392
393 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
394 SourceRange(TypeidLoc, RParenLoc));
395 }
396
397 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)398 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
399 SourceLocation TypeidLoc,
400 Expr *E,
401 SourceLocation RParenLoc) {
402 bool WasEvaluated = false;
403 if (E && !E->isTypeDependent()) {
404 if (E->getType()->isPlaceholderType()) {
405 ExprResult result = CheckPlaceholderExpr(E);
406 if (result.isInvalid()) return ExprError();
407 E = result.get();
408 }
409
410 QualType T = E->getType();
411 if (const RecordType *RecordT = T->getAs<RecordType>()) {
412 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
413 // C++ [expr.typeid]p3:
414 // [...] If the type of the expression is a class type, the class
415 // shall be completely-defined.
416 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
417 return ExprError();
418
419 // C++ [expr.typeid]p3:
420 // When typeid is applied to an expression other than an glvalue of a
421 // polymorphic class type [...] [the] expression is an unevaluated
422 // operand. [...]
423 if (RecordD->isPolymorphic() && E->isGLValue()) {
424 // The subexpression is potentially evaluated; switch the context
425 // and recheck the subexpression.
426 ExprResult Result = TransformToPotentiallyEvaluated(E);
427 if (Result.isInvalid()) return ExprError();
428 E = Result.get();
429
430 // We require a vtable to query the type at run time.
431 MarkVTableUsed(TypeidLoc, RecordD);
432 WasEvaluated = true;
433 }
434 }
435
436 // C++ [expr.typeid]p4:
437 // [...] If the type of the type-id is a reference to a possibly
438 // cv-qualified type, the result of the typeid expression refers to a
439 // std::type_info object representing the cv-unqualified referenced
440 // type.
441 Qualifiers Quals;
442 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
443 if (!Context.hasSameType(T, UnqualT)) {
444 T = UnqualT;
445 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
446 }
447 }
448
449 if (E->getType()->isVariablyModifiedType())
450 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
451 << E->getType());
452 else if (ActiveTemplateInstantiations.empty() &&
453 E->HasSideEffects(Context, WasEvaluated)) {
454 // The expression operand for typeid is in an unevaluated expression
455 // context, so side effects could result in unintended consequences.
456 Diag(E->getExprLoc(), WasEvaluated
457 ? diag::warn_side_effects_typeid
458 : diag::warn_side_effects_unevaluated_context);
459 }
460
461 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
462 SourceRange(TypeidLoc, RParenLoc));
463 }
464
465 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
466 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)467 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
468 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
469 // Find the std::type_info type.
470 if (!getStdNamespace())
471 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
472
473 if (!CXXTypeInfoDecl) {
474 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
475 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
476 LookupQualifiedName(R, getStdNamespace());
477 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
478 // Microsoft's typeinfo doesn't have type_info in std but in the global
479 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
480 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
481 LookupQualifiedName(R, Context.getTranslationUnitDecl());
482 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
483 }
484 if (!CXXTypeInfoDecl)
485 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
486 }
487
488 if (!getLangOpts().RTTI) {
489 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
490 }
491
492 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
493
494 if (isType) {
495 // The operand is a type; handle it as such.
496 TypeSourceInfo *TInfo = nullptr;
497 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
498 &TInfo);
499 if (T.isNull())
500 return ExprError();
501
502 if (!TInfo)
503 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
504
505 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
506 }
507
508 // The operand is an expression.
509 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
510 }
511
512 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)513 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
514 SourceLocation TypeidLoc,
515 TypeSourceInfo *Operand,
516 SourceLocation RParenLoc) {
517 if (!Operand->getType()->isDependentType()) {
518 bool HasMultipleGUIDs = false;
519 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
520 &HasMultipleGUIDs)) {
521 if (HasMultipleGUIDs)
522 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
523 else
524 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
525 }
526 }
527
528 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
529 SourceRange(TypeidLoc, RParenLoc));
530 }
531
532 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)533 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 Expr *E,
536 SourceLocation RParenLoc) {
537 if (!E->getType()->isDependentType()) {
538 bool HasMultipleGUIDs = false;
539 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
540 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
541 if (HasMultipleGUIDs)
542 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
543 else
544 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
545 }
546 }
547
548 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
549 SourceRange(TypeidLoc, RParenLoc));
550 }
551
552 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
553 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)554 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
555 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
556 // If MSVCGuidDecl has not been cached, do the lookup.
557 if (!MSVCGuidDecl) {
558 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
559 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
560 LookupQualifiedName(R, Context.getTranslationUnitDecl());
561 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
562 if (!MSVCGuidDecl)
563 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
564 }
565
566 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
567
568 if (isType) {
569 // The operand is a type; handle it as such.
570 TypeSourceInfo *TInfo = nullptr;
571 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
572 &TInfo);
573 if (T.isNull())
574 return ExprError();
575
576 if (!TInfo)
577 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
578
579 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
580 }
581
582 // The operand is an expression.
583 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
584 }
585
586 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
587 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)588 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
589 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
590 "Unknown C++ Boolean value!");
591 return new (Context)
592 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
593 }
594
595 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
596 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)597 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
598 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
599 }
600
601 /// ActOnCXXThrow - Parse throw expressions.
602 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)603 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
604 bool IsThrownVarInScope = false;
605 if (Ex) {
606 // C++0x [class.copymove]p31:
607 // When certain criteria are met, an implementation is allowed to omit the
608 // copy/move construction of a class object [...]
609 //
610 // - in a throw-expression, when the operand is the name of a
611 // non-volatile automatic object (other than a function or catch-
612 // clause parameter) whose scope does not extend beyond the end of the
613 // innermost enclosing try-block (if there is one), the copy/move
614 // operation from the operand to the exception object (15.1) can be
615 // omitted by constructing the automatic object directly into the
616 // exception object
617 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
618 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
619 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
620 for( ; S; S = S->getParent()) {
621 if (S->isDeclScope(Var)) {
622 IsThrownVarInScope = true;
623 break;
624 }
625
626 if (S->getFlags() &
627 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
628 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
629 Scope::TryScope))
630 break;
631 }
632 }
633 }
634 }
635
636 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
637 }
638
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)639 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
640 bool IsThrownVarInScope) {
641 // Don't report an error if 'throw' is used in system headers.
642 if (!getLangOpts().CXXExceptions &&
643 !getSourceManager().isInSystemHeader(OpLoc))
644 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
645
646 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
647 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
648
649 if (Ex && !Ex->isTypeDependent()) {
650 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
651 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
652 return ExprError();
653
654 // Initialize the exception result. This implicitly weeds out
655 // abstract types or types with inaccessible copy constructors.
656
657 // C++0x [class.copymove]p31:
658 // When certain criteria are met, an implementation is allowed to omit the
659 // copy/move construction of a class object [...]
660 //
661 // - in a throw-expression, when the operand is the name of a
662 // non-volatile automatic object (other than a function or
663 // catch-clause
664 // parameter) whose scope does not extend beyond the end of the
665 // innermost enclosing try-block (if there is one), the copy/move
666 // operation from the operand to the exception object (15.1) can be
667 // omitted by constructing the automatic object directly into the
668 // exception object
669 const VarDecl *NRVOVariable = nullptr;
670 if (IsThrownVarInScope)
671 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
672
673 InitializedEntity Entity = InitializedEntity::InitializeException(
674 OpLoc, ExceptionObjectTy,
675 /*NRVO=*/NRVOVariable != nullptr);
676 ExprResult Res = PerformMoveOrCopyInitialization(
677 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
678 if (Res.isInvalid())
679 return ExprError();
680 Ex = Res.get();
681 }
682
683 return new (Context)
684 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
685 }
686
687 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)688 collectPublicBases(CXXRecordDecl *RD,
689 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
690 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
691 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
692 bool ParentIsPublic) {
693 for (const CXXBaseSpecifier &BS : RD->bases()) {
694 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
695 bool NewSubobject;
696 // Virtual bases constitute the same subobject. Non-virtual bases are
697 // always distinct subobjects.
698 if (BS.isVirtual())
699 NewSubobject = VBases.insert(BaseDecl).second;
700 else
701 NewSubobject = true;
702
703 if (NewSubobject)
704 ++SubobjectsSeen[BaseDecl];
705
706 // Only add subobjects which have public access throughout the entire chain.
707 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
708 if (PublicPath)
709 PublicSubobjectsSeen.insert(BaseDecl);
710
711 // Recurse on to each base subobject.
712 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
713 PublicPath);
714 }
715 }
716
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)717 static void getUnambiguousPublicSubobjects(
718 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
719 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
720 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
721 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
722 SubobjectsSeen[RD] = 1;
723 PublicSubobjectsSeen.insert(RD);
724 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
725 /*ParentIsPublic=*/true);
726
727 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
728 // Skip ambiguous objects.
729 if (SubobjectsSeen[PublicSubobject] > 1)
730 continue;
731
732 Objects.push_back(PublicSubobject);
733 }
734 }
735
736 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)737 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
738 QualType ExceptionObjectTy, Expr *E) {
739 // If the type of the exception would be an incomplete type or a pointer
740 // to an incomplete type other than (cv) void the program is ill-formed.
741 QualType Ty = ExceptionObjectTy;
742 bool isPointer = false;
743 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
744 Ty = Ptr->getPointeeType();
745 isPointer = true;
746 }
747 if (!isPointer || !Ty->isVoidType()) {
748 if (RequireCompleteType(ThrowLoc, Ty,
749 isPointer ? diag::err_throw_incomplete_ptr
750 : diag::err_throw_incomplete,
751 E->getSourceRange()))
752 return true;
753
754 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
755 diag::err_throw_abstract_type, E))
756 return true;
757 }
758
759 // If the exception has class type, we need additional handling.
760 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
761 if (!RD)
762 return false;
763
764 // If we are throwing a polymorphic class type or pointer thereof,
765 // exception handling will make use of the vtable.
766 MarkVTableUsed(ThrowLoc, RD);
767
768 // If a pointer is thrown, the referenced object will not be destroyed.
769 if (isPointer)
770 return false;
771
772 // If the class has a destructor, we must be able to call it.
773 if (!RD->hasIrrelevantDestructor()) {
774 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
775 MarkFunctionReferenced(E->getExprLoc(), Destructor);
776 CheckDestructorAccess(E->getExprLoc(), Destructor,
777 PDiag(diag::err_access_dtor_exception) << Ty);
778 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
779 return true;
780 }
781 }
782
783 // The MSVC ABI creates a list of all types which can catch the exception
784 // object. This list also references the appropriate copy constructor to call
785 // if the object is caught by value and has a non-trivial copy constructor.
786 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
787 // We are only interested in the public, unambiguous bases contained within
788 // the exception object. Bases which are ambiguous or otherwise
789 // inaccessible are not catchable types.
790 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
791 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
792
793 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
794 // Attempt to lookup the copy constructor. Various pieces of machinery
795 // will spring into action, like template instantiation, which means this
796 // cannot be a simple walk of the class's decls. Instead, we must perform
797 // lookup and overload resolution.
798 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
799 if (!CD)
800 continue;
801
802 // Mark the constructor referenced as it is used by this throw expression.
803 MarkFunctionReferenced(E->getExprLoc(), CD);
804
805 // Skip this copy constructor if it is trivial, we don't need to record it
806 // in the catchable type data.
807 if (CD->isTrivial())
808 continue;
809
810 // The copy constructor is non-trivial, create a mapping from this class
811 // type to this constructor.
812 // N.B. The selection of copy constructor is not sensitive to this
813 // particular throw-site. Lookup will be performed at the catch-site to
814 // ensure that the copy constructor is, in fact, accessible (via
815 // friendship or any other means).
816 Context.addCopyConstructorForExceptionObject(Subobject, CD);
817
818 // We don't keep the instantiated default argument expressions around so
819 // we must rebuild them here.
820 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
821 // Skip any default arguments that we've already instantiated.
822 if (Context.getDefaultArgExprForConstructor(CD, I))
823 continue;
824
825 Expr *DefaultArg =
826 BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
827 Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
828 }
829 }
830 }
831
832 return false;
833 }
834
getCurrentThisType()835 QualType Sema::getCurrentThisType() {
836 DeclContext *DC = getFunctionLevelDeclContext();
837 QualType ThisTy = CXXThisTypeOverride;
838 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
839 if (method && method->isInstance())
840 ThisTy = method->getThisType(Context);
841 }
842 if (ThisTy.isNull()) {
843 if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
844 CurContext->getParent()->getParent()->isRecord()) {
845 // This is a generic lambda call operator that is being instantiated
846 // within a default initializer - so use the enclosing class as 'this'.
847 // There is no enclosing member function to retrieve the 'this' pointer
848 // from.
849 QualType ClassTy = Context.getTypeDeclType(
850 cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
851 // There are no cv-qualifiers for 'this' within default initializers,
852 // per [expr.prim.general]p4.
853 return Context.getPointerType(ClassTy);
854 }
855 }
856 return ThisTy;
857 }
858
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)859 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
860 Decl *ContextDecl,
861 unsigned CXXThisTypeQuals,
862 bool Enabled)
863 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
864 {
865 if (!Enabled || !ContextDecl)
866 return;
867
868 CXXRecordDecl *Record = nullptr;
869 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
870 Record = Template->getTemplatedDecl();
871 else
872 Record = cast<CXXRecordDecl>(ContextDecl);
873
874 S.CXXThisTypeOverride
875 = S.Context.getPointerType(
876 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
877
878 this->Enabled = true;
879 }
880
881
~CXXThisScopeRAII()882 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
883 if (Enabled) {
884 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
885 }
886 }
887
captureThis(ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc)888 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
889 QualType ThisTy, SourceLocation Loc) {
890 FieldDecl *Field
891 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
892 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
893 nullptr, false, ICIS_NoInit);
894 Field->setImplicit(true);
895 Field->setAccess(AS_private);
896 RD->addDecl(Field);
897 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
898 }
899
CheckCXXThisCapture(SourceLocation Loc,bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt)900 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
901 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
902 // We don't need to capture this in an unevaluated context.
903 if (isUnevaluatedContext() && !Explicit)
904 return true;
905
906 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
907 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
908 // Otherwise, check that we can capture 'this'.
909 unsigned NumClosures = 0;
910 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
911 if (CapturingScopeInfo *CSI =
912 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
913 if (CSI->CXXThisCaptureIndex != 0) {
914 // 'this' is already being captured; there isn't anything more to do.
915 break;
916 }
917 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
918 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
919 // This context can't implicitly capture 'this'; fail out.
920 if (BuildAndDiagnose)
921 Diag(Loc, diag::err_this_capture) << Explicit;
922 return true;
923 }
924 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
925 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
926 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
927 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
928 Explicit) {
929 // This closure can capture 'this'; continue looking upwards.
930 NumClosures++;
931 Explicit = false;
932 continue;
933 }
934 // This context can't implicitly capture 'this'; fail out.
935 if (BuildAndDiagnose)
936 Diag(Loc, diag::err_this_capture) << Explicit;
937 return true;
938 }
939 break;
940 }
941 if (!BuildAndDiagnose) return false;
942 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
943 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
944 // contexts.
945 for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
946 --idx, --NumClosures) {
947 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
948 Expr *ThisExpr = nullptr;
949 QualType ThisTy = getCurrentThisType();
950 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
951 // For lambda expressions, build a field and an initializing expression.
952 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
953 else if (CapturedRegionScopeInfo *RSI
954 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
955 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
956
957 bool isNested = NumClosures > 1;
958 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
959 }
960 return false;
961 }
962
ActOnCXXThis(SourceLocation Loc)963 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
964 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
965 /// is a non-lvalue expression whose value is the address of the object for
966 /// which the function is called.
967
968 QualType ThisTy = getCurrentThisType();
969 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
970
971 CheckCXXThisCapture(Loc);
972 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
973 }
974
isThisOutsideMemberFunctionBody(QualType BaseType)975 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
976 // If we're outside the body of a member function, then we'll have a specified
977 // type for 'this'.
978 if (CXXThisTypeOverride.isNull())
979 return false;
980
981 // Determine whether we're looking into a class that's currently being
982 // defined.
983 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
984 return Class && Class->isBeingDefined();
985 }
986
987 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)988 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
989 SourceLocation LParenLoc,
990 MultiExprArg exprs,
991 SourceLocation RParenLoc) {
992 if (!TypeRep)
993 return ExprError();
994
995 TypeSourceInfo *TInfo;
996 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
997 if (!TInfo)
998 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
999
1000 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1001 }
1002
1003 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1004 /// Can be interpreted either as function-style casting ("int(x)")
1005 /// or class type construction ("ClassType(x,y,z)")
1006 /// or creation of a value-initialized type ("int()").
1007 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc)1008 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1009 SourceLocation LParenLoc,
1010 MultiExprArg Exprs,
1011 SourceLocation RParenLoc) {
1012 QualType Ty = TInfo->getType();
1013 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1014
1015 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1016 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1017 RParenLoc);
1018 }
1019
1020 bool ListInitialization = LParenLoc.isInvalid();
1021 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
1022 && "List initialization must have initializer list as expression.");
1023 SourceRange FullRange = SourceRange(TyBeginLoc,
1024 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1025
1026 // C++ [expr.type.conv]p1:
1027 // If the expression list is a single expression, the type conversion
1028 // expression is equivalent (in definedness, and if defined in meaning) to the
1029 // corresponding cast expression.
1030 if (Exprs.size() == 1 && !ListInitialization) {
1031 Expr *Arg = Exprs[0];
1032 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
1033 }
1034
1035 QualType ElemTy = Ty;
1036 if (Ty->isArrayType()) {
1037 if (!ListInitialization)
1038 return ExprError(Diag(TyBeginLoc,
1039 diag::err_value_init_for_array_type) << FullRange);
1040 ElemTy = Context.getBaseElementType(Ty);
1041 }
1042
1043 if (!Ty->isVoidType() &&
1044 RequireCompleteType(TyBeginLoc, ElemTy,
1045 diag::err_invalid_incomplete_type_use, FullRange))
1046 return ExprError();
1047
1048 if (RequireNonAbstractType(TyBeginLoc, Ty,
1049 diag::err_allocation_of_abstract_type))
1050 return ExprError();
1051
1052 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1053 InitializationKind Kind =
1054 Exprs.size() ? ListInitialization
1055 ? InitializationKind::CreateDirectList(TyBeginLoc)
1056 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
1057 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1058 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1059 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1060
1061 if (Result.isInvalid() || !ListInitialization)
1062 return Result;
1063
1064 Expr *Inner = Result.get();
1065 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1066 Inner = BTE->getSubExpr();
1067 if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1068 // If we created a CXXTemporaryObjectExpr, that node also represents the
1069 // functional cast. Otherwise, create an explicit cast to represent
1070 // the syntactic form of a functional-style cast that was used here.
1071 //
1072 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1073 // would give a more consistent AST representation than using a
1074 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1075 // is sometimes handled by initialization and sometimes not.
1076 QualType ResultType = Result.get()->getType();
1077 Result = CXXFunctionalCastExpr::Create(
1078 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
1079 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1080 }
1081
1082 return Result;
1083 }
1084
1085 /// doesUsualArrayDeleteWantSize - Answers whether the usual
1086 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1087 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1088 QualType allocType) {
1089 const RecordType *record =
1090 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1091 if (!record) return false;
1092
1093 // Try to find an operator delete[] in class scope.
1094
1095 DeclarationName deleteName =
1096 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1097 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1098 S.LookupQualifiedName(ops, record->getDecl());
1099
1100 // We're just doing this for information.
1101 ops.suppressDiagnostics();
1102
1103 // Very likely: there's no operator delete[].
1104 if (ops.empty()) return false;
1105
1106 // If it's ambiguous, it should be illegal to call operator delete[]
1107 // on this thing, so it doesn't matter if we allocate extra space or not.
1108 if (ops.isAmbiguous()) return false;
1109
1110 LookupResult::Filter filter = ops.makeFilter();
1111 while (filter.hasNext()) {
1112 NamedDecl *del = filter.next()->getUnderlyingDecl();
1113
1114 // C++0x [basic.stc.dynamic.deallocation]p2:
1115 // A template instance is never a usual deallocation function,
1116 // regardless of its signature.
1117 if (isa<FunctionTemplateDecl>(del)) {
1118 filter.erase();
1119 continue;
1120 }
1121
1122 // C++0x [basic.stc.dynamic.deallocation]p2:
1123 // If class T does not declare [an operator delete[] with one
1124 // parameter] but does declare a member deallocation function
1125 // named operator delete[] with exactly two parameters, the
1126 // second of which has type std::size_t, then this function
1127 // is a usual deallocation function.
1128 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1129 filter.erase();
1130 continue;
1131 }
1132 }
1133 filter.done();
1134
1135 if (!ops.isSingleResult()) return false;
1136
1137 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1138 return (del->getNumParams() == 2);
1139 }
1140
1141 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1142 ///
1143 /// E.g.:
1144 /// @code new (memory) int[size][4] @endcode
1145 /// or
1146 /// @code ::new Foo(23, "hello") @endcode
1147 ///
1148 /// \param StartLoc The first location of the expression.
1149 /// \param UseGlobal True if 'new' was prefixed with '::'.
1150 /// \param PlacementLParen Opening paren of the placement arguments.
1151 /// \param PlacementArgs Placement new arguments.
1152 /// \param PlacementRParen Closing paren of the placement arguments.
1153 /// \param TypeIdParens If the type is in parens, the source range.
1154 /// \param D The type to be allocated, as well as array dimensions.
1155 /// \param Initializer The initializing expression or initializer-list, or null
1156 /// if there is none.
1157 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1158 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1159 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1160 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1161 Declarator &D, Expr *Initializer) {
1162 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1163
1164 Expr *ArraySize = nullptr;
1165 // If the specified type is an array, unwrap it and save the expression.
1166 if (D.getNumTypeObjects() > 0 &&
1167 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1168 DeclaratorChunk &Chunk = D.getTypeObject(0);
1169 if (TypeContainsAuto)
1170 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1171 << D.getSourceRange());
1172 if (Chunk.Arr.hasStatic)
1173 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1174 << D.getSourceRange());
1175 if (!Chunk.Arr.NumElts)
1176 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1177 << D.getSourceRange());
1178
1179 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1180 D.DropFirstTypeObject();
1181 }
1182
1183 // Every dimension shall be of constant size.
1184 if (ArraySize) {
1185 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1186 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1187 break;
1188
1189 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1190 if (Expr *NumElts = (Expr *)Array.NumElts) {
1191 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1192 if (getLangOpts().CPlusPlus14) {
1193 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1194 // shall be a converted constant expression (5.19) of type std::size_t
1195 // and shall evaluate to a strictly positive value.
1196 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1197 assert(IntWidth && "Builtin type of size 0?");
1198 llvm::APSInt Value(IntWidth);
1199 Array.NumElts
1200 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1201 CCEK_NewExpr)
1202 .get();
1203 } else {
1204 Array.NumElts
1205 = VerifyIntegerConstantExpression(NumElts, nullptr,
1206 diag::err_new_array_nonconst)
1207 .get();
1208 }
1209 if (!Array.NumElts)
1210 return ExprError();
1211 }
1212 }
1213 }
1214 }
1215
1216 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1217 QualType AllocType = TInfo->getType();
1218 if (D.isInvalidType())
1219 return ExprError();
1220
1221 SourceRange DirectInitRange;
1222 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1223 DirectInitRange = List->getSourceRange();
1224
1225 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1226 PlacementLParen,
1227 PlacementArgs,
1228 PlacementRParen,
1229 TypeIdParens,
1230 AllocType,
1231 TInfo,
1232 ArraySize,
1233 DirectInitRange,
1234 Initializer,
1235 TypeContainsAuto);
1236 }
1237
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1238 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1239 Expr *Init) {
1240 if (!Init)
1241 return true;
1242 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1243 return PLE->getNumExprs() == 0;
1244 if (isa<ImplicitValueInitExpr>(Init))
1245 return true;
1246 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1247 return !CCE->isListInitialization() &&
1248 CCE->getConstructor()->isDefaultConstructor();
1249 else if (Style == CXXNewExpr::ListInit) {
1250 assert(isa<InitListExpr>(Init) &&
1251 "Shouldn't create list CXXConstructExprs for arrays.");
1252 return true;
1253 }
1254 return false;
1255 }
1256
1257 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1258 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1259 SourceLocation PlacementLParen,
1260 MultiExprArg PlacementArgs,
1261 SourceLocation PlacementRParen,
1262 SourceRange TypeIdParens,
1263 QualType AllocType,
1264 TypeSourceInfo *AllocTypeInfo,
1265 Expr *ArraySize,
1266 SourceRange DirectInitRange,
1267 Expr *Initializer,
1268 bool TypeMayContainAuto) {
1269 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1270 SourceLocation StartLoc = Range.getBegin();
1271
1272 CXXNewExpr::InitializationStyle initStyle;
1273 if (DirectInitRange.isValid()) {
1274 assert(Initializer && "Have parens but no initializer.");
1275 initStyle = CXXNewExpr::CallInit;
1276 } else if (Initializer && isa<InitListExpr>(Initializer))
1277 initStyle = CXXNewExpr::ListInit;
1278 else {
1279 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1280 isa<CXXConstructExpr>(Initializer)) &&
1281 "Initializer expression that cannot have been implicitly created.");
1282 initStyle = CXXNewExpr::NoInit;
1283 }
1284
1285 Expr **Inits = &Initializer;
1286 unsigned NumInits = Initializer ? 1 : 0;
1287 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1288 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1289 Inits = List->getExprs();
1290 NumInits = List->getNumExprs();
1291 }
1292
1293 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1294 if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1295 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1296 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1297 << AllocType << TypeRange);
1298 if (initStyle == CXXNewExpr::ListInit ||
1299 (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1300 return ExprError(Diag(Inits[0]->getLocStart(),
1301 diag::err_auto_new_list_init)
1302 << AllocType << TypeRange);
1303 if (NumInits > 1) {
1304 Expr *FirstBad = Inits[1];
1305 return ExprError(Diag(FirstBad->getLocStart(),
1306 diag::err_auto_new_ctor_multiple_expressions)
1307 << AllocType << TypeRange);
1308 }
1309 Expr *Deduce = Inits[0];
1310 QualType DeducedType;
1311 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1312 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1313 << AllocType << Deduce->getType()
1314 << TypeRange << Deduce->getSourceRange());
1315 if (DeducedType.isNull())
1316 return ExprError();
1317 AllocType = DeducedType;
1318 }
1319
1320 // Per C++0x [expr.new]p5, the type being constructed may be a
1321 // typedef of an array type.
1322 if (!ArraySize) {
1323 if (const ConstantArrayType *Array
1324 = Context.getAsConstantArrayType(AllocType)) {
1325 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1326 Context.getSizeType(),
1327 TypeRange.getEnd());
1328 AllocType = Array->getElementType();
1329 }
1330 }
1331
1332 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1333 return ExprError();
1334
1335 if (initStyle == CXXNewExpr::ListInit &&
1336 isStdInitializerList(AllocType, nullptr)) {
1337 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1338 diag::warn_dangling_std_initializer_list)
1339 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1340 }
1341
1342 // In ARC, infer 'retaining' for the allocated
1343 if (getLangOpts().ObjCAutoRefCount &&
1344 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1345 AllocType->isObjCLifetimeType()) {
1346 AllocType = Context.getLifetimeQualifiedType(AllocType,
1347 AllocType->getObjCARCImplicitLifetime());
1348 }
1349
1350 QualType ResultType = Context.getPointerType(AllocType);
1351
1352 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1353 ExprResult result = CheckPlaceholderExpr(ArraySize);
1354 if (result.isInvalid()) return ExprError();
1355 ArraySize = result.get();
1356 }
1357 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1358 // integral or enumeration type with a non-negative value."
1359 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1360 // enumeration type, or a class type for which a single non-explicit
1361 // conversion function to integral or unscoped enumeration type exists.
1362 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1363 // std::size_t.
1364 if (ArraySize && !ArraySize->isTypeDependent()) {
1365 ExprResult ConvertedSize;
1366 if (getLangOpts().CPlusPlus14) {
1367 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1368
1369 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1370 AA_Converting);
1371
1372 if (!ConvertedSize.isInvalid() &&
1373 ArraySize->getType()->getAs<RecordType>())
1374 // Diagnose the compatibility of this conversion.
1375 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1376 << ArraySize->getType() << 0 << "'size_t'";
1377 } else {
1378 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1379 protected:
1380 Expr *ArraySize;
1381
1382 public:
1383 SizeConvertDiagnoser(Expr *ArraySize)
1384 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1385 ArraySize(ArraySize) {}
1386
1387 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1388 QualType T) override {
1389 return S.Diag(Loc, diag::err_array_size_not_integral)
1390 << S.getLangOpts().CPlusPlus11 << T;
1391 }
1392
1393 SemaDiagnosticBuilder diagnoseIncomplete(
1394 Sema &S, SourceLocation Loc, QualType T) override {
1395 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1396 << T << ArraySize->getSourceRange();
1397 }
1398
1399 SemaDiagnosticBuilder diagnoseExplicitConv(
1400 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1401 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1402 }
1403
1404 SemaDiagnosticBuilder noteExplicitConv(
1405 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1406 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1407 << ConvTy->isEnumeralType() << ConvTy;
1408 }
1409
1410 SemaDiagnosticBuilder diagnoseAmbiguous(
1411 Sema &S, SourceLocation Loc, QualType T) override {
1412 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1413 }
1414
1415 SemaDiagnosticBuilder noteAmbiguous(
1416 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1417 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1418 << ConvTy->isEnumeralType() << ConvTy;
1419 }
1420
1421 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1422 QualType T,
1423 QualType ConvTy) override {
1424 return S.Diag(Loc,
1425 S.getLangOpts().CPlusPlus11
1426 ? diag::warn_cxx98_compat_array_size_conversion
1427 : diag::ext_array_size_conversion)
1428 << T << ConvTy->isEnumeralType() << ConvTy;
1429 }
1430 } SizeDiagnoser(ArraySize);
1431
1432 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1433 SizeDiagnoser);
1434 }
1435 if (ConvertedSize.isInvalid())
1436 return ExprError();
1437
1438 ArraySize = ConvertedSize.get();
1439 QualType SizeType = ArraySize->getType();
1440
1441 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1442 return ExprError();
1443
1444 // C++98 [expr.new]p7:
1445 // The expression in a direct-new-declarator shall have integral type
1446 // with a non-negative value.
1447 //
1448 // Let's see if this is a constant < 0. If so, we reject it out of
1449 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1450 // array type.
1451 //
1452 // Note: such a construct has well-defined semantics in C++11: it throws
1453 // std::bad_array_new_length.
1454 if (!ArraySize->isValueDependent()) {
1455 llvm::APSInt Value;
1456 // We've already performed any required implicit conversion to integer or
1457 // unscoped enumeration type.
1458 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1459 if (Value < llvm::APSInt(
1460 llvm::APInt::getNullValue(Value.getBitWidth()),
1461 Value.isUnsigned())) {
1462 if (getLangOpts().CPlusPlus11)
1463 Diag(ArraySize->getLocStart(),
1464 diag::warn_typecheck_negative_array_new_size)
1465 << ArraySize->getSourceRange();
1466 else
1467 return ExprError(Diag(ArraySize->getLocStart(),
1468 diag::err_typecheck_negative_array_size)
1469 << ArraySize->getSourceRange());
1470 } else if (!AllocType->isDependentType()) {
1471 unsigned ActiveSizeBits =
1472 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1473 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1474 if (getLangOpts().CPlusPlus11)
1475 Diag(ArraySize->getLocStart(),
1476 diag::warn_array_new_too_large)
1477 << Value.toString(10)
1478 << ArraySize->getSourceRange();
1479 else
1480 return ExprError(Diag(ArraySize->getLocStart(),
1481 diag::err_array_too_large)
1482 << Value.toString(10)
1483 << ArraySize->getSourceRange());
1484 }
1485 }
1486 } else if (TypeIdParens.isValid()) {
1487 // Can't have dynamic array size when the type-id is in parentheses.
1488 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1489 << ArraySize->getSourceRange()
1490 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1491 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1492
1493 TypeIdParens = SourceRange();
1494 }
1495 }
1496
1497 // Note that we do *not* convert the argument in any way. It can
1498 // be signed, larger than size_t, whatever.
1499 }
1500
1501 FunctionDecl *OperatorNew = nullptr;
1502 FunctionDecl *OperatorDelete = nullptr;
1503
1504 if (!AllocType->isDependentType() &&
1505 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1506 FindAllocationFunctions(StartLoc,
1507 SourceRange(PlacementLParen, PlacementRParen),
1508 UseGlobal, AllocType, ArraySize, PlacementArgs,
1509 OperatorNew, OperatorDelete))
1510 return ExprError();
1511
1512 // If this is an array allocation, compute whether the usual array
1513 // deallocation function for the type has a size_t parameter.
1514 bool UsualArrayDeleteWantsSize = false;
1515 if (ArraySize && !AllocType->isDependentType())
1516 UsualArrayDeleteWantsSize
1517 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1518
1519 SmallVector<Expr *, 8> AllPlaceArgs;
1520 if (OperatorNew) {
1521 const FunctionProtoType *Proto =
1522 OperatorNew->getType()->getAs<FunctionProtoType>();
1523 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1524 : VariadicDoesNotApply;
1525
1526 // We've already converted the placement args, just fill in any default
1527 // arguments. Skip the first parameter because we don't have a corresponding
1528 // argument.
1529 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1530 PlacementArgs, AllPlaceArgs, CallType))
1531 return ExprError();
1532
1533 if (!AllPlaceArgs.empty())
1534 PlacementArgs = AllPlaceArgs;
1535
1536 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1537 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1538
1539 // FIXME: Missing call to CheckFunctionCall or equivalent
1540 }
1541
1542 // Warn if the type is over-aligned and is being allocated by global operator
1543 // new.
1544 if (PlacementArgs.empty() && OperatorNew &&
1545 (OperatorNew->isImplicit() ||
1546 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1547 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1548 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1549 if (Align > SuitableAlign)
1550 Diag(StartLoc, diag::warn_overaligned_type)
1551 << AllocType
1552 << unsigned(Align / Context.getCharWidth())
1553 << unsigned(SuitableAlign / Context.getCharWidth());
1554 }
1555 }
1556
1557 QualType InitType = AllocType;
1558 // Array 'new' can't have any initializers except empty parentheses.
1559 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1560 // dialect distinction.
1561 if (ResultType->isArrayType() || ArraySize) {
1562 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1563 SourceRange InitRange(Inits[0]->getLocStart(),
1564 Inits[NumInits - 1]->getLocEnd());
1565 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1566 return ExprError();
1567 }
1568 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1569 // We do the initialization typechecking against the array type
1570 // corresponding to the number of initializers + 1 (to also check
1571 // default-initialization).
1572 unsigned NumElements = ILE->getNumInits() + 1;
1573 InitType = Context.getConstantArrayType(AllocType,
1574 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1575 ArrayType::Normal, 0);
1576 }
1577 }
1578
1579 // If we can perform the initialization, and we've not already done so,
1580 // do it now.
1581 if (!AllocType->isDependentType() &&
1582 !Expr::hasAnyTypeDependentArguments(
1583 llvm::makeArrayRef(Inits, NumInits))) {
1584 // C++11 [expr.new]p15:
1585 // A new-expression that creates an object of type T initializes that
1586 // object as follows:
1587 InitializationKind Kind
1588 // - If the new-initializer is omitted, the object is default-
1589 // initialized (8.5); if no initialization is performed,
1590 // the object has indeterminate value
1591 = initStyle == CXXNewExpr::NoInit
1592 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1593 // - Otherwise, the new-initializer is interpreted according to the
1594 // initialization rules of 8.5 for direct-initialization.
1595 : initStyle == CXXNewExpr::ListInit
1596 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1597 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1598 DirectInitRange.getBegin(),
1599 DirectInitRange.getEnd());
1600
1601 InitializedEntity Entity
1602 = InitializedEntity::InitializeNew(StartLoc, InitType);
1603 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1604 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1605 MultiExprArg(Inits, NumInits));
1606 if (FullInit.isInvalid())
1607 return ExprError();
1608
1609 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1610 // we don't want the initialized object to be destructed.
1611 if (CXXBindTemporaryExpr *Binder =
1612 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1613 FullInit = Binder->getSubExpr();
1614
1615 Initializer = FullInit.get();
1616 }
1617
1618 // Mark the new and delete operators as referenced.
1619 if (OperatorNew) {
1620 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1621 return ExprError();
1622 MarkFunctionReferenced(StartLoc, OperatorNew);
1623 }
1624 if (OperatorDelete) {
1625 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1626 return ExprError();
1627 MarkFunctionReferenced(StartLoc, OperatorDelete);
1628 }
1629
1630 // C++0x [expr.new]p17:
1631 // If the new expression creates an array of objects of class type,
1632 // access and ambiguity control are done for the destructor.
1633 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1634 if (ArraySize && !BaseAllocType->isDependentType()) {
1635 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1636 if (CXXDestructorDecl *dtor = LookupDestructor(
1637 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1638 MarkFunctionReferenced(StartLoc, dtor);
1639 CheckDestructorAccess(StartLoc, dtor,
1640 PDiag(diag::err_access_dtor)
1641 << BaseAllocType);
1642 if (DiagnoseUseOfDecl(dtor, StartLoc))
1643 return ExprError();
1644 }
1645 }
1646 }
1647
1648 return new (Context)
1649 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1650 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1651 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1652 Range, DirectInitRange);
1653 }
1654
1655 /// \brief Checks that a type is suitable as the allocated type
1656 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1657 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1658 SourceRange R) {
1659 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1660 // abstract class type or array thereof.
1661 if (AllocType->isFunctionType())
1662 return Diag(Loc, diag::err_bad_new_type)
1663 << AllocType << 0 << R;
1664 else if (AllocType->isReferenceType())
1665 return Diag(Loc, diag::err_bad_new_type)
1666 << AllocType << 1 << R;
1667 else if (!AllocType->isDependentType() &&
1668 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1669 return true;
1670 else if (RequireNonAbstractType(Loc, AllocType,
1671 diag::err_allocation_of_abstract_type))
1672 return true;
1673 else if (AllocType->isVariablyModifiedType())
1674 return Diag(Loc, diag::err_variably_modified_new_type)
1675 << AllocType;
1676 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1677 return Diag(Loc, diag::err_address_space_qualified_new)
1678 << AllocType.getUnqualifiedType() << AddressSpace;
1679 else if (getLangOpts().ObjCAutoRefCount) {
1680 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1681 QualType BaseAllocType = Context.getBaseElementType(AT);
1682 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1683 BaseAllocType->isObjCLifetimeType())
1684 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1685 << BaseAllocType;
1686 }
1687 }
1688
1689 return false;
1690 }
1691
1692 /// \brief Determine whether the given function is a non-placement
1693 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1694 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1695 if (FD->isInvalidDecl())
1696 return false;
1697
1698 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1699 return Method->isUsualDeallocationFunction();
1700
1701 if (FD->getOverloadedOperator() != OO_Delete &&
1702 FD->getOverloadedOperator() != OO_Array_Delete)
1703 return false;
1704
1705 if (FD->getNumParams() == 1)
1706 return true;
1707
1708 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1709 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1710 S.Context.getSizeType());
1711 }
1712
1713 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1714 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1715 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1716 bool UseGlobal, QualType AllocType,
1717 bool IsArray, MultiExprArg PlaceArgs,
1718 FunctionDecl *&OperatorNew,
1719 FunctionDecl *&OperatorDelete) {
1720 // --- Choosing an allocation function ---
1721 // C++ 5.3.4p8 - 14 & 18
1722 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1723 // in the scope of the allocated class.
1724 // 2) If an array size is given, look for operator new[], else look for
1725 // operator new.
1726 // 3) The first argument is always size_t. Append the arguments from the
1727 // placement form.
1728
1729 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1730 // We don't care about the actual value of this argument.
1731 // FIXME: Should the Sema create the expression and embed it in the syntax
1732 // tree? Or should the consumer just recalculate the value?
1733 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1734 Context.getTargetInfo().getPointerWidth(0)),
1735 Context.getSizeType(),
1736 SourceLocation());
1737 AllocArgs[0] = &Size;
1738 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1739
1740 // C++ [expr.new]p8:
1741 // If the allocated type is a non-array type, the allocation
1742 // function's name is operator new and the deallocation function's
1743 // name is operator delete. If the allocated type is an array
1744 // type, the allocation function's name is operator new[] and the
1745 // deallocation function's name is operator delete[].
1746 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1747 IsArray ? OO_Array_New : OO_New);
1748 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1749 IsArray ? OO_Array_Delete : OO_Delete);
1750
1751 QualType AllocElemType = Context.getBaseElementType(AllocType);
1752
1753 if (AllocElemType->isRecordType() && !UseGlobal) {
1754 CXXRecordDecl *Record
1755 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1756 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1757 /*AllowMissing=*/true, OperatorNew))
1758 return true;
1759 }
1760
1761 if (!OperatorNew) {
1762 // Didn't find a member overload. Look for a global one.
1763 DeclareGlobalNewDelete();
1764 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1765 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1766 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1767 /*AllowMissing=*/FallbackEnabled, OperatorNew,
1768 /*Diagnose=*/!FallbackEnabled)) {
1769 if (!FallbackEnabled)
1770 return true;
1771
1772 // MSVC will fall back on trying to find a matching global operator new
1773 // if operator new[] cannot be found. Also, MSVC will leak by not
1774 // generating a call to operator delete or operator delete[], but we
1775 // will not replicate that bug.
1776 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1777 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1778 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1779 /*AllowMissing=*/false, OperatorNew))
1780 return true;
1781 }
1782 }
1783
1784 // We don't need an operator delete if we're running under
1785 // -fno-exceptions.
1786 if (!getLangOpts().Exceptions) {
1787 OperatorDelete = nullptr;
1788 return false;
1789 }
1790
1791 // C++ [expr.new]p19:
1792 //
1793 // If the new-expression begins with a unary :: operator, the
1794 // deallocation function's name is looked up in the global
1795 // scope. Otherwise, if the allocated type is a class type T or an
1796 // array thereof, the deallocation function's name is looked up in
1797 // the scope of T. If this lookup fails to find the name, or if
1798 // the allocated type is not a class type or array thereof, the
1799 // deallocation function's name is looked up in the global scope.
1800 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1801 if (AllocElemType->isRecordType() && !UseGlobal) {
1802 CXXRecordDecl *RD
1803 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1804 LookupQualifiedName(FoundDelete, RD);
1805 }
1806 if (FoundDelete.isAmbiguous())
1807 return true; // FIXME: clean up expressions?
1808
1809 if (FoundDelete.empty()) {
1810 DeclareGlobalNewDelete();
1811 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1812 }
1813
1814 FoundDelete.suppressDiagnostics();
1815
1816 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1817
1818 // Whether we're looking for a placement operator delete is dictated
1819 // by whether we selected a placement operator new, not by whether
1820 // we had explicit placement arguments. This matters for things like
1821 // struct A { void *operator new(size_t, int = 0); ... };
1822 // A *a = new A()
1823 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1824
1825 if (isPlacementNew) {
1826 // C++ [expr.new]p20:
1827 // A declaration of a placement deallocation function matches the
1828 // declaration of a placement allocation function if it has the
1829 // same number of parameters and, after parameter transformations
1830 // (8.3.5), all parameter types except the first are
1831 // identical. [...]
1832 //
1833 // To perform this comparison, we compute the function type that
1834 // the deallocation function should have, and use that type both
1835 // for template argument deduction and for comparison purposes.
1836 //
1837 // FIXME: this comparison should ignore CC and the like.
1838 QualType ExpectedFunctionType;
1839 {
1840 const FunctionProtoType *Proto
1841 = OperatorNew->getType()->getAs<FunctionProtoType>();
1842
1843 SmallVector<QualType, 4> ArgTypes;
1844 ArgTypes.push_back(Context.VoidPtrTy);
1845 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1846 ArgTypes.push_back(Proto->getParamType(I));
1847
1848 FunctionProtoType::ExtProtoInfo EPI;
1849 EPI.Variadic = Proto->isVariadic();
1850
1851 ExpectedFunctionType
1852 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1853 }
1854
1855 for (LookupResult::iterator D = FoundDelete.begin(),
1856 DEnd = FoundDelete.end();
1857 D != DEnd; ++D) {
1858 FunctionDecl *Fn = nullptr;
1859 if (FunctionTemplateDecl *FnTmpl
1860 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1861 // Perform template argument deduction to try to match the
1862 // expected function type.
1863 TemplateDeductionInfo Info(StartLoc);
1864 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1865 Info))
1866 continue;
1867 } else
1868 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1869
1870 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1871 Matches.push_back(std::make_pair(D.getPair(), Fn));
1872 }
1873 } else {
1874 // C++ [expr.new]p20:
1875 // [...] Any non-placement deallocation function matches a
1876 // non-placement allocation function. [...]
1877 for (LookupResult::iterator D = FoundDelete.begin(),
1878 DEnd = FoundDelete.end();
1879 D != DEnd; ++D) {
1880 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1881 if (isNonPlacementDeallocationFunction(*this, Fn))
1882 Matches.push_back(std::make_pair(D.getPair(), Fn));
1883 }
1884
1885 // C++1y [expr.new]p22:
1886 // For a non-placement allocation function, the normal deallocation
1887 // function lookup is used
1888 // C++1y [expr.delete]p?:
1889 // If [...] deallocation function lookup finds both a usual deallocation
1890 // function with only a pointer parameter and a usual deallocation
1891 // function with both a pointer parameter and a size parameter, then the
1892 // selected deallocation function shall be the one with two parameters.
1893 // Otherwise, the selected deallocation function shall be the function
1894 // with one parameter.
1895 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1896 if (Matches[0].second->getNumParams() == 1)
1897 Matches.erase(Matches.begin());
1898 else
1899 Matches.erase(Matches.begin() + 1);
1900 assert(Matches[0].second->getNumParams() == 2 &&
1901 "found an unexpected usual deallocation function");
1902 }
1903 }
1904
1905 // C++ [expr.new]p20:
1906 // [...] If the lookup finds a single matching deallocation
1907 // function, that function will be called; otherwise, no
1908 // deallocation function will be called.
1909 if (Matches.size() == 1) {
1910 OperatorDelete = Matches[0].second;
1911
1912 // C++0x [expr.new]p20:
1913 // If the lookup finds the two-parameter form of a usual
1914 // deallocation function (3.7.4.2) and that function, considered
1915 // as a placement deallocation function, would have been
1916 // selected as a match for the allocation function, the program
1917 // is ill-formed.
1918 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1919 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1920 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1921 << SourceRange(PlaceArgs.front()->getLocStart(),
1922 PlaceArgs.back()->getLocEnd());
1923 if (!OperatorDelete->isImplicit())
1924 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1925 << DeleteName;
1926 } else {
1927 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1928 Matches[0].first);
1929 }
1930 }
1931
1932 return false;
1933 }
1934
1935 /// \brief Find an fitting overload for the allocation function
1936 /// in the specified scope.
1937 ///
1938 /// \param StartLoc The location of the 'new' token.
1939 /// \param Range The range of the placement arguments.
1940 /// \param Name The name of the function ('operator new' or 'operator new[]').
1941 /// \param Args The placement arguments specified.
1942 /// \param Ctx The scope in which we should search; either a class scope or the
1943 /// translation unit.
1944 /// \param AllowMissing If \c true, report an error if we can't find any
1945 /// allocation functions. Otherwise, succeed but don't fill in \p
1946 /// Operator.
1947 /// \param Operator Filled in with the found allocation function. Unchanged if
1948 /// no allocation function was found.
1949 /// \param Diagnose If \c true, issue errors if the allocation function is not
1950 /// usable.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,MultiExprArg Args,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1951 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1952 DeclarationName Name, MultiExprArg Args,
1953 DeclContext *Ctx,
1954 bool AllowMissing, FunctionDecl *&Operator,
1955 bool Diagnose) {
1956 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1957 LookupQualifiedName(R, Ctx);
1958 if (R.empty()) {
1959 if (AllowMissing || !Diagnose)
1960 return false;
1961 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1962 << Name << Range;
1963 }
1964
1965 if (R.isAmbiguous())
1966 return true;
1967
1968 R.suppressDiagnostics();
1969
1970 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1971 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1972 Alloc != AllocEnd; ++Alloc) {
1973 // Even member operator new/delete are implicitly treated as
1974 // static, so don't use AddMemberCandidate.
1975 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1976
1977 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1978 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1979 /*ExplicitTemplateArgs=*/nullptr,
1980 Args, Candidates,
1981 /*SuppressUserConversions=*/false);
1982 continue;
1983 }
1984
1985 FunctionDecl *Fn = cast<FunctionDecl>(D);
1986 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1987 /*SuppressUserConversions=*/false);
1988 }
1989
1990 // Do the resolution.
1991 OverloadCandidateSet::iterator Best;
1992 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1993 case OR_Success: {
1994 // Got one!
1995 FunctionDecl *FnDecl = Best->Function;
1996 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1997 Best->FoundDecl, Diagnose) == AR_inaccessible)
1998 return true;
1999
2000 Operator = FnDecl;
2001 return false;
2002 }
2003
2004 case OR_No_Viable_Function:
2005 if (Diagnose) {
2006 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2007 << Name << Range;
2008 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2009 }
2010 return true;
2011
2012 case OR_Ambiguous:
2013 if (Diagnose) {
2014 Diag(StartLoc, diag::err_ovl_ambiguous_call)
2015 << Name << Range;
2016 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
2017 }
2018 return true;
2019
2020 case OR_Deleted: {
2021 if (Diagnose) {
2022 Diag(StartLoc, diag::err_ovl_deleted_call)
2023 << Best->Function->isDeleted()
2024 << Name
2025 << getDeletedOrUnavailableSuffix(Best->Function)
2026 << Range;
2027 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2028 }
2029 return true;
2030 }
2031 }
2032 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2033 }
2034
2035
2036 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2037 /// delete. These are:
2038 /// @code
2039 /// // C++03:
2040 /// void* operator new(std::size_t) throw(std::bad_alloc);
2041 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2042 /// void operator delete(void *) throw();
2043 /// void operator delete[](void *) throw();
2044 /// // C++11:
2045 /// void* operator new(std::size_t);
2046 /// void* operator new[](std::size_t);
2047 /// void operator delete(void *) noexcept;
2048 /// void operator delete[](void *) noexcept;
2049 /// // C++1y:
2050 /// void* operator new(std::size_t);
2051 /// void* operator new[](std::size_t);
2052 /// void operator delete(void *) noexcept;
2053 /// void operator delete[](void *) noexcept;
2054 /// void operator delete(void *, std::size_t) noexcept;
2055 /// void operator delete[](void *, std::size_t) noexcept;
2056 /// @endcode
2057 /// Note that the placement and nothrow forms of new are *not* implicitly
2058 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2059 void Sema::DeclareGlobalNewDelete() {
2060 if (GlobalNewDeleteDeclared)
2061 return;
2062
2063 // C++ [basic.std.dynamic]p2:
2064 // [...] The following allocation and deallocation functions (18.4) are
2065 // implicitly declared in global scope in each translation unit of a
2066 // program
2067 //
2068 // C++03:
2069 // void* operator new(std::size_t) throw(std::bad_alloc);
2070 // void* operator new[](std::size_t) throw(std::bad_alloc);
2071 // void operator delete(void*) throw();
2072 // void operator delete[](void*) throw();
2073 // C++11:
2074 // void* operator new(std::size_t);
2075 // void* operator new[](std::size_t);
2076 // void operator delete(void*) noexcept;
2077 // void operator delete[](void*) noexcept;
2078 // C++1y:
2079 // void* operator new(std::size_t);
2080 // void* operator new[](std::size_t);
2081 // void operator delete(void*) noexcept;
2082 // void operator delete[](void*) noexcept;
2083 // void operator delete(void*, std::size_t) noexcept;
2084 // void operator delete[](void*, std::size_t) noexcept;
2085 //
2086 // These implicit declarations introduce only the function names operator
2087 // new, operator new[], operator delete, operator delete[].
2088 //
2089 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2090 // "std" or "bad_alloc" as necessary to form the exception specification.
2091 // However, we do not make these implicit declarations visible to name
2092 // lookup.
2093 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2094 // The "std::bad_alloc" class has not yet been declared, so build it
2095 // implicitly.
2096 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2097 getOrCreateStdNamespace(),
2098 SourceLocation(), SourceLocation(),
2099 &PP.getIdentifierTable().get("bad_alloc"),
2100 nullptr);
2101 getStdBadAlloc()->setImplicit(true);
2102 }
2103
2104 GlobalNewDeleteDeclared = true;
2105
2106 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2107 QualType SizeT = Context.getSizeType();
2108 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2109
2110 DeclareGlobalAllocationFunction(
2111 Context.DeclarationNames.getCXXOperatorName(OO_New),
2112 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2113 DeclareGlobalAllocationFunction(
2114 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2115 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2116 DeclareGlobalAllocationFunction(
2117 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2118 Context.VoidTy, VoidPtr);
2119 DeclareGlobalAllocationFunction(
2120 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2121 Context.VoidTy, VoidPtr);
2122 if (getLangOpts().SizedDeallocation) {
2123 DeclareGlobalAllocationFunction(
2124 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2125 Context.VoidTy, VoidPtr, Context.getSizeType());
2126 DeclareGlobalAllocationFunction(
2127 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2128 Context.VoidTy, VoidPtr, Context.getSizeType());
2129 }
2130 }
2131
2132 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2133 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Param1,QualType Param2,bool AddRestrictAttr)2134 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2135 QualType Return,
2136 QualType Param1, QualType Param2,
2137 bool AddRestrictAttr) {
2138 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2139 unsigned NumParams = Param2.isNull() ? 1 : 2;
2140
2141 // Check if this function is already declared.
2142 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2143 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2144 Alloc != AllocEnd; ++Alloc) {
2145 // Only look at non-template functions, as it is the predefined,
2146 // non-templated allocation function we are trying to declare here.
2147 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2148 if (Func->getNumParams() == NumParams) {
2149 QualType InitialParam1Type =
2150 Context.getCanonicalType(Func->getParamDecl(0)
2151 ->getType().getUnqualifiedType());
2152 QualType InitialParam2Type =
2153 NumParams == 2
2154 ? Context.getCanonicalType(Func->getParamDecl(1)
2155 ->getType().getUnqualifiedType())
2156 : QualType();
2157 // FIXME: Do we need to check for default arguments here?
2158 if (InitialParam1Type == Param1 &&
2159 (NumParams == 1 || InitialParam2Type == Param2)) {
2160 if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
2161 Func->addAttr(RestrictAttr::CreateImplicit(
2162 Context, RestrictAttr::GNU_malloc));
2163 // Make the function visible to name lookup, even if we found it in
2164 // an unimported module. It either is an implicitly-declared global
2165 // allocation function, or is suppressing that function.
2166 Func->setHidden(false);
2167 return;
2168 }
2169 }
2170 }
2171 }
2172
2173 FunctionProtoType::ExtProtoInfo EPI;
2174
2175 QualType BadAllocType;
2176 bool HasBadAllocExceptionSpec
2177 = (Name.getCXXOverloadedOperator() == OO_New ||
2178 Name.getCXXOverloadedOperator() == OO_Array_New);
2179 if (HasBadAllocExceptionSpec) {
2180 if (!getLangOpts().CPlusPlus11) {
2181 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2182 assert(StdBadAlloc && "Must have std::bad_alloc declared");
2183 EPI.ExceptionSpec.Type = EST_Dynamic;
2184 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2185 }
2186 } else {
2187 EPI.ExceptionSpec =
2188 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2189 }
2190
2191 QualType Params[] = { Param1, Param2 };
2192
2193 QualType FnType = Context.getFunctionType(
2194 Return, llvm::makeArrayRef(Params, NumParams), EPI);
2195 FunctionDecl *Alloc =
2196 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2197 SourceLocation(), Name,
2198 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2199 Alloc->setImplicit();
2200
2201 // Implicit sized deallocation functions always have default visibility.
2202 Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
2203 VisibilityAttr::Default));
2204
2205 if (AddRestrictAttr)
2206 Alloc->addAttr(
2207 RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
2208
2209 ParmVarDecl *ParamDecls[2];
2210 for (unsigned I = 0; I != NumParams; ++I) {
2211 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2212 SourceLocation(), nullptr,
2213 Params[I], /*TInfo=*/nullptr,
2214 SC_None, nullptr);
2215 ParamDecls[I]->setImplicit();
2216 }
2217 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2218
2219 Context.getTranslationUnitDecl()->addDecl(Alloc);
2220 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2221 }
2222
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,DeclarationName Name)2223 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2224 bool CanProvideSize,
2225 DeclarationName Name) {
2226 DeclareGlobalNewDelete();
2227
2228 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2229 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2230
2231 // C++ [expr.new]p20:
2232 // [...] Any non-placement deallocation function matches a
2233 // non-placement allocation function. [...]
2234 llvm::SmallVector<FunctionDecl*, 2> Matches;
2235 for (LookupResult::iterator D = FoundDelete.begin(),
2236 DEnd = FoundDelete.end();
2237 D != DEnd; ++D) {
2238 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2239 if (isNonPlacementDeallocationFunction(*this, Fn))
2240 Matches.push_back(Fn);
2241 }
2242
2243 // C++1y [expr.delete]p?:
2244 // If the type is complete and deallocation function lookup finds both a
2245 // usual deallocation function with only a pointer parameter and a usual
2246 // deallocation function with both a pointer parameter and a size
2247 // parameter, then the selected deallocation function shall be the one
2248 // with two parameters. Otherwise, the selected deallocation function
2249 // shall be the function with one parameter.
2250 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2251 unsigned NumArgs = CanProvideSize ? 2 : 1;
2252 if (Matches[0]->getNumParams() != NumArgs)
2253 Matches.erase(Matches.begin());
2254 else
2255 Matches.erase(Matches.begin() + 1);
2256 assert(Matches[0]->getNumParams() == NumArgs &&
2257 "found an unexpected usual deallocation function");
2258 }
2259
2260 assert(Matches.size() == 1 &&
2261 "unexpectedly have multiple usual deallocation functions");
2262 return Matches.front();
2263 }
2264
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2265 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2266 DeclarationName Name,
2267 FunctionDecl* &Operator, bool Diagnose) {
2268 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2269 // Try to find operator delete/operator delete[] in class scope.
2270 LookupQualifiedName(Found, RD);
2271
2272 if (Found.isAmbiguous())
2273 return true;
2274
2275 Found.suppressDiagnostics();
2276
2277 SmallVector<DeclAccessPair,4> Matches;
2278 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2279 F != FEnd; ++F) {
2280 NamedDecl *ND = (*F)->getUnderlyingDecl();
2281
2282 // Ignore template operator delete members from the check for a usual
2283 // deallocation function.
2284 if (isa<FunctionTemplateDecl>(ND))
2285 continue;
2286
2287 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2288 Matches.push_back(F.getPair());
2289 }
2290
2291 // There's exactly one suitable operator; pick it.
2292 if (Matches.size() == 1) {
2293 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2294
2295 if (Operator->isDeleted()) {
2296 if (Diagnose) {
2297 Diag(StartLoc, diag::err_deleted_function_use);
2298 NoteDeletedFunction(Operator);
2299 }
2300 return true;
2301 }
2302
2303 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2304 Matches[0], Diagnose) == AR_inaccessible)
2305 return true;
2306
2307 return false;
2308
2309 // We found multiple suitable operators; complain about the ambiguity.
2310 } else if (!Matches.empty()) {
2311 if (Diagnose) {
2312 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2313 << Name << RD;
2314
2315 for (SmallVectorImpl<DeclAccessPair>::iterator
2316 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2317 Diag((*F)->getUnderlyingDecl()->getLocation(),
2318 diag::note_member_declared_here) << Name;
2319 }
2320 return true;
2321 }
2322
2323 // We did find operator delete/operator delete[] declarations, but
2324 // none of them were suitable.
2325 if (!Found.empty()) {
2326 if (Diagnose) {
2327 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2328 << Name << RD;
2329
2330 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2331 F != FEnd; ++F)
2332 Diag((*F)->getUnderlyingDecl()->getLocation(),
2333 diag::note_member_declared_here) << Name;
2334 }
2335 return true;
2336 }
2337
2338 Operator = nullptr;
2339 return false;
2340 }
2341
2342 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2343 /// @code ::delete ptr; @endcode
2344 /// or
2345 /// @code delete [] ptr; @endcode
2346 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2347 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2348 bool ArrayForm, Expr *ExE) {
2349 // C++ [expr.delete]p1:
2350 // The operand shall have a pointer type, or a class type having a single
2351 // non-explicit conversion function to a pointer type. The result has type
2352 // void.
2353 //
2354 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2355
2356 ExprResult Ex = ExE;
2357 FunctionDecl *OperatorDelete = nullptr;
2358 bool ArrayFormAsWritten = ArrayForm;
2359 bool UsualArrayDeleteWantsSize = false;
2360
2361 if (!Ex.get()->isTypeDependent()) {
2362 // Perform lvalue-to-rvalue cast, if needed.
2363 Ex = DefaultLvalueConversion(Ex.get());
2364 if (Ex.isInvalid())
2365 return ExprError();
2366
2367 QualType Type = Ex.get()->getType();
2368
2369 class DeleteConverter : public ContextualImplicitConverter {
2370 public:
2371 DeleteConverter() : ContextualImplicitConverter(false, true) {}
2372
2373 bool match(QualType ConvType) override {
2374 // FIXME: If we have an operator T* and an operator void*, we must pick
2375 // the operator T*.
2376 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2377 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2378 return true;
2379 return false;
2380 }
2381
2382 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2383 QualType T) override {
2384 return S.Diag(Loc, diag::err_delete_operand) << T;
2385 }
2386
2387 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2388 QualType T) override {
2389 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2390 }
2391
2392 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2393 QualType T,
2394 QualType ConvTy) override {
2395 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2396 }
2397
2398 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2399 QualType ConvTy) override {
2400 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2401 << ConvTy;
2402 }
2403
2404 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2405 QualType T) override {
2406 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2407 }
2408
2409 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2410 QualType ConvTy) override {
2411 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2412 << ConvTy;
2413 }
2414
2415 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2416 QualType T,
2417 QualType ConvTy) override {
2418 llvm_unreachable("conversion functions are permitted");
2419 }
2420 } Converter;
2421
2422 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2423 if (Ex.isInvalid())
2424 return ExprError();
2425 Type = Ex.get()->getType();
2426 if (!Converter.match(Type))
2427 // FIXME: PerformContextualImplicitConversion should return ExprError
2428 // itself in this case.
2429 return ExprError();
2430
2431 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2432 QualType PointeeElem = Context.getBaseElementType(Pointee);
2433
2434 if (unsigned AddressSpace = Pointee.getAddressSpace())
2435 return Diag(Ex.get()->getLocStart(),
2436 diag::err_address_space_qualified_delete)
2437 << Pointee.getUnqualifiedType() << AddressSpace;
2438
2439 CXXRecordDecl *PointeeRD = nullptr;
2440 if (Pointee->isVoidType() && !isSFINAEContext()) {
2441 // The C++ standard bans deleting a pointer to a non-object type, which
2442 // effectively bans deletion of "void*". However, most compilers support
2443 // this, so we treat it as a warning unless we're in a SFINAE context.
2444 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2445 << Type << Ex.get()->getSourceRange();
2446 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2447 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2448 << Type << Ex.get()->getSourceRange());
2449 } else if (!Pointee->isDependentType()) {
2450 if (!RequireCompleteType(StartLoc, Pointee,
2451 diag::warn_delete_incomplete, Ex.get())) {
2452 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2453 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2454 }
2455 }
2456
2457 // C++ [expr.delete]p2:
2458 // [Note: a pointer to a const type can be the operand of a
2459 // delete-expression; it is not necessary to cast away the constness
2460 // (5.2.11) of the pointer expression before it is used as the operand
2461 // of the delete-expression. ]
2462
2463 if (Pointee->isArrayType() && !ArrayForm) {
2464 Diag(StartLoc, diag::warn_delete_array_type)
2465 << Type << Ex.get()->getSourceRange()
2466 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2467 ArrayForm = true;
2468 }
2469
2470 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2471 ArrayForm ? OO_Array_Delete : OO_Delete);
2472
2473 if (PointeeRD) {
2474 if (!UseGlobal &&
2475 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2476 OperatorDelete))
2477 return ExprError();
2478
2479 // If we're allocating an array of records, check whether the
2480 // usual operator delete[] has a size_t parameter.
2481 if (ArrayForm) {
2482 // If the user specifically asked to use the global allocator,
2483 // we'll need to do the lookup into the class.
2484 if (UseGlobal)
2485 UsualArrayDeleteWantsSize =
2486 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2487
2488 // Otherwise, the usual operator delete[] should be the
2489 // function we just found.
2490 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2491 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2492 }
2493
2494 if (!PointeeRD->hasIrrelevantDestructor())
2495 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2496 MarkFunctionReferenced(StartLoc,
2497 const_cast<CXXDestructorDecl*>(Dtor));
2498 if (DiagnoseUseOfDecl(Dtor, StartLoc))
2499 return ExprError();
2500 }
2501
2502 // C++ [expr.delete]p3:
2503 // In the first alternative (delete object), if the static type of the
2504 // object to be deleted is different from its dynamic type, the static
2505 // type shall be a base class of the dynamic type of the object to be
2506 // deleted and the static type shall have a virtual destructor or the
2507 // behavior is undefined.
2508 //
2509 // Note: a final class cannot be derived from, no issue there
2510 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2511 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2512 if (dtor && !dtor->isVirtual()) {
2513 if (PointeeRD->isAbstract()) {
2514 // If the class is abstract, we warn by default, because we're
2515 // sure the code has undefined behavior.
2516 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2517 << PointeeElem;
2518 } else if (!ArrayForm) {
2519 // Otherwise, if this is not an array delete, it's a bit suspect,
2520 // but not necessarily wrong.
2521 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2522 }
2523 }
2524 }
2525
2526 }
2527
2528 if (!OperatorDelete)
2529 // Look for a global declaration.
2530 OperatorDelete = FindUsualDeallocationFunction(
2531 StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
2532 (!ArrayForm || UsualArrayDeleteWantsSize ||
2533 Pointee.isDestructedType()),
2534 DeleteName);
2535
2536 MarkFunctionReferenced(StartLoc, OperatorDelete);
2537
2538 // Check access and ambiguity of operator delete and destructor.
2539 if (PointeeRD) {
2540 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2541 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2542 PDiag(diag::err_access_dtor) << PointeeElem);
2543 }
2544 }
2545 }
2546
2547 return new (Context) CXXDeleteExpr(
2548 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2549 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2550 }
2551
2552 /// \brief Check the use of the given variable as a C++ condition in an if,
2553 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2554 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2555 SourceLocation StmtLoc,
2556 bool ConvertToBoolean) {
2557 if (ConditionVar->isInvalidDecl())
2558 return ExprError();
2559
2560 QualType T = ConditionVar->getType();
2561
2562 // C++ [stmt.select]p2:
2563 // The declarator shall not specify a function or an array.
2564 if (T->isFunctionType())
2565 return ExprError(Diag(ConditionVar->getLocation(),
2566 diag::err_invalid_use_of_function_type)
2567 << ConditionVar->getSourceRange());
2568 else if (T->isArrayType())
2569 return ExprError(Diag(ConditionVar->getLocation(),
2570 diag::err_invalid_use_of_array_type)
2571 << ConditionVar->getSourceRange());
2572
2573 ExprResult Condition = DeclRefExpr::Create(
2574 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2575 /*enclosing*/ false, ConditionVar->getLocation(),
2576 ConditionVar->getType().getNonReferenceType(), VK_LValue);
2577
2578 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2579
2580 if (ConvertToBoolean) {
2581 Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2582 if (Condition.isInvalid())
2583 return ExprError();
2584 }
2585
2586 return Condition;
2587 }
2588
2589 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2590 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2591 // C++ 6.4p4:
2592 // The value of a condition that is an initialized declaration in a statement
2593 // other than a switch statement is the value of the declared variable
2594 // implicitly converted to type bool. If that conversion is ill-formed, the
2595 // program is ill-formed.
2596 // The value of a condition that is an expression is the value of the
2597 // expression, implicitly converted to bool.
2598 //
2599 return PerformContextuallyConvertToBool(CondExpr);
2600 }
2601
2602 /// Helper function to determine whether this is the (deprecated) C++
2603 /// conversion from a string literal to a pointer to non-const char or
2604 /// non-const wchar_t (for narrow and wide string literals,
2605 /// respectively).
2606 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2607 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2608 // Look inside the implicit cast, if it exists.
2609 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2610 From = Cast->getSubExpr();
2611
2612 // A string literal (2.13.4) that is not a wide string literal can
2613 // be converted to an rvalue of type "pointer to char"; a wide
2614 // string literal can be converted to an rvalue of type "pointer
2615 // to wchar_t" (C++ 4.2p2).
2616 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2617 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2618 if (const BuiltinType *ToPointeeType
2619 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2620 // This conversion is considered only when there is an
2621 // explicit appropriate pointer target type (C++ 4.2p2).
2622 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2623 switch (StrLit->getKind()) {
2624 case StringLiteral::UTF8:
2625 case StringLiteral::UTF16:
2626 case StringLiteral::UTF32:
2627 // We don't allow UTF literals to be implicitly converted
2628 break;
2629 case StringLiteral::Ascii:
2630 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2631 ToPointeeType->getKind() == BuiltinType::Char_S);
2632 case StringLiteral::Wide:
2633 return ToPointeeType->isWideCharType();
2634 }
2635 }
2636 }
2637
2638 return false;
2639 }
2640
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2641 static ExprResult BuildCXXCastArgument(Sema &S,
2642 SourceLocation CastLoc,
2643 QualType Ty,
2644 CastKind Kind,
2645 CXXMethodDecl *Method,
2646 DeclAccessPair FoundDecl,
2647 bool HadMultipleCandidates,
2648 Expr *From) {
2649 switch (Kind) {
2650 default: llvm_unreachable("Unhandled cast kind!");
2651 case CK_ConstructorConversion: {
2652 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2653 SmallVector<Expr*, 8> ConstructorArgs;
2654
2655 if (S.RequireNonAbstractType(CastLoc, Ty,
2656 diag::err_allocation_of_abstract_type))
2657 return ExprError();
2658
2659 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2660 return ExprError();
2661
2662 S.CheckConstructorAccess(CastLoc, Constructor,
2663 InitializedEntity::InitializeTemporary(Ty),
2664 Constructor->getAccess());
2665 if (S.DiagnoseUseOfDecl(Method, CastLoc))
2666 return ExprError();
2667
2668 ExprResult Result = S.BuildCXXConstructExpr(
2669 CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2670 ConstructorArgs, HadMultipleCandidates,
2671 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2672 CXXConstructExpr::CK_Complete, SourceRange());
2673 if (Result.isInvalid())
2674 return ExprError();
2675
2676 return S.MaybeBindToTemporary(Result.getAs<Expr>());
2677 }
2678
2679 case CK_UserDefinedConversion: {
2680 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2681
2682 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2683 if (S.DiagnoseUseOfDecl(Method, CastLoc))
2684 return ExprError();
2685
2686 // Create an implicit call expr that calls it.
2687 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2688 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2689 HadMultipleCandidates);
2690 if (Result.isInvalid())
2691 return ExprError();
2692 // Record usage of conversion in an implicit cast.
2693 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2694 CK_UserDefinedConversion, Result.get(),
2695 nullptr, Result.get()->getValueKind());
2696
2697 return S.MaybeBindToTemporary(Result.get());
2698 }
2699 }
2700 }
2701
2702 /// PerformImplicitConversion - Perform an implicit conversion of the
2703 /// expression From to the type ToType using the pre-computed implicit
2704 /// conversion sequence ICS. Returns the converted
2705 /// expression. Action is the kind of conversion we're performing,
2706 /// used in the error message.
2707 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2708 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2709 const ImplicitConversionSequence &ICS,
2710 AssignmentAction Action,
2711 CheckedConversionKind CCK) {
2712 switch (ICS.getKind()) {
2713 case ImplicitConversionSequence::StandardConversion: {
2714 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2715 Action, CCK);
2716 if (Res.isInvalid())
2717 return ExprError();
2718 From = Res.get();
2719 break;
2720 }
2721
2722 case ImplicitConversionSequence::UserDefinedConversion: {
2723
2724 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2725 CastKind CastKind;
2726 QualType BeforeToType;
2727 assert(FD && "no conversion function for user-defined conversion seq");
2728 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2729 CastKind = CK_UserDefinedConversion;
2730
2731 // If the user-defined conversion is specified by a conversion function,
2732 // the initial standard conversion sequence converts the source type to
2733 // the implicit object parameter of the conversion function.
2734 BeforeToType = Context.getTagDeclType(Conv->getParent());
2735 } else {
2736 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2737 CastKind = CK_ConstructorConversion;
2738 // Do no conversion if dealing with ... for the first conversion.
2739 if (!ICS.UserDefined.EllipsisConversion) {
2740 // If the user-defined conversion is specified by a constructor, the
2741 // initial standard conversion sequence converts the source type to
2742 // the type required by the argument of the constructor
2743 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2744 }
2745 }
2746 // Watch out for ellipsis conversion.
2747 if (!ICS.UserDefined.EllipsisConversion) {
2748 ExprResult Res =
2749 PerformImplicitConversion(From, BeforeToType,
2750 ICS.UserDefined.Before, AA_Converting,
2751 CCK);
2752 if (Res.isInvalid())
2753 return ExprError();
2754 From = Res.get();
2755 }
2756
2757 ExprResult CastArg
2758 = BuildCXXCastArgument(*this,
2759 From->getLocStart(),
2760 ToType.getNonReferenceType(),
2761 CastKind, cast<CXXMethodDecl>(FD),
2762 ICS.UserDefined.FoundConversionFunction,
2763 ICS.UserDefined.HadMultipleCandidates,
2764 From);
2765
2766 if (CastArg.isInvalid())
2767 return ExprError();
2768
2769 From = CastArg.get();
2770
2771 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2772 AA_Converting, CCK);
2773 }
2774
2775 case ImplicitConversionSequence::AmbiguousConversion:
2776 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2777 PDiag(diag::err_typecheck_ambiguous_condition)
2778 << From->getSourceRange());
2779 return ExprError();
2780
2781 case ImplicitConversionSequence::EllipsisConversion:
2782 llvm_unreachable("Cannot perform an ellipsis conversion");
2783
2784 case ImplicitConversionSequence::BadConversion:
2785 return ExprError();
2786 }
2787
2788 // Everything went well.
2789 return From;
2790 }
2791
2792 /// PerformImplicitConversion - Perform an implicit conversion of the
2793 /// expression From to the type ToType by following the standard
2794 /// conversion sequence SCS. Returns the converted
2795 /// expression. Flavor is the context in which we're performing this
2796 /// conversion, for use in error messages.
2797 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2798 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2799 const StandardConversionSequence& SCS,
2800 AssignmentAction Action,
2801 CheckedConversionKind CCK) {
2802 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2803
2804 // Overall FIXME: we are recomputing too many types here and doing far too
2805 // much extra work. What this means is that we need to keep track of more
2806 // information that is computed when we try the implicit conversion initially,
2807 // so that we don't need to recompute anything here.
2808 QualType FromType = From->getType();
2809
2810 if (SCS.CopyConstructor) {
2811 // FIXME: When can ToType be a reference type?
2812 assert(!ToType->isReferenceType());
2813 if (SCS.Second == ICK_Derived_To_Base) {
2814 SmallVector<Expr*, 8> ConstructorArgs;
2815 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2816 From, /*FIXME:ConstructLoc*/SourceLocation(),
2817 ConstructorArgs))
2818 return ExprError();
2819 return BuildCXXConstructExpr(
2820 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
2821 ConstructorArgs, /*HadMultipleCandidates*/ false,
2822 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2823 CXXConstructExpr::CK_Complete, SourceRange());
2824 }
2825 return BuildCXXConstructExpr(
2826 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
2827 From, /*HadMultipleCandidates*/ false,
2828 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2829 CXXConstructExpr::CK_Complete, SourceRange());
2830 }
2831
2832 // Resolve overloaded function references.
2833 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2834 DeclAccessPair Found;
2835 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2836 true, Found);
2837 if (!Fn)
2838 return ExprError();
2839
2840 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2841 return ExprError();
2842
2843 From = FixOverloadedFunctionReference(From, Found, Fn);
2844 FromType = From->getType();
2845 }
2846
2847 // If we're converting to an atomic type, first convert to the corresponding
2848 // non-atomic type.
2849 QualType ToAtomicType;
2850 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2851 ToAtomicType = ToType;
2852 ToType = ToAtomic->getValueType();
2853 }
2854
2855 // Perform the first implicit conversion.
2856 switch (SCS.First) {
2857 case ICK_Identity:
2858 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
2859 FromType = FromAtomic->getValueType().getUnqualifiedType();
2860 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
2861 From, /*BasePath=*/nullptr, VK_RValue);
2862 }
2863 break;
2864
2865 case ICK_Lvalue_To_Rvalue: {
2866 assert(From->getObjectKind() != OK_ObjCProperty);
2867 ExprResult FromRes = DefaultLvalueConversion(From);
2868 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2869 From = FromRes.get();
2870 FromType = From->getType();
2871 break;
2872 }
2873
2874 case ICK_Array_To_Pointer:
2875 FromType = Context.getArrayDecayedType(FromType);
2876 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2877 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2878 break;
2879
2880 case ICK_Function_To_Pointer:
2881 FromType = Context.getPointerType(FromType);
2882 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2883 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2884 break;
2885
2886 default:
2887 llvm_unreachable("Improper first standard conversion");
2888 }
2889
2890 // Perform the second implicit conversion
2891 switch (SCS.Second) {
2892 case ICK_Identity:
2893 // C++ [except.spec]p5:
2894 // [For] assignment to and initialization of pointers to functions,
2895 // pointers to member functions, and references to functions: the
2896 // target entity shall allow at least the exceptions allowed by the
2897 // source value in the assignment or initialization.
2898 switch (Action) {
2899 case AA_Assigning:
2900 case AA_Initializing:
2901 // Note, function argument passing and returning are initialization.
2902 case AA_Passing:
2903 case AA_Returning:
2904 case AA_Sending:
2905 case AA_Passing_CFAudited:
2906 if (CheckExceptionSpecCompatibility(From, ToType))
2907 return ExprError();
2908 break;
2909
2910 case AA_Casting:
2911 case AA_Converting:
2912 // Casts and implicit conversions are not initialization, so are not
2913 // checked for exception specification mismatches.
2914 break;
2915 }
2916 // Nothing else to do.
2917 break;
2918
2919 case ICK_NoReturn_Adjustment:
2920 // If both sides are functions (or pointers/references to them), there could
2921 // be incompatible exception declarations.
2922 if (CheckExceptionSpecCompatibility(From, ToType))
2923 return ExprError();
2924
2925 From = ImpCastExprToType(From, ToType, CK_NoOp,
2926 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2927 break;
2928
2929 case ICK_Integral_Promotion:
2930 case ICK_Integral_Conversion:
2931 if (ToType->isBooleanType()) {
2932 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2933 SCS.Second == ICK_Integral_Promotion &&
2934 "only enums with fixed underlying type can promote to bool");
2935 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2936 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2937 } else {
2938 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2939 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2940 }
2941 break;
2942
2943 case ICK_Floating_Promotion:
2944 case ICK_Floating_Conversion:
2945 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2946 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2947 break;
2948
2949 case ICK_Complex_Promotion:
2950 case ICK_Complex_Conversion: {
2951 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2952 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2953 CastKind CK;
2954 if (FromEl->isRealFloatingType()) {
2955 if (ToEl->isRealFloatingType())
2956 CK = CK_FloatingComplexCast;
2957 else
2958 CK = CK_FloatingComplexToIntegralComplex;
2959 } else if (ToEl->isRealFloatingType()) {
2960 CK = CK_IntegralComplexToFloatingComplex;
2961 } else {
2962 CK = CK_IntegralComplexCast;
2963 }
2964 From = ImpCastExprToType(From, ToType, CK,
2965 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2966 break;
2967 }
2968
2969 case ICK_Floating_Integral:
2970 if (ToType->isRealFloatingType())
2971 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2972 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2973 else
2974 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2975 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2976 break;
2977
2978 case ICK_Compatible_Conversion:
2979 From = ImpCastExprToType(From, ToType, CK_NoOp,
2980 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2981 break;
2982
2983 case ICK_Writeback_Conversion:
2984 case ICK_Pointer_Conversion: {
2985 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2986 // Diagnose incompatible Objective-C conversions
2987 if (Action == AA_Initializing || Action == AA_Assigning)
2988 Diag(From->getLocStart(),
2989 diag::ext_typecheck_convert_incompatible_pointer)
2990 << ToType << From->getType() << Action
2991 << From->getSourceRange() << 0;
2992 else
2993 Diag(From->getLocStart(),
2994 diag::ext_typecheck_convert_incompatible_pointer)
2995 << From->getType() << ToType << Action
2996 << From->getSourceRange() << 0;
2997
2998 if (From->getType()->isObjCObjectPointerType() &&
2999 ToType->isObjCObjectPointerType())
3000 EmitRelatedResultTypeNote(From);
3001 }
3002 else if (getLangOpts().ObjCAutoRefCount &&
3003 !CheckObjCARCUnavailableWeakConversion(ToType,
3004 From->getType())) {
3005 if (Action == AA_Initializing)
3006 Diag(From->getLocStart(),
3007 diag::err_arc_weak_unavailable_assign);
3008 else
3009 Diag(From->getLocStart(),
3010 diag::err_arc_convesion_of_weak_unavailable)
3011 << (Action == AA_Casting) << From->getType() << ToType
3012 << From->getSourceRange();
3013 }
3014
3015 CastKind Kind = CK_Invalid;
3016 CXXCastPath BasePath;
3017 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3018 return ExprError();
3019
3020 // Make sure we extend blocks if necessary.
3021 // FIXME: doing this here is really ugly.
3022 if (Kind == CK_BlockPointerToObjCPointerCast) {
3023 ExprResult E = From;
3024 (void) PrepareCastToObjCObjectPointer(E);
3025 From = E.get();
3026 }
3027 if (getLangOpts().ObjCAutoRefCount)
3028 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3029 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3030 .get();
3031 break;
3032 }
3033
3034 case ICK_Pointer_Member: {
3035 CastKind Kind = CK_Invalid;
3036 CXXCastPath BasePath;
3037 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3038 return ExprError();
3039 if (CheckExceptionSpecCompatibility(From, ToType))
3040 return ExprError();
3041
3042 // We may not have been able to figure out what this member pointer resolved
3043 // to up until this exact point. Attempt to lock-in it's inheritance model.
3044 QualType FromType = From->getType();
3045 if (FromType->isMemberPointerType())
3046 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
3047 RequireCompleteType(From->getExprLoc(), FromType, 0);
3048
3049 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3050 .get();
3051 break;
3052 }
3053
3054 case ICK_Boolean_Conversion:
3055 // Perform half-to-boolean conversion via float.
3056 if (From->getType()->isHalfType()) {
3057 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3058 FromType = Context.FloatTy;
3059 }
3060
3061 From = ImpCastExprToType(From, Context.BoolTy,
3062 ScalarTypeToBooleanCastKind(FromType),
3063 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3064 break;
3065
3066 case ICK_Derived_To_Base: {
3067 CXXCastPath BasePath;
3068 if (CheckDerivedToBaseConversion(From->getType(),
3069 ToType.getNonReferenceType(),
3070 From->getLocStart(),
3071 From->getSourceRange(),
3072 &BasePath,
3073 CStyle))
3074 return ExprError();
3075
3076 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3077 CK_DerivedToBase, From->getValueKind(),
3078 &BasePath, CCK).get();
3079 break;
3080 }
3081
3082 case ICK_Vector_Conversion:
3083 From = ImpCastExprToType(From, ToType, CK_BitCast,
3084 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3085 break;
3086
3087 case ICK_Vector_Splat:
3088 // Vector splat from any arithmetic type to a vector.
3089 // Cast to the element type.
3090 {
3091 QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
3092 if (elType != From->getType()) {
3093 ExprResult E = From;
3094 From = ImpCastExprToType(From, elType,
3095 PrepareScalarCast(E, elType)).get();
3096 }
3097 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
3098 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3099 }
3100 break;
3101
3102 case ICK_Complex_Real:
3103 // Case 1. x -> _Complex y
3104 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3105 QualType ElType = ToComplex->getElementType();
3106 bool isFloatingComplex = ElType->isRealFloatingType();
3107
3108 // x -> y
3109 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3110 // do nothing
3111 } else if (From->getType()->isRealFloatingType()) {
3112 From = ImpCastExprToType(From, ElType,
3113 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3114 } else {
3115 assert(From->getType()->isIntegerType());
3116 From = ImpCastExprToType(From, ElType,
3117 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3118 }
3119 // y -> _Complex y
3120 From = ImpCastExprToType(From, ToType,
3121 isFloatingComplex ? CK_FloatingRealToComplex
3122 : CK_IntegralRealToComplex).get();
3123
3124 // Case 2. _Complex x -> y
3125 } else {
3126 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3127 assert(FromComplex);
3128
3129 QualType ElType = FromComplex->getElementType();
3130 bool isFloatingComplex = ElType->isRealFloatingType();
3131
3132 // _Complex x -> x
3133 From = ImpCastExprToType(From, ElType,
3134 isFloatingComplex ? CK_FloatingComplexToReal
3135 : CK_IntegralComplexToReal,
3136 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3137
3138 // x -> y
3139 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3140 // do nothing
3141 } else if (ToType->isRealFloatingType()) {
3142 From = ImpCastExprToType(From, ToType,
3143 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3144 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3145 } else {
3146 assert(ToType->isIntegerType());
3147 From = ImpCastExprToType(From, ToType,
3148 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3149 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3150 }
3151 }
3152 break;
3153
3154 case ICK_Block_Pointer_Conversion: {
3155 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3156 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3157 break;
3158 }
3159
3160 case ICK_TransparentUnionConversion: {
3161 ExprResult FromRes = From;
3162 Sema::AssignConvertType ConvTy =
3163 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3164 if (FromRes.isInvalid())
3165 return ExprError();
3166 From = FromRes.get();
3167 assert ((ConvTy == Sema::Compatible) &&
3168 "Improper transparent union conversion");
3169 (void)ConvTy;
3170 break;
3171 }
3172
3173 case ICK_Zero_Event_Conversion:
3174 From = ImpCastExprToType(From, ToType,
3175 CK_ZeroToOCLEvent,
3176 From->getValueKind()).get();
3177 break;
3178
3179 case ICK_Lvalue_To_Rvalue:
3180 case ICK_Array_To_Pointer:
3181 case ICK_Function_To_Pointer:
3182 case ICK_Qualification:
3183 case ICK_Num_Conversion_Kinds:
3184 llvm_unreachable("Improper second standard conversion");
3185 }
3186
3187 switch (SCS.Third) {
3188 case ICK_Identity:
3189 // Nothing to do.
3190 break;
3191
3192 case ICK_Qualification: {
3193 // The qualification keeps the category of the inner expression, unless the
3194 // target type isn't a reference.
3195 ExprValueKind VK = ToType->isReferenceType() ?
3196 From->getValueKind() : VK_RValue;
3197 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3198 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3199
3200 if (SCS.DeprecatedStringLiteralToCharPtr &&
3201 !getLangOpts().WritableStrings) {
3202 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3203 ? diag::ext_deprecated_string_literal_conversion
3204 : diag::warn_deprecated_string_literal_conversion)
3205 << ToType.getNonReferenceType();
3206 }
3207
3208 break;
3209 }
3210
3211 default:
3212 llvm_unreachable("Improper third standard conversion");
3213 }
3214
3215 // If this conversion sequence involved a scalar -> atomic conversion, perform
3216 // that conversion now.
3217 if (!ToAtomicType.isNull()) {
3218 assert(Context.hasSameType(
3219 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3220 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3221 VK_RValue, nullptr, CCK).get();
3222 }
3223
3224 return From;
3225 }
3226
3227 /// \brief Check the completeness of a type in a unary type trait.
3228 ///
3229 /// If the particular type trait requires a complete type, tries to complete
3230 /// it. If completing the type fails, a diagnostic is emitted and false
3231 /// returned. If completing the type succeeds or no completion was required,
3232 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)3233 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3234 SourceLocation Loc,
3235 QualType ArgTy) {
3236 // C++0x [meta.unary.prop]p3:
3237 // For all of the class templates X declared in this Clause, instantiating
3238 // that template with a template argument that is a class template
3239 // specialization may result in the implicit instantiation of the template
3240 // argument if and only if the semantics of X require that the argument
3241 // must be a complete type.
3242 // We apply this rule to all the type trait expressions used to implement
3243 // these class templates. We also try to follow any GCC documented behavior
3244 // in these expressions to ensure portability of standard libraries.
3245 switch (UTT) {
3246 default: llvm_unreachable("not a UTT");
3247 // is_complete_type somewhat obviously cannot require a complete type.
3248 case UTT_IsCompleteType:
3249 // Fall-through
3250
3251 // These traits are modeled on the type predicates in C++0x
3252 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3253 // requiring a complete type, as whether or not they return true cannot be
3254 // impacted by the completeness of the type.
3255 case UTT_IsVoid:
3256 case UTT_IsIntegral:
3257 case UTT_IsFloatingPoint:
3258 case UTT_IsArray:
3259 case UTT_IsPointer:
3260 case UTT_IsLvalueReference:
3261 case UTT_IsRvalueReference:
3262 case UTT_IsMemberFunctionPointer:
3263 case UTT_IsMemberObjectPointer:
3264 case UTT_IsEnum:
3265 case UTT_IsUnion:
3266 case UTT_IsClass:
3267 case UTT_IsFunction:
3268 case UTT_IsReference:
3269 case UTT_IsArithmetic:
3270 case UTT_IsFundamental:
3271 case UTT_IsObject:
3272 case UTT_IsScalar:
3273 case UTT_IsCompound:
3274 case UTT_IsMemberPointer:
3275 // Fall-through
3276
3277 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3278 // which requires some of its traits to have the complete type. However,
3279 // the completeness of the type cannot impact these traits' semantics, and
3280 // so they don't require it. This matches the comments on these traits in
3281 // Table 49.
3282 case UTT_IsConst:
3283 case UTT_IsVolatile:
3284 case UTT_IsSigned:
3285 case UTT_IsUnsigned:
3286 return true;
3287
3288 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3289 // applied to a complete type.
3290 case UTT_IsTrivial:
3291 case UTT_IsTriviallyCopyable:
3292 case UTT_IsStandardLayout:
3293 case UTT_IsPOD:
3294 case UTT_IsLiteral:
3295 case UTT_IsEmpty:
3296 case UTT_IsPolymorphic:
3297 case UTT_IsAbstract:
3298 case UTT_IsInterfaceClass:
3299 case UTT_IsDestructible:
3300 case UTT_IsNothrowDestructible:
3301 // Fall-through
3302
3303 // These traits require a complete type.
3304 case UTT_IsFinal:
3305 case UTT_IsSealed:
3306
3307 // These trait expressions are designed to help implement predicates in
3308 // [meta.unary.prop] despite not being named the same. They are specified
3309 // by both GCC and the Embarcadero C++ compiler, and require the complete
3310 // type due to the overarching C++0x type predicates being implemented
3311 // requiring the complete type.
3312 case UTT_HasNothrowAssign:
3313 case UTT_HasNothrowMoveAssign:
3314 case UTT_HasNothrowConstructor:
3315 case UTT_HasNothrowCopy:
3316 case UTT_HasTrivialAssign:
3317 case UTT_HasTrivialMoveAssign:
3318 case UTT_HasTrivialDefaultConstructor:
3319 case UTT_HasTrivialMoveConstructor:
3320 case UTT_HasTrivialCopy:
3321 case UTT_HasTrivialDestructor:
3322 case UTT_HasVirtualDestructor:
3323 // Arrays of unknown bound are expressly allowed.
3324 QualType ElTy = ArgTy;
3325 if (ArgTy->isIncompleteArrayType())
3326 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3327
3328 // The void type is expressly allowed.
3329 if (ElTy->isVoidType())
3330 return true;
3331
3332 return !S.RequireCompleteType(
3333 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3334 }
3335 }
3336
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)3337 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3338 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3339 bool (CXXRecordDecl::*HasTrivial)() const,
3340 bool (CXXRecordDecl::*HasNonTrivial)() const,
3341 bool (CXXMethodDecl::*IsDesiredOp)() const)
3342 {
3343 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3344 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3345 return true;
3346
3347 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3348 DeclarationNameInfo NameInfo(Name, KeyLoc);
3349 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3350 if (Self.LookupQualifiedName(Res, RD)) {
3351 bool FoundOperator = false;
3352 Res.suppressDiagnostics();
3353 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3354 Op != OpEnd; ++Op) {
3355 if (isa<FunctionTemplateDecl>(*Op))
3356 continue;
3357
3358 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3359 if((Operator->*IsDesiredOp)()) {
3360 FoundOperator = true;
3361 const FunctionProtoType *CPT =
3362 Operator->getType()->getAs<FunctionProtoType>();
3363 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3364 if (!CPT || !CPT->isNothrow(C))
3365 return false;
3366 }
3367 }
3368 return FoundOperator;
3369 }
3370 return false;
3371 }
3372
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)3373 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3374 SourceLocation KeyLoc, QualType T) {
3375 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3376
3377 ASTContext &C = Self.Context;
3378 switch(UTT) {
3379 default: llvm_unreachable("not a UTT");
3380 // Type trait expressions corresponding to the primary type category
3381 // predicates in C++0x [meta.unary.cat].
3382 case UTT_IsVoid:
3383 return T->isVoidType();
3384 case UTT_IsIntegral:
3385 return T->isIntegralType(C);
3386 case UTT_IsFloatingPoint:
3387 return T->isFloatingType();
3388 case UTT_IsArray:
3389 return T->isArrayType();
3390 case UTT_IsPointer:
3391 return T->isPointerType();
3392 case UTT_IsLvalueReference:
3393 return T->isLValueReferenceType();
3394 case UTT_IsRvalueReference:
3395 return T->isRValueReferenceType();
3396 case UTT_IsMemberFunctionPointer:
3397 return T->isMemberFunctionPointerType();
3398 case UTT_IsMemberObjectPointer:
3399 return T->isMemberDataPointerType();
3400 case UTT_IsEnum:
3401 return T->isEnumeralType();
3402 case UTT_IsUnion:
3403 return T->isUnionType();
3404 case UTT_IsClass:
3405 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3406 case UTT_IsFunction:
3407 return T->isFunctionType();
3408
3409 // Type trait expressions which correspond to the convenient composition
3410 // predicates in C++0x [meta.unary.comp].
3411 case UTT_IsReference:
3412 return T->isReferenceType();
3413 case UTT_IsArithmetic:
3414 return T->isArithmeticType() && !T->isEnumeralType();
3415 case UTT_IsFundamental:
3416 return T->isFundamentalType();
3417 case UTT_IsObject:
3418 return T->isObjectType();
3419 case UTT_IsScalar:
3420 // Note: semantic analysis depends on Objective-C lifetime types to be
3421 // considered scalar types. However, such types do not actually behave
3422 // like scalar types at run time (since they may require retain/release
3423 // operations), so we report them as non-scalar.
3424 if (T->isObjCLifetimeType()) {
3425 switch (T.getObjCLifetime()) {
3426 case Qualifiers::OCL_None:
3427 case Qualifiers::OCL_ExplicitNone:
3428 return true;
3429
3430 case Qualifiers::OCL_Strong:
3431 case Qualifiers::OCL_Weak:
3432 case Qualifiers::OCL_Autoreleasing:
3433 return false;
3434 }
3435 }
3436
3437 return T->isScalarType();
3438 case UTT_IsCompound:
3439 return T->isCompoundType();
3440 case UTT_IsMemberPointer:
3441 return T->isMemberPointerType();
3442
3443 // Type trait expressions which correspond to the type property predicates
3444 // in C++0x [meta.unary.prop].
3445 case UTT_IsConst:
3446 return T.isConstQualified();
3447 case UTT_IsVolatile:
3448 return T.isVolatileQualified();
3449 case UTT_IsTrivial:
3450 return T.isTrivialType(Self.Context);
3451 case UTT_IsTriviallyCopyable:
3452 return T.isTriviallyCopyableType(Self.Context);
3453 case UTT_IsStandardLayout:
3454 return T->isStandardLayoutType();
3455 case UTT_IsPOD:
3456 return T.isPODType(Self.Context);
3457 case UTT_IsLiteral:
3458 return T->isLiteralType(Self.Context);
3459 case UTT_IsEmpty:
3460 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3461 return !RD->isUnion() && RD->isEmpty();
3462 return false;
3463 case UTT_IsPolymorphic:
3464 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3465 return RD->isPolymorphic();
3466 return false;
3467 case UTT_IsAbstract:
3468 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3469 return RD->isAbstract();
3470 return false;
3471 case UTT_IsInterfaceClass:
3472 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3473 return RD->isInterface();
3474 return false;
3475 case UTT_IsFinal:
3476 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3477 return RD->hasAttr<FinalAttr>();
3478 return false;
3479 case UTT_IsSealed:
3480 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3481 if (FinalAttr *FA = RD->getAttr<FinalAttr>())
3482 return FA->isSpelledAsSealed();
3483 return false;
3484 case UTT_IsSigned:
3485 return T->isSignedIntegerType();
3486 case UTT_IsUnsigned:
3487 return T->isUnsignedIntegerType();
3488
3489 // Type trait expressions which query classes regarding their construction,
3490 // destruction, and copying. Rather than being based directly on the
3491 // related type predicates in the standard, they are specified by both
3492 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3493 // specifications.
3494 //
3495 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3496 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3497 //
3498 // Note that these builtins do not behave as documented in g++: if a class
3499 // has both a trivial and a non-trivial special member of a particular kind,
3500 // they return false! For now, we emulate this behavior.
3501 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3502 // does not correctly compute triviality in the presence of multiple special
3503 // members of the same kind. Revisit this once the g++ bug is fixed.
3504 case UTT_HasTrivialDefaultConstructor:
3505 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3506 // If __is_pod (type) is true then the trait is true, else if type is
3507 // a cv class or union type (or array thereof) with a trivial default
3508 // constructor ([class.ctor]) then the trait is true, else it is false.
3509 if (T.isPODType(Self.Context))
3510 return true;
3511 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3512 return RD->hasTrivialDefaultConstructor() &&
3513 !RD->hasNonTrivialDefaultConstructor();
3514 return false;
3515 case UTT_HasTrivialMoveConstructor:
3516 // This trait is implemented by MSVC 2012 and needed to parse the
3517 // standard library headers. Specifically this is used as the logic
3518 // behind std::is_trivially_move_constructible (20.9.4.3).
3519 if (T.isPODType(Self.Context))
3520 return true;
3521 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3522 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3523 return false;
3524 case UTT_HasTrivialCopy:
3525 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3526 // If __is_pod (type) is true or type is a reference type then
3527 // the trait is true, else if type is a cv class or union type
3528 // with a trivial copy constructor ([class.copy]) then the trait
3529 // is true, else it is false.
3530 if (T.isPODType(Self.Context) || T->isReferenceType())
3531 return true;
3532 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3533 return RD->hasTrivialCopyConstructor() &&
3534 !RD->hasNonTrivialCopyConstructor();
3535 return false;
3536 case UTT_HasTrivialMoveAssign:
3537 // This trait is implemented by MSVC 2012 and needed to parse the
3538 // standard library headers. Specifically it is used as the logic
3539 // behind std::is_trivially_move_assignable (20.9.4.3)
3540 if (T.isPODType(Self.Context))
3541 return true;
3542 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3543 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3544 return false;
3545 case UTT_HasTrivialAssign:
3546 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3547 // If type is const qualified or is a reference type then the
3548 // trait is false. Otherwise if __is_pod (type) is true then the
3549 // trait is true, else if type is a cv class or union type with
3550 // a trivial copy assignment ([class.copy]) then the trait is
3551 // true, else it is false.
3552 // Note: the const and reference restrictions are interesting,
3553 // given that const and reference members don't prevent a class
3554 // from having a trivial copy assignment operator (but do cause
3555 // errors if the copy assignment operator is actually used, q.v.
3556 // [class.copy]p12).
3557
3558 if (T.isConstQualified())
3559 return false;
3560 if (T.isPODType(Self.Context))
3561 return true;
3562 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3563 return RD->hasTrivialCopyAssignment() &&
3564 !RD->hasNonTrivialCopyAssignment();
3565 return false;
3566 case UTT_IsDestructible:
3567 case UTT_IsNothrowDestructible:
3568 // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
3569 // For now, let's fall through.
3570 case UTT_HasTrivialDestructor:
3571 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3572 // If __is_pod (type) is true or type is a reference type
3573 // then the trait is true, else if type is a cv class or union
3574 // type (or array thereof) with a trivial destructor
3575 // ([class.dtor]) then the trait is true, else it is
3576 // false.
3577 if (T.isPODType(Self.Context) || T->isReferenceType())
3578 return true;
3579
3580 // Objective-C++ ARC: autorelease types don't require destruction.
3581 if (T->isObjCLifetimeType() &&
3582 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3583 return true;
3584
3585 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3586 return RD->hasTrivialDestructor();
3587 return false;
3588 // TODO: Propagate nothrowness for implicitly declared special members.
3589 case UTT_HasNothrowAssign:
3590 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3591 // If type is const qualified or is a reference type then the
3592 // trait is false. Otherwise if __has_trivial_assign (type)
3593 // is true then the trait is true, else if type is a cv class
3594 // or union type with copy assignment operators that are known
3595 // not to throw an exception then the trait is true, else it is
3596 // false.
3597 if (C.getBaseElementType(T).isConstQualified())
3598 return false;
3599 if (T->isReferenceType())
3600 return false;
3601 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3602 return true;
3603
3604 if (const RecordType *RT = T->getAs<RecordType>())
3605 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3606 &CXXRecordDecl::hasTrivialCopyAssignment,
3607 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3608 &CXXMethodDecl::isCopyAssignmentOperator);
3609 return false;
3610 case UTT_HasNothrowMoveAssign:
3611 // This trait is implemented by MSVC 2012 and needed to parse the
3612 // standard library headers. Specifically this is used as the logic
3613 // behind std::is_nothrow_move_assignable (20.9.4.3).
3614 if (T.isPODType(Self.Context))
3615 return true;
3616
3617 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3618 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3619 &CXXRecordDecl::hasTrivialMoveAssignment,
3620 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3621 &CXXMethodDecl::isMoveAssignmentOperator);
3622 return false;
3623 case UTT_HasNothrowCopy:
3624 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3625 // If __has_trivial_copy (type) is true then the trait is true, else
3626 // if type is a cv class or union type with copy constructors that are
3627 // known not to throw an exception then the trait is true, else it is
3628 // false.
3629 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3630 return true;
3631 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3632 if (RD->hasTrivialCopyConstructor() &&
3633 !RD->hasNonTrivialCopyConstructor())
3634 return true;
3635
3636 bool FoundConstructor = false;
3637 unsigned FoundTQs;
3638 DeclContext::lookup_result R = Self.LookupConstructors(RD);
3639 for (DeclContext::lookup_iterator Con = R.begin(),
3640 ConEnd = R.end(); Con != ConEnd; ++Con) {
3641 // A template constructor is never a copy constructor.
3642 // FIXME: However, it may actually be selected at the actual overload
3643 // resolution point.
3644 if (isa<FunctionTemplateDecl>(*Con))
3645 continue;
3646 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3647 if (Constructor->isCopyConstructor(FoundTQs)) {
3648 FoundConstructor = true;
3649 const FunctionProtoType *CPT
3650 = Constructor->getType()->getAs<FunctionProtoType>();
3651 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3652 if (!CPT)
3653 return false;
3654 // TODO: check whether evaluating default arguments can throw.
3655 // For now, we'll be conservative and assume that they can throw.
3656 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
3657 return false;
3658 }
3659 }
3660
3661 return FoundConstructor;
3662 }
3663 return false;
3664 case UTT_HasNothrowConstructor:
3665 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3666 // If __has_trivial_constructor (type) is true then the trait is
3667 // true, else if type is a cv class or union type (or array
3668 // thereof) with a default constructor that is known not to
3669 // throw an exception then the trait is true, else it is false.
3670 if (T.isPODType(C) || T->isObjCLifetimeType())
3671 return true;
3672 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3673 if (RD->hasTrivialDefaultConstructor() &&
3674 !RD->hasNonTrivialDefaultConstructor())
3675 return true;
3676
3677 bool FoundConstructor = false;
3678 DeclContext::lookup_result R = Self.LookupConstructors(RD);
3679 for (DeclContext::lookup_iterator Con = R.begin(),
3680 ConEnd = R.end(); Con != ConEnd; ++Con) {
3681 // FIXME: In C++0x, a constructor template can be a default constructor.
3682 if (isa<FunctionTemplateDecl>(*Con))
3683 continue;
3684 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3685 if (Constructor->isDefaultConstructor()) {
3686 FoundConstructor = true;
3687 const FunctionProtoType *CPT
3688 = Constructor->getType()->getAs<FunctionProtoType>();
3689 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3690 if (!CPT)
3691 return false;
3692 // FIXME: check whether evaluating default arguments can throw.
3693 // For now, we'll be conservative and assume that they can throw.
3694 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
3695 return false;
3696 }
3697 }
3698 return FoundConstructor;
3699 }
3700 return false;
3701 case UTT_HasVirtualDestructor:
3702 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3703 // If type is a class type with a virtual destructor ([class.dtor])
3704 // then the trait is true, else it is false.
3705 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3706 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3707 return Destructor->isVirtual();
3708 return false;
3709
3710 // These type trait expressions are modeled on the specifications for the
3711 // Embarcadero C++0x type trait functions:
3712 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3713 case UTT_IsCompleteType:
3714 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3715 // Returns True if and only if T is a complete type at the point of the
3716 // function call.
3717 return !T->isIncompleteType();
3718 }
3719 }
3720
3721 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3722 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3723 static bool hasNontrivialObjCLifetime(QualType T) {
3724 switch (T.getObjCLifetime()) {
3725 case Qualifiers::OCL_ExplicitNone:
3726 return false;
3727
3728 case Qualifiers::OCL_Strong:
3729 case Qualifiers::OCL_Weak:
3730 case Qualifiers::OCL_Autoreleasing:
3731 return true;
3732
3733 case Qualifiers::OCL_None:
3734 return T->isObjCLifetimeType();
3735 }
3736
3737 llvm_unreachable("Unknown ObjC lifetime qualifier");
3738 }
3739
3740 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3741 QualType RhsT, SourceLocation KeyLoc);
3742
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3743 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3744 ArrayRef<TypeSourceInfo *> Args,
3745 SourceLocation RParenLoc) {
3746 if (Kind <= UTT_Last)
3747 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
3748
3749 if (Kind <= BTT_Last)
3750 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
3751 Args[1]->getType(), RParenLoc);
3752
3753 switch (Kind) {
3754 case clang::TT_IsConstructible:
3755 case clang::TT_IsNothrowConstructible:
3756 case clang::TT_IsTriviallyConstructible: {
3757 // C++11 [meta.unary.prop]:
3758 // is_trivially_constructible is defined as:
3759 //
3760 // is_constructible<T, Args...>::value is true and the variable
3761 // definition for is_constructible, as defined below, is known to call
3762 // no operation that is not trivial.
3763 //
3764 // The predicate condition for a template specialization
3765 // is_constructible<T, Args...> shall be satisfied if and only if the
3766 // following variable definition would be well-formed for some invented
3767 // variable t:
3768 //
3769 // T t(create<Args>()...);
3770 assert(!Args.empty());
3771
3772 // Precondition: T and all types in the parameter pack Args shall be
3773 // complete types, (possibly cv-qualified) void, or arrays of
3774 // unknown bound.
3775 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3776 QualType ArgTy = Args[I]->getType();
3777 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
3778 continue;
3779
3780 if (S.RequireCompleteType(KWLoc, ArgTy,
3781 diag::err_incomplete_type_used_in_type_trait_expr))
3782 return false;
3783 }
3784
3785 // Make sure the first argument is a complete type.
3786 if (Args[0]->getType()->isIncompleteType())
3787 return false;
3788
3789 // Make sure the first argument is not an abstract type.
3790 CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
3791 if (RD && RD->isAbstract())
3792 return false;
3793
3794 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3795 SmallVector<Expr *, 2> ArgExprs;
3796 ArgExprs.reserve(Args.size() - 1);
3797 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3798 QualType T = Args[I]->getType();
3799 if (T->isObjectType() || T->isFunctionType())
3800 T = S.Context.getRValueReferenceType(T);
3801 OpaqueArgExprs.push_back(
3802 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3803 T.getNonLValueExprType(S.Context),
3804 Expr::getValueKindForType(T)));
3805 }
3806 for (Expr &E : OpaqueArgExprs)
3807 ArgExprs.push_back(&E);
3808
3809 // Perform the initialization in an unevaluated context within a SFINAE
3810 // trap at translation unit scope.
3811 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3812 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3813 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3814 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3815 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3816 RParenLoc));
3817 InitializationSequence Init(S, To, InitKind, ArgExprs);
3818 if (Init.Failed())
3819 return false;
3820
3821 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3822 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3823 return false;
3824
3825 if (Kind == clang::TT_IsConstructible)
3826 return true;
3827
3828 if (Kind == clang::TT_IsNothrowConstructible)
3829 return S.canThrow(Result.get()) == CT_Cannot;
3830
3831 if (Kind == clang::TT_IsTriviallyConstructible) {
3832 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3833 // lifetime, this is a non-trivial construction.
3834 if (S.getLangOpts().ObjCAutoRefCount &&
3835 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3836 return false;
3837
3838 // The initialization succeeded; now make sure there are no non-trivial
3839 // calls.
3840 return !Result.get()->hasNonTrivialCall(S.Context);
3841 }
3842
3843 llvm_unreachable("unhandled type trait");
3844 return false;
3845 }
3846 default: llvm_unreachable("not a TT");
3847 }
3848
3849 return false;
3850 }
3851
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3852 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3853 ArrayRef<TypeSourceInfo *> Args,
3854 SourceLocation RParenLoc) {
3855 QualType ResultType = Context.getLogicalOperationType();
3856
3857 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
3858 *this, Kind, KWLoc, Args[0]->getType()))
3859 return ExprError();
3860
3861 bool Dependent = false;
3862 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3863 if (Args[I]->getType()->isDependentType()) {
3864 Dependent = true;
3865 break;
3866 }
3867 }
3868
3869 bool Result = false;
3870 if (!Dependent)
3871 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3872
3873 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
3874 RParenLoc, Result);
3875 }
3876
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3877 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3878 ArrayRef<ParsedType> Args,
3879 SourceLocation RParenLoc) {
3880 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3881 ConvertedArgs.reserve(Args.size());
3882
3883 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3884 TypeSourceInfo *TInfo;
3885 QualType T = GetTypeFromParser(Args[I], &TInfo);
3886 if (!TInfo)
3887 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3888
3889 ConvertedArgs.push_back(TInfo);
3890 }
3891
3892 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3893 }
3894
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3895 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3896 QualType RhsT, SourceLocation KeyLoc) {
3897 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3898 "Cannot evaluate traits of dependent types");
3899
3900 switch(BTT) {
3901 case BTT_IsBaseOf: {
3902 // C++0x [meta.rel]p2
3903 // Base is a base class of Derived without regard to cv-qualifiers or
3904 // Base and Derived are not unions and name the same class type without
3905 // regard to cv-qualifiers.
3906
3907 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3908 if (!lhsRecord) return false;
3909
3910 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3911 if (!rhsRecord) return false;
3912
3913 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3914 == (lhsRecord == rhsRecord));
3915
3916 if (lhsRecord == rhsRecord)
3917 return !lhsRecord->getDecl()->isUnion();
3918
3919 // C++0x [meta.rel]p2:
3920 // If Base and Derived are class types and are different types
3921 // (ignoring possible cv-qualifiers) then Derived shall be a
3922 // complete type.
3923 if (Self.RequireCompleteType(KeyLoc, RhsT,
3924 diag::err_incomplete_type_used_in_type_trait_expr))
3925 return false;
3926
3927 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3928 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3929 }
3930 case BTT_IsSame:
3931 return Self.Context.hasSameType(LhsT, RhsT);
3932 case BTT_TypeCompatible:
3933 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3934 RhsT.getUnqualifiedType());
3935 case BTT_IsConvertible:
3936 case BTT_IsConvertibleTo: {
3937 // C++0x [meta.rel]p4:
3938 // Given the following function prototype:
3939 //
3940 // template <class T>
3941 // typename add_rvalue_reference<T>::type create();
3942 //
3943 // the predicate condition for a template specialization
3944 // is_convertible<From, To> shall be satisfied if and only if
3945 // the return expression in the following code would be
3946 // well-formed, including any implicit conversions to the return
3947 // type of the function:
3948 //
3949 // To test() {
3950 // return create<From>();
3951 // }
3952 //
3953 // Access checking is performed as if in a context unrelated to To and
3954 // From. Only the validity of the immediate context of the expression
3955 // of the return-statement (including conversions to the return type)
3956 // is considered.
3957 //
3958 // We model the initialization as a copy-initialization of a temporary
3959 // of the appropriate type, which for this expression is identical to the
3960 // return statement (since NRVO doesn't apply).
3961
3962 // Functions aren't allowed to return function or array types.
3963 if (RhsT->isFunctionType() || RhsT->isArrayType())
3964 return false;
3965
3966 // A return statement in a void function must have void type.
3967 if (RhsT->isVoidType())
3968 return LhsT->isVoidType();
3969
3970 // A function definition requires a complete, non-abstract return type.
3971 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3972 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3973 return false;
3974
3975 // Compute the result of add_rvalue_reference.
3976 if (LhsT->isObjectType() || LhsT->isFunctionType())
3977 LhsT = Self.Context.getRValueReferenceType(LhsT);
3978
3979 // Build a fake source and destination for initialization.
3980 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3981 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3982 Expr::getValueKindForType(LhsT));
3983 Expr *FromPtr = &From;
3984 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3985 SourceLocation()));
3986
3987 // Perform the initialization in an unevaluated context within a SFINAE
3988 // trap at translation unit scope.
3989 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3990 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3991 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3992 InitializationSequence Init(Self, To, Kind, FromPtr);
3993 if (Init.Failed())
3994 return false;
3995
3996 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3997 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3998 }
3999
4000 case BTT_IsNothrowAssignable:
4001 case BTT_IsTriviallyAssignable: {
4002 // C++11 [meta.unary.prop]p3:
4003 // is_trivially_assignable is defined as:
4004 // is_assignable<T, U>::value is true and the assignment, as defined by
4005 // is_assignable, is known to call no operation that is not trivial
4006 //
4007 // is_assignable is defined as:
4008 // The expression declval<T>() = declval<U>() is well-formed when
4009 // treated as an unevaluated operand (Clause 5).
4010 //
4011 // For both, T and U shall be complete types, (possibly cv-qualified)
4012 // void, or arrays of unknown bound.
4013 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4014 Self.RequireCompleteType(KeyLoc, LhsT,
4015 diag::err_incomplete_type_used_in_type_trait_expr))
4016 return false;
4017 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4018 Self.RequireCompleteType(KeyLoc, RhsT,
4019 diag::err_incomplete_type_used_in_type_trait_expr))
4020 return false;
4021
4022 // cv void is never assignable.
4023 if (LhsT->isVoidType() || RhsT->isVoidType())
4024 return false;
4025
4026 // Build expressions that emulate the effect of declval<T>() and
4027 // declval<U>().
4028 if (LhsT->isObjectType() || LhsT->isFunctionType())
4029 LhsT = Self.Context.getRValueReferenceType(LhsT);
4030 if (RhsT->isObjectType() || RhsT->isFunctionType())
4031 RhsT = Self.Context.getRValueReferenceType(RhsT);
4032 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4033 Expr::getValueKindForType(LhsT));
4034 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4035 Expr::getValueKindForType(RhsT));
4036
4037 // Attempt the assignment in an unevaluated context within a SFINAE
4038 // trap at translation unit scope.
4039 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4040 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4041 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4042 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4043 &Rhs);
4044 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4045 return false;
4046
4047 if (BTT == BTT_IsNothrowAssignable)
4048 return Self.canThrow(Result.get()) == CT_Cannot;
4049
4050 if (BTT == BTT_IsTriviallyAssignable) {
4051 // Under Objective-C ARC, if the destination has non-trivial Objective-C
4052 // lifetime, this is a non-trivial assignment.
4053 if (Self.getLangOpts().ObjCAutoRefCount &&
4054 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4055 return false;
4056
4057 return !Result.get()->hasNonTrivialCall(Self.Context);
4058 }
4059
4060 llvm_unreachable("unhandled type trait");
4061 return false;
4062 }
4063 default: llvm_unreachable("not a BTT");
4064 }
4065 llvm_unreachable("Unknown type trait or not implemented");
4066 }
4067
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)4068 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4069 SourceLocation KWLoc,
4070 ParsedType Ty,
4071 Expr* DimExpr,
4072 SourceLocation RParen) {
4073 TypeSourceInfo *TSInfo;
4074 QualType T = GetTypeFromParser(Ty, &TSInfo);
4075 if (!TSInfo)
4076 TSInfo = Context.getTrivialTypeSourceInfo(T);
4077
4078 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4079 }
4080
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)4081 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4082 QualType T, Expr *DimExpr,
4083 SourceLocation KeyLoc) {
4084 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4085
4086 switch(ATT) {
4087 case ATT_ArrayRank:
4088 if (T->isArrayType()) {
4089 unsigned Dim = 0;
4090 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4091 ++Dim;
4092 T = AT->getElementType();
4093 }
4094 return Dim;
4095 }
4096 return 0;
4097
4098 case ATT_ArrayExtent: {
4099 llvm::APSInt Value;
4100 uint64_t Dim;
4101 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4102 diag::err_dimension_expr_not_constant_integer,
4103 false).isInvalid())
4104 return 0;
4105 if (Value.isSigned() && Value.isNegative()) {
4106 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4107 << DimExpr->getSourceRange();
4108 return 0;
4109 }
4110 Dim = Value.getLimitedValue();
4111
4112 if (T->isArrayType()) {
4113 unsigned D = 0;
4114 bool Matched = false;
4115 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4116 if (Dim == D) {
4117 Matched = true;
4118 break;
4119 }
4120 ++D;
4121 T = AT->getElementType();
4122 }
4123
4124 if (Matched && T->isArrayType()) {
4125 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4126 return CAT->getSize().getLimitedValue();
4127 }
4128 }
4129 return 0;
4130 }
4131 }
4132 llvm_unreachable("Unknown type trait or not implemented");
4133 }
4134
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)4135 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4136 SourceLocation KWLoc,
4137 TypeSourceInfo *TSInfo,
4138 Expr* DimExpr,
4139 SourceLocation RParen) {
4140 QualType T = TSInfo->getType();
4141
4142 // FIXME: This should likely be tracked as an APInt to remove any host
4143 // assumptions about the width of size_t on the target.
4144 uint64_t Value = 0;
4145 if (!T->isDependentType())
4146 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4147
4148 // While the specification for these traits from the Embarcadero C++
4149 // compiler's documentation says the return type is 'unsigned int', Clang
4150 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4151 // compiler, there is no difference. On several other platforms this is an
4152 // important distinction.
4153 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4154 RParen, Context.getSizeType());
4155 }
4156
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4157 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4158 SourceLocation KWLoc,
4159 Expr *Queried,
4160 SourceLocation RParen) {
4161 // If error parsing the expression, ignore.
4162 if (!Queried)
4163 return ExprError();
4164
4165 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4166
4167 return Result;
4168 }
4169
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)4170 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4171 switch (ET) {
4172 case ET_IsLValueExpr: return E->isLValue();
4173 case ET_IsRValueExpr: return E->isRValue();
4174 }
4175 llvm_unreachable("Expression trait not covered by switch");
4176 }
4177
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4178 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4179 SourceLocation KWLoc,
4180 Expr *Queried,
4181 SourceLocation RParen) {
4182 if (Queried->isTypeDependent()) {
4183 // Delay type-checking for type-dependent expressions.
4184 } else if (Queried->getType()->isPlaceholderType()) {
4185 ExprResult PE = CheckPlaceholderExpr(Queried);
4186 if (PE.isInvalid()) return ExprError();
4187 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4188 }
4189
4190 bool Value = EvaluateExpressionTrait(ET, Queried);
4191
4192 return new (Context)
4193 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4194 }
4195
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)4196 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4197 ExprValueKind &VK,
4198 SourceLocation Loc,
4199 bool isIndirect) {
4200 assert(!LHS.get()->getType()->isPlaceholderType() &&
4201 !RHS.get()->getType()->isPlaceholderType() &&
4202 "placeholders should have been weeded out by now");
4203
4204 // The LHS undergoes lvalue conversions if this is ->*.
4205 if (isIndirect) {
4206 LHS = DefaultLvalueConversion(LHS.get());
4207 if (LHS.isInvalid()) return QualType();
4208 }
4209
4210 // The RHS always undergoes lvalue conversions.
4211 RHS = DefaultLvalueConversion(RHS.get());
4212 if (RHS.isInvalid()) return QualType();
4213
4214 const char *OpSpelling = isIndirect ? "->*" : ".*";
4215 // C++ 5.5p2
4216 // The binary operator .* [p3: ->*] binds its second operand, which shall
4217 // be of type "pointer to member of T" (where T is a completely-defined
4218 // class type) [...]
4219 QualType RHSType = RHS.get()->getType();
4220 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4221 if (!MemPtr) {
4222 Diag(Loc, diag::err_bad_memptr_rhs)
4223 << OpSpelling << RHSType << RHS.get()->getSourceRange();
4224 return QualType();
4225 }
4226
4227 QualType Class(MemPtr->getClass(), 0);
4228
4229 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4230 // member pointer points must be completely-defined. However, there is no
4231 // reason for this semantic distinction, and the rule is not enforced by
4232 // other compilers. Therefore, we do not check this property, as it is
4233 // likely to be considered a defect.
4234
4235 // C++ 5.5p2
4236 // [...] to its first operand, which shall be of class T or of a class of
4237 // which T is an unambiguous and accessible base class. [p3: a pointer to
4238 // such a class]
4239 QualType LHSType = LHS.get()->getType();
4240 if (isIndirect) {
4241 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4242 LHSType = Ptr->getPointeeType();
4243 else {
4244 Diag(Loc, diag::err_bad_memptr_lhs)
4245 << OpSpelling << 1 << LHSType
4246 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4247 return QualType();
4248 }
4249 }
4250
4251 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4252 // If we want to check the hierarchy, we need a complete type.
4253 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4254 OpSpelling, (int)isIndirect)) {
4255 return QualType();
4256 }
4257
4258 if (!IsDerivedFrom(LHSType, Class)) {
4259 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4260 << (int)isIndirect << LHS.get()->getType();
4261 return QualType();
4262 }
4263
4264 CXXCastPath BasePath;
4265 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4266 SourceRange(LHS.get()->getLocStart(),
4267 RHS.get()->getLocEnd()),
4268 &BasePath))
4269 return QualType();
4270
4271 // Cast LHS to type of use.
4272 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4273 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4274 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4275 &BasePath);
4276 }
4277
4278 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4279 // Diagnose use of pointer-to-member type which when used as
4280 // the functional cast in a pointer-to-member expression.
4281 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4282 return QualType();
4283 }
4284
4285 // C++ 5.5p2
4286 // The result is an object or a function of the type specified by the
4287 // second operand.
4288 // The cv qualifiers are the union of those in the pointer and the left side,
4289 // in accordance with 5.5p5 and 5.2.5.
4290 QualType Result = MemPtr->getPointeeType();
4291 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4292
4293 // C++0x [expr.mptr.oper]p6:
4294 // In a .* expression whose object expression is an rvalue, the program is
4295 // ill-formed if the second operand is a pointer to member function with
4296 // ref-qualifier &. In a ->* expression or in a .* expression whose object
4297 // expression is an lvalue, the program is ill-formed if the second operand
4298 // is a pointer to member function with ref-qualifier &&.
4299 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4300 switch (Proto->getRefQualifier()) {
4301 case RQ_None:
4302 // Do nothing
4303 break;
4304
4305 case RQ_LValue:
4306 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4307 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4308 << RHSType << 1 << LHS.get()->getSourceRange();
4309 break;
4310
4311 case RQ_RValue:
4312 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4313 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4314 << RHSType << 0 << LHS.get()->getSourceRange();
4315 break;
4316 }
4317 }
4318
4319 // C++ [expr.mptr.oper]p6:
4320 // The result of a .* expression whose second operand is a pointer
4321 // to a data member is of the same value category as its
4322 // first operand. The result of a .* expression whose second
4323 // operand is a pointer to a member function is a prvalue. The
4324 // result of an ->* expression is an lvalue if its second operand
4325 // is a pointer to data member and a prvalue otherwise.
4326 if (Result->isFunctionType()) {
4327 VK = VK_RValue;
4328 return Context.BoundMemberTy;
4329 } else if (isIndirect) {
4330 VK = VK_LValue;
4331 } else {
4332 VK = LHS.get()->getValueKind();
4333 }
4334
4335 return Result;
4336 }
4337
4338 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4339 ///
4340 /// This is part of the parameter validation for the ? operator. If either
4341 /// value operand is a class type, the two operands are attempted to be
4342 /// converted to each other. This function does the conversion in one direction.
4343 /// It returns true if the program is ill-formed and has already been diagnosed
4344 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)4345 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4346 SourceLocation QuestionLoc,
4347 bool &HaveConversion,
4348 QualType &ToType) {
4349 HaveConversion = false;
4350 ToType = To->getType();
4351
4352 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4353 SourceLocation());
4354 // C++0x 5.16p3
4355 // The process for determining whether an operand expression E1 of type T1
4356 // can be converted to match an operand expression E2 of type T2 is defined
4357 // as follows:
4358 // -- If E2 is an lvalue:
4359 bool ToIsLvalue = To->isLValue();
4360 if (ToIsLvalue) {
4361 // E1 can be converted to match E2 if E1 can be implicitly converted to
4362 // type "lvalue reference to T2", subject to the constraint that in the
4363 // conversion the reference must bind directly to E1.
4364 QualType T = Self.Context.getLValueReferenceType(ToType);
4365 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4366
4367 InitializationSequence InitSeq(Self, Entity, Kind, From);
4368 if (InitSeq.isDirectReferenceBinding()) {
4369 ToType = T;
4370 HaveConversion = true;
4371 return false;
4372 }
4373
4374 if (InitSeq.isAmbiguous())
4375 return InitSeq.Diagnose(Self, Entity, Kind, From);
4376 }
4377
4378 // -- If E2 is an rvalue, or if the conversion above cannot be done:
4379 // -- if E1 and E2 have class type, and the underlying class types are
4380 // the same or one is a base class of the other:
4381 QualType FTy = From->getType();
4382 QualType TTy = To->getType();
4383 const RecordType *FRec = FTy->getAs<RecordType>();
4384 const RecordType *TRec = TTy->getAs<RecordType>();
4385 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4386 Self.IsDerivedFrom(FTy, TTy);
4387 if (FRec && TRec &&
4388 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4389 // E1 can be converted to match E2 if the class of T2 is the
4390 // same type as, or a base class of, the class of T1, and
4391 // [cv2 > cv1].
4392 if (FRec == TRec || FDerivedFromT) {
4393 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4394 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4395 InitializationSequence InitSeq(Self, Entity, Kind, From);
4396 if (InitSeq) {
4397 HaveConversion = true;
4398 return false;
4399 }
4400
4401 if (InitSeq.isAmbiguous())
4402 return InitSeq.Diagnose(Self, Entity, Kind, From);
4403 }
4404 }
4405
4406 return false;
4407 }
4408
4409 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4410 // implicitly converted to the type that expression E2 would have
4411 // if E2 were converted to an rvalue (or the type it has, if E2 is
4412 // an rvalue).
4413 //
4414 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4415 // to the array-to-pointer or function-to-pointer conversions.
4416 if (!TTy->getAs<TagType>())
4417 TTy = TTy.getUnqualifiedType();
4418
4419 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4420 InitializationSequence InitSeq(Self, Entity, Kind, From);
4421 HaveConversion = !InitSeq.Failed();
4422 ToType = TTy;
4423 if (InitSeq.isAmbiguous())
4424 return InitSeq.Diagnose(Self, Entity, Kind, From);
4425
4426 return false;
4427 }
4428
4429 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4430 ///
4431 /// This is part of the parameter validation for the ? operator. If either
4432 /// value operand is a class type, overload resolution is used to find a
4433 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4434 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4435 SourceLocation QuestionLoc) {
4436 Expr *Args[2] = { LHS.get(), RHS.get() };
4437 OverloadCandidateSet CandidateSet(QuestionLoc,
4438 OverloadCandidateSet::CSK_Operator);
4439 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4440 CandidateSet);
4441
4442 OverloadCandidateSet::iterator Best;
4443 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4444 case OR_Success: {
4445 // We found a match. Perform the conversions on the arguments and move on.
4446 ExprResult LHSRes =
4447 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4448 Best->Conversions[0], Sema::AA_Converting);
4449 if (LHSRes.isInvalid())
4450 break;
4451 LHS = LHSRes;
4452
4453 ExprResult RHSRes =
4454 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4455 Best->Conversions[1], Sema::AA_Converting);
4456 if (RHSRes.isInvalid())
4457 break;
4458 RHS = RHSRes;
4459 if (Best->Function)
4460 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4461 return false;
4462 }
4463
4464 case OR_No_Viable_Function:
4465
4466 // Emit a better diagnostic if one of the expressions is a null pointer
4467 // constant and the other is a pointer type. In this case, the user most
4468 // likely forgot to take the address of the other expression.
4469 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4470 return true;
4471
4472 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4473 << LHS.get()->getType() << RHS.get()->getType()
4474 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4475 return true;
4476
4477 case OR_Ambiguous:
4478 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4479 << LHS.get()->getType() << RHS.get()->getType()
4480 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4481 // FIXME: Print the possible common types by printing the return types of
4482 // the viable candidates.
4483 break;
4484
4485 case OR_Deleted:
4486 llvm_unreachable("Conditional operator has only built-in overloads");
4487 }
4488 return true;
4489 }
4490
4491 /// \brief Perform an "extended" implicit conversion as returned by
4492 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4493 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4494 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4495 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4496 SourceLocation());
4497 Expr *Arg = E.get();
4498 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4499 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4500 if (Result.isInvalid())
4501 return true;
4502
4503 E = Result;
4504 return false;
4505 }
4506
4507 /// \brief Check the operands of ?: under C++ semantics.
4508 ///
4509 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4510 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4511 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4512 ExprResult &RHS, ExprValueKind &VK,
4513 ExprObjectKind &OK,
4514 SourceLocation QuestionLoc) {
4515 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4516 // interface pointers.
4517
4518 // C++11 [expr.cond]p1
4519 // The first expression is contextually converted to bool.
4520 if (!Cond.get()->isTypeDependent()) {
4521 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4522 if (CondRes.isInvalid())
4523 return QualType();
4524 Cond = CondRes;
4525 }
4526
4527 // Assume r-value.
4528 VK = VK_RValue;
4529 OK = OK_Ordinary;
4530
4531 // Either of the arguments dependent?
4532 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4533 return Context.DependentTy;
4534
4535 // C++11 [expr.cond]p2
4536 // If either the second or the third operand has type (cv) void, ...
4537 QualType LTy = LHS.get()->getType();
4538 QualType RTy = RHS.get()->getType();
4539 bool LVoid = LTy->isVoidType();
4540 bool RVoid = RTy->isVoidType();
4541 if (LVoid || RVoid) {
4542 // ... one of the following shall hold:
4543 // -- The second or the third operand (but not both) is a (possibly
4544 // parenthesized) throw-expression; the result is of the type
4545 // and value category of the other.
4546 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4547 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4548 if (LThrow != RThrow) {
4549 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4550 VK = NonThrow->getValueKind();
4551 // DR (no number yet): the result is a bit-field if the
4552 // non-throw-expression operand is a bit-field.
4553 OK = NonThrow->getObjectKind();
4554 return NonThrow->getType();
4555 }
4556
4557 // -- Both the second and third operands have type void; the result is of
4558 // type void and is a prvalue.
4559 if (LVoid && RVoid)
4560 return Context.VoidTy;
4561
4562 // Neither holds, error.
4563 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4564 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4565 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4566 return QualType();
4567 }
4568
4569 // Neither is void.
4570
4571 // C++11 [expr.cond]p3
4572 // Otherwise, if the second and third operand have different types, and
4573 // either has (cv) class type [...] an attempt is made to convert each of
4574 // those operands to the type of the other.
4575 if (!Context.hasSameType(LTy, RTy) &&
4576 (LTy->isRecordType() || RTy->isRecordType())) {
4577 // These return true if a single direction is already ambiguous.
4578 QualType L2RType, R2LType;
4579 bool HaveL2R, HaveR2L;
4580 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4581 return QualType();
4582 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4583 return QualType();
4584
4585 // If both can be converted, [...] the program is ill-formed.
4586 if (HaveL2R && HaveR2L) {
4587 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4588 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4589 return QualType();
4590 }
4591
4592 // If exactly one conversion is possible, that conversion is applied to
4593 // the chosen operand and the converted operands are used in place of the
4594 // original operands for the remainder of this section.
4595 if (HaveL2R) {
4596 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4597 return QualType();
4598 LTy = LHS.get()->getType();
4599 } else if (HaveR2L) {
4600 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4601 return QualType();
4602 RTy = RHS.get()->getType();
4603 }
4604 }
4605
4606 // C++11 [expr.cond]p3
4607 // if both are glvalues of the same value category and the same type except
4608 // for cv-qualification, an attempt is made to convert each of those
4609 // operands to the type of the other.
4610 ExprValueKind LVK = LHS.get()->getValueKind();
4611 ExprValueKind RVK = RHS.get()->getValueKind();
4612 if (!Context.hasSameType(LTy, RTy) &&
4613 Context.hasSameUnqualifiedType(LTy, RTy) &&
4614 LVK == RVK && LVK != VK_RValue) {
4615 // Since the unqualified types are reference-related and we require the
4616 // result to be as if a reference bound directly, the only conversion
4617 // we can perform is to add cv-qualifiers.
4618 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4619 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4620 if (RCVR.isStrictSupersetOf(LCVR)) {
4621 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4622 LTy = LHS.get()->getType();
4623 }
4624 else if (LCVR.isStrictSupersetOf(RCVR)) {
4625 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4626 RTy = RHS.get()->getType();
4627 }
4628 }
4629
4630 // C++11 [expr.cond]p4
4631 // If the second and third operands are glvalues of the same value
4632 // category and have the same type, the result is of that type and
4633 // value category and it is a bit-field if the second or the third
4634 // operand is a bit-field, or if both are bit-fields.
4635 // We only extend this to bitfields, not to the crazy other kinds of
4636 // l-values.
4637 bool Same = Context.hasSameType(LTy, RTy);
4638 if (Same && LVK == RVK && LVK != VK_RValue &&
4639 LHS.get()->isOrdinaryOrBitFieldObject() &&
4640 RHS.get()->isOrdinaryOrBitFieldObject()) {
4641 VK = LHS.get()->getValueKind();
4642 if (LHS.get()->getObjectKind() == OK_BitField ||
4643 RHS.get()->getObjectKind() == OK_BitField)
4644 OK = OK_BitField;
4645 return LTy;
4646 }
4647
4648 // C++11 [expr.cond]p5
4649 // Otherwise, the result is a prvalue. If the second and third operands
4650 // do not have the same type, and either has (cv) class type, ...
4651 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4652 // ... overload resolution is used to determine the conversions (if any)
4653 // to be applied to the operands. If the overload resolution fails, the
4654 // program is ill-formed.
4655 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4656 return QualType();
4657 }
4658
4659 // C++11 [expr.cond]p6
4660 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4661 // conversions are performed on the second and third operands.
4662 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4663 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4664 if (LHS.isInvalid() || RHS.isInvalid())
4665 return QualType();
4666 LTy = LHS.get()->getType();
4667 RTy = RHS.get()->getType();
4668
4669 // After those conversions, one of the following shall hold:
4670 // -- The second and third operands have the same type; the result
4671 // is of that type. If the operands have class type, the result
4672 // is a prvalue temporary of the result type, which is
4673 // copy-initialized from either the second operand or the third
4674 // operand depending on the value of the first operand.
4675 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4676 if (LTy->isRecordType()) {
4677 // The operands have class type. Make a temporary copy.
4678 if (RequireNonAbstractType(QuestionLoc, LTy,
4679 diag::err_allocation_of_abstract_type))
4680 return QualType();
4681 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4682
4683 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4684 SourceLocation(),
4685 LHS);
4686 if (LHSCopy.isInvalid())
4687 return QualType();
4688
4689 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4690 SourceLocation(),
4691 RHS);
4692 if (RHSCopy.isInvalid())
4693 return QualType();
4694
4695 LHS = LHSCopy;
4696 RHS = RHSCopy;
4697 }
4698
4699 return LTy;
4700 }
4701
4702 // Extension: conditional operator involving vector types.
4703 if (LTy->isVectorType() || RTy->isVectorType())
4704 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4705
4706 // -- The second and third operands have arithmetic or enumeration type;
4707 // the usual arithmetic conversions are performed to bring them to a
4708 // common type, and the result is of that type.
4709 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4710 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
4711 if (LHS.isInvalid() || RHS.isInvalid())
4712 return QualType();
4713
4714 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
4715 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
4716
4717 return ResTy;
4718 }
4719
4720 // -- The second and third operands have pointer type, or one has pointer
4721 // type and the other is a null pointer constant, or both are null
4722 // pointer constants, at least one of which is non-integral; pointer
4723 // conversions and qualification conversions are performed to bring them
4724 // to their composite pointer type. The result is of the composite
4725 // pointer type.
4726 // -- The second and third operands have pointer to member type, or one has
4727 // pointer to member type and the other is a null pointer constant;
4728 // pointer to member conversions and qualification conversions are
4729 // performed to bring them to a common type, whose cv-qualification
4730 // shall match the cv-qualification of either the second or the third
4731 // operand. The result is of the common type.
4732 bool NonStandardCompositeType = false;
4733 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4734 isSFINAEContext() ? nullptr
4735 : &NonStandardCompositeType);
4736 if (!Composite.isNull()) {
4737 if (NonStandardCompositeType)
4738 Diag(QuestionLoc,
4739 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4740 << LTy << RTy << Composite
4741 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4742
4743 return Composite;
4744 }
4745
4746 // Similarly, attempt to find composite type of two objective-c pointers.
4747 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4748 if (!Composite.isNull())
4749 return Composite;
4750
4751 // Check if we are using a null with a non-pointer type.
4752 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4753 return QualType();
4754
4755 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4756 << LHS.get()->getType() << RHS.get()->getType()
4757 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4758 return QualType();
4759 }
4760
4761 /// \brief Find a merged pointer type and convert the two expressions to it.
4762 ///
4763 /// This finds the composite pointer type (or member pointer type) for @p E1
4764 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4765 /// type and returns it.
4766 /// It does not emit diagnostics.
4767 ///
4768 /// \param Loc The location of the operator requiring these two expressions to
4769 /// be converted to the composite pointer type.
4770 ///
4771 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4772 /// a non-standard (but still sane) composite type to which both expressions
4773 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4774 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4775 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4776 Expr *&E1, Expr *&E2,
4777 bool *NonStandardCompositeType) {
4778 if (NonStandardCompositeType)
4779 *NonStandardCompositeType = false;
4780
4781 assert(getLangOpts().CPlusPlus && "This function assumes C++");
4782 QualType T1 = E1->getType(), T2 = E2->getType();
4783
4784 // C++11 5.9p2
4785 // Pointer conversions and qualification conversions are performed on
4786 // pointer operands to bring them to their composite pointer type. If
4787 // one operand is a null pointer constant, the composite pointer type is
4788 // std::nullptr_t if the other operand is also a null pointer constant or,
4789 // if the other operand is a pointer, the type of the other operand.
4790 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4791 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4792 if (T1->isNullPtrType() &&
4793 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4794 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4795 return T1;
4796 }
4797 if (T2->isNullPtrType() &&
4798 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4799 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4800 return T2;
4801 }
4802 return QualType();
4803 }
4804
4805 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4806 if (T2->isMemberPointerType())
4807 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
4808 else
4809 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4810 return T2;
4811 }
4812 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4813 if (T1->isMemberPointerType())
4814 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
4815 else
4816 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4817 return T1;
4818 }
4819
4820 // Now both have to be pointers or member pointers.
4821 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4822 (!T2->isPointerType() && !T2->isMemberPointerType()))
4823 return QualType();
4824
4825 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4826 // the other has type "pointer to cv2 T" and the composite pointer type is
4827 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4828 // Otherwise, the composite pointer type is a pointer type similar to the
4829 // type of one of the operands, with a cv-qualification signature that is
4830 // the union of the cv-qualification signatures of the operand types.
4831 // In practice, the first part here is redundant; it's subsumed by the second.
4832 // What we do here is, we build the two possible composite types, and try the
4833 // conversions in both directions. If only one works, or if the two composite
4834 // types are the same, we have succeeded.
4835 // FIXME: extended qualifiers?
4836 typedef SmallVector<unsigned, 4> QualifierVector;
4837 QualifierVector QualifierUnion;
4838 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4839 ContainingClassVector;
4840 ContainingClassVector MemberOfClass;
4841 QualType Composite1 = Context.getCanonicalType(T1),
4842 Composite2 = Context.getCanonicalType(T2);
4843 unsigned NeedConstBefore = 0;
4844 do {
4845 const PointerType *Ptr1, *Ptr2;
4846 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4847 (Ptr2 = Composite2->getAs<PointerType>())) {
4848 Composite1 = Ptr1->getPointeeType();
4849 Composite2 = Ptr2->getPointeeType();
4850
4851 // If we're allowed to create a non-standard composite type, keep track
4852 // of where we need to fill in additional 'const' qualifiers.
4853 if (NonStandardCompositeType &&
4854 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4855 NeedConstBefore = QualifierUnion.size();
4856
4857 QualifierUnion.push_back(
4858 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4859 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
4860 continue;
4861 }
4862
4863 const MemberPointerType *MemPtr1, *MemPtr2;
4864 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4865 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4866 Composite1 = MemPtr1->getPointeeType();
4867 Composite2 = MemPtr2->getPointeeType();
4868
4869 // If we're allowed to create a non-standard composite type, keep track
4870 // of where we need to fill in additional 'const' qualifiers.
4871 if (NonStandardCompositeType &&
4872 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4873 NeedConstBefore = QualifierUnion.size();
4874
4875 QualifierUnion.push_back(
4876 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4877 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4878 MemPtr2->getClass()));
4879 continue;
4880 }
4881
4882 // FIXME: block pointer types?
4883
4884 // Cannot unwrap any more types.
4885 break;
4886 } while (true);
4887
4888 if (NeedConstBefore && NonStandardCompositeType) {
4889 // Extension: Add 'const' to qualifiers that come before the first qualifier
4890 // mismatch, so that our (non-standard!) composite type meets the
4891 // requirements of C++ [conv.qual]p4 bullet 3.
4892 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4893 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4894 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4895 *NonStandardCompositeType = true;
4896 }
4897 }
4898 }
4899
4900 // Rewrap the composites as pointers or member pointers with the union CVRs.
4901 ContainingClassVector::reverse_iterator MOC
4902 = MemberOfClass.rbegin();
4903 for (QualifierVector::reverse_iterator
4904 I = QualifierUnion.rbegin(),
4905 E = QualifierUnion.rend();
4906 I != E; (void)++I, ++MOC) {
4907 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4908 if (MOC->first && MOC->second) {
4909 // Rebuild member pointer type
4910 Composite1 = Context.getMemberPointerType(
4911 Context.getQualifiedType(Composite1, Quals),
4912 MOC->first);
4913 Composite2 = Context.getMemberPointerType(
4914 Context.getQualifiedType(Composite2, Quals),
4915 MOC->second);
4916 } else {
4917 // Rebuild pointer type
4918 Composite1
4919 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4920 Composite2
4921 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4922 }
4923 }
4924
4925 // Try to convert to the first composite pointer type.
4926 InitializedEntity Entity1
4927 = InitializedEntity::InitializeTemporary(Composite1);
4928 InitializationKind Kind
4929 = InitializationKind::CreateCopy(Loc, SourceLocation());
4930 InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4931 InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4932
4933 if (E1ToC1 && E2ToC1) {
4934 // Conversion to Composite1 is viable.
4935 if (!Context.hasSameType(Composite1, Composite2)) {
4936 // Composite2 is a different type from Composite1. Check whether
4937 // Composite2 is also viable.
4938 InitializedEntity Entity2
4939 = InitializedEntity::InitializeTemporary(Composite2);
4940 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4941 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4942 if (E1ToC2 && E2ToC2) {
4943 // Both Composite1 and Composite2 are viable and are different;
4944 // this is an ambiguity.
4945 return QualType();
4946 }
4947 }
4948
4949 // Convert E1 to Composite1
4950 ExprResult E1Result
4951 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4952 if (E1Result.isInvalid())
4953 return QualType();
4954 E1 = E1Result.getAs<Expr>();
4955
4956 // Convert E2 to Composite1
4957 ExprResult E2Result
4958 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4959 if (E2Result.isInvalid())
4960 return QualType();
4961 E2 = E2Result.getAs<Expr>();
4962
4963 return Composite1;
4964 }
4965
4966 // Check whether Composite2 is viable.
4967 InitializedEntity Entity2
4968 = InitializedEntity::InitializeTemporary(Composite2);
4969 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4970 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4971 if (!E1ToC2 || !E2ToC2)
4972 return QualType();
4973
4974 // Convert E1 to Composite2
4975 ExprResult E1Result
4976 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4977 if (E1Result.isInvalid())
4978 return QualType();
4979 E1 = E1Result.getAs<Expr>();
4980
4981 // Convert E2 to Composite2
4982 ExprResult E2Result
4983 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4984 if (E2Result.isInvalid())
4985 return QualType();
4986 E2 = E2Result.getAs<Expr>();
4987
4988 return Composite2;
4989 }
4990
MaybeBindToTemporary(Expr * E)4991 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4992 if (!E)
4993 return ExprError();
4994
4995 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4996
4997 // If the result is a glvalue, we shouldn't bind it.
4998 if (!E->isRValue())
4999 return E;
5000
5001 // In ARC, calls that return a retainable type can return retained,
5002 // in which case we have to insert a consuming cast.
5003 if (getLangOpts().ObjCAutoRefCount &&
5004 E->getType()->isObjCRetainableType()) {
5005
5006 bool ReturnsRetained;
5007
5008 // For actual calls, we compute this by examining the type of the
5009 // called value.
5010 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5011 Expr *Callee = Call->getCallee()->IgnoreParens();
5012 QualType T = Callee->getType();
5013
5014 if (T == Context.BoundMemberTy) {
5015 // Handle pointer-to-members.
5016 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5017 T = BinOp->getRHS()->getType();
5018 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5019 T = Mem->getMemberDecl()->getType();
5020 }
5021
5022 if (const PointerType *Ptr = T->getAs<PointerType>())
5023 T = Ptr->getPointeeType();
5024 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5025 T = Ptr->getPointeeType();
5026 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5027 T = MemPtr->getPointeeType();
5028
5029 const FunctionType *FTy = T->getAs<FunctionType>();
5030 assert(FTy && "call to value not of function type?");
5031 ReturnsRetained = FTy->getExtInfo().getProducesResult();
5032
5033 // ActOnStmtExpr arranges things so that StmtExprs of retainable
5034 // type always produce a +1 object.
5035 } else if (isa<StmtExpr>(E)) {
5036 ReturnsRetained = true;
5037
5038 // We hit this case with the lambda conversion-to-block optimization;
5039 // we don't want any extra casts here.
5040 } else if (isa<CastExpr>(E) &&
5041 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5042 return E;
5043
5044 // For message sends and property references, we try to find an
5045 // actual method. FIXME: we should infer retention by selector in
5046 // cases where we don't have an actual method.
5047 } else {
5048 ObjCMethodDecl *D = nullptr;
5049 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
5050 D = Send->getMethodDecl();
5051 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
5052 D = BoxedExpr->getBoxingMethod();
5053 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
5054 D = ArrayLit->getArrayWithObjectsMethod();
5055 } else if (ObjCDictionaryLiteral *DictLit
5056 = dyn_cast<ObjCDictionaryLiteral>(E)) {
5057 D = DictLit->getDictWithObjectsMethod();
5058 }
5059
5060 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
5061
5062 // Don't do reclaims on performSelector calls; despite their
5063 // return type, the invoked method doesn't necessarily actually
5064 // return an object.
5065 if (!ReturnsRetained &&
5066 D && D->getMethodFamily() == OMF_performSelector)
5067 return E;
5068 }
5069
5070 // Don't reclaim an object of Class type.
5071 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
5072 return E;
5073
5074 ExprNeedsCleanups = true;
5075
5076 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
5077 : CK_ARCReclaimReturnedObject);
5078 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
5079 VK_RValue);
5080 }
5081
5082 if (!getLangOpts().CPlusPlus)
5083 return E;
5084
5085 // Search for the base element type (cf. ASTContext::getBaseElementType) with
5086 // a fast path for the common case that the type is directly a RecordType.
5087 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
5088 const RecordType *RT = nullptr;
5089 while (!RT) {
5090 switch (T->getTypeClass()) {
5091 case Type::Record:
5092 RT = cast<RecordType>(T);
5093 break;
5094 case Type::ConstantArray:
5095 case Type::IncompleteArray:
5096 case Type::VariableArray:
5097 case Type::DependentSizedArray:
5098 T = cast<ArrayType>(T)->getElementType().getTypePtr();
5099 break;
5100 default:
5101 return E;
5102 }
5103 }
5104
5105 // That should be enough to guarantee that this type is complete, if we're
5106 // not processing a decltype expression.
5107 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5108 if (RD->isInvalidDecl() || RD->isDependentContext())
5109 return E;
5110
5111 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
5112 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
5113
5114 if (Destructor) {
5115 MarkFunctionReferenced(E->getExprLoc(), Destructor);
5116 CheckDestructorAccess(E->getExprLoc(), Destructor,
5117 PDiag(diag::err_access_dtor_temp)
5118 << E->getType());
5119 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5120 return ExprError();
5121
5122 // If destructor is trivial, we can avoid the extra copy.
5123 if (Destructor->isTrivial())
5124 return E;
5125
5126 // We need a cleanup, but we don't need to remember the temporary.
5127 ExprNeedsCleanups = true;
5128 }
5129
5130 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5131 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5132
5133 if (IsDecltype)
5134 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5135
5136 return Bind;
5137 }
5138
5139 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)5140 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5141 if (SubExpr.isInvalid())
5142 return ExprError();
5143
5144 return MaybeCreateExprWithCleanups(SubExpr.get());
5145 }
5146
MaybeCreateExprWithCleanups(Expr * SubExpr)5147 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5148 assert(SubExpr && "subexpression can't be null!");
5149
5150 CleanupVarDeclMarking();
5151
5152 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5153 assert(ExprCleanupObjects.size() >= FirstCleanup);
5154 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5155 if (!ExprNeedsCleanups)
5156 return SubExpr;
5157
5158 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5159 ExprCleanupObjects.size() - FirstCleanup);
5160
5161 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5162 DiscardCleanupsInEvaluationContext();
5163
5164 return E;
5165 }
5166
MaybeCreateStmtWithCleanups(Stmt * SubStmt)5167 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5168 assert(SubStmt && "sub-statement can't be null!");
5169
5170 CleanupVarDeclMarking();
5171
5172 if (!ExprNeedsCleanups)
5173 return SubStmt;
5174
5175 // FIXME: In order to attach the temporaries, wrap the statement into
5176 // a StmtExpr; currently this is only used for asm statements.
5177 // This is hacky, either create a new CXXStmtWithTemporaries statement or
5178 // a new AsmStmtWithTemporaries.
5179 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5180 SourceLocation(),
5181 SourceLocation());
5182 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5183 SourceLocation());
5184 return MaybeCreateExprWithCleanups(E);
5185 }
5186
5187 /// Process the expression contained within a decltype. For such expressions,
5188 /// certain semantic checks on temporaries are delayed until this point, and
5189 /// are omitted for the 'topmost' call in the decltype expression. If the
5190 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)5191 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5192 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5193
5194 // C++11 [expr.call]p11:
5195 // If a function call is a prvalue of object type,
5196 // -- if the function call is either
5197 // -- the operand of a decltype-specifier, or
5198 // -- the right operand of a comma operator that is the operand of a
5199 // decltype-specifier,
5200 // a temporary object is not introduced for the prvalue.
5201
5202 // Recursively rebuild ParenExprs and comma expressions to strip out the
5203 // outermost CXXBindTemporaryExpr, if any.
5204 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5205 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5206 if (SubExpr.isInvalid())
5207 return ExprError();
5208 if (SubExpr.get() == PE->getSubExpr())
5209 return E;
5210 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5211 }
5212 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5213 if (BO->getOpcode() == BO_Comma) {
5214 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5215 if (RHS.isInvalid())
5216 return ExprError();
5217 if (RHS.get() == BO->getRHS())
5218 return E;
5219 return new (Context) BinaryOperator(
5220 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5221 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5222 }
5223 }
5224
5225 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5226 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5227 : nullptr;
5228 if (TopCall)
5229 E = TopCall;
5230 else
5231 TopBind = nullptr;
5232
5233 // Disable the special decltype handling now.
5234 ExprEvalContexts.back().IsDecltype = false;
5235
5236 // In MS mode, don't perform any extra checking of call return types within a
5237 // decltype expression.
5238 if (getLangOpts().MSVCCompat)
5239 return E;
5240
5241 // Perform the semantic checks we delayed until this point.
5242 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5243 I != N; ++I) {
5244 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5245 if (Call == TopCall)
5246 continue;
5247
5248 if (CheckCallReturnType(Call->getCallReturnType(Context),
5249 Call->getLocStart(),
5250 Call, Call->getDirectCallee()))
5251 return ExprError();
5252 }
5253
5254 // Now all relevant types are complete, check the destructors are accessible
5255 // and non-deleted, and annotate them on the temporaries.
5256 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5257 I != N; ++I) {
5258 CXXBindTemporaryExpr *Bind =
5259 ExprEvalContexts.back().DelayedDecltypeBinds[I];
5260 if (Bind == TopBind)
5261 continue;
5262
5263 CXXTemporary *Temp = Bind->getTemporary();
5264
5265 CXXRecordDecl *RD =
5266 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5267 CXXDestructorDecl *Destructor = LookupDestructor(RD);
5268 Temp->setDestructor(Destructor);
5269
5270 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5271 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5272 PDiag(diag::err_access_dtor_temp)
5273 << Bind->getType());
5274 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5275 return ExprError();
5276
5277 // We need a cleanup, but we don't need to remember the temporary.
5278 ExprNeedsCleanups = true;
5279 }
5280
5281 // Possibly strip off the top CXXBindTemporaryExpr.
5282 return E;
5283 }
5284
5285 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)5286 static void noteOperatorArrows(Sema &S,
5287 ArrayRef<FunctionDecl *> OperatorArrows) {
5288 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5289 // FIXME: Make this configurable?
5290 unsigned Limit = 9;
5291 if (OperatorArrows.size() > Limit) {
5292 // Produce Limit-1 normal notes and one 'skipping' note.
5293 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5294 SkipCount = OperatorArrows.size() - (Limit - 1);
5295 }
5296
5297 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5298 if (I == SkipStart) {
5299 S.Diag(OperatorArrows[I]->getLocation(),
5300 diag::note_operator_arrows_suppressed)
5301 << SkipCount;
5302 I += SkipCount;
5303 } else {
5304 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5305 << OperatorArrows[I]->getCallResultType();
5306 ++I;
5307 }
5308 }
5309 }
5310
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)5311 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
5312 SourceLocation OpLoc,
5313 tok::TokenKind OpKind,
5314 ParsedType &ObjectType,
5315 bool &MayBePseudoDestructor) {
5316 // Since this might be a postfix expression, get rid of ParenListExprs.
5317 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5318 if (Result.isInvalid()) return ExprError();
5319 Base = Result.get();
5320
5321 Result = CheckPlaceholderExpr(Base);
5322 if (Result.isInvalid()) return ExprError();
5323 Base = Result.get();
5324
5325 QualType BaseType = Base->getType();
5326 MayBePseudoDestructor = false;
5327 if (BaseType->isDependentType()) {
5328 // If we have a pointer to a dependent type and are using the -> operator,
5329 // the object type is the type that the pointer points to. We might still
5330 // have enough information about that type to do something useful.
5331 if (OpKind == tok::arrow)
5332 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5333 BaseType = Ptr->getPointeeType();
5334
5335 ObjectType = ParsedType::make(BaseType);
5336 MayBePseudoDestructor = true;
5337 return Base;
5338 }
5339
5340 // C++ [over.match.oper]p8:
5341 // [...] When operator->returns, the operator-> is applied to the value
5342 // returned, with the original second operand.
5343 if (OpKind == tok::arrow) {
5344 QualType StartingType = BaseType;
5345 bool NoArrowOperatorFound = false;
5346 bool FirstIteration = true;
5347 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5348 // The set of types we've considered so far.
5349 llvm::SmallPtrSet<CanQualType,8> CTypes;
5350 SmallVector<FunctionDecl*, 8> OperatorArrows;
5351 CTypes.insert(Context.getCanonicalType(BaseType));
5352
5353 while (BaseType->isRecordType()) {
5354 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5355 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5356 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5357 noteOperatorArrows(*this, OperatorArrows);
5358 Diag(OpLoc, diag::note_operator_arrow_depth)
5359 << getLangOpts().ArrowDepth;
5360 return ExprError();
5361 }
5362
5363 Result = BuildOverloadedArrowExpr(
5364 S, Base, OpLoc,
5365 // When in a template specialization and on the first loop iteration,
5366 // potentially give the default diagnostic (with the fixit in a
5367 // separate note) instead of having the error reported back to here
5368 // and giving a diagnostic with a fixit attached to the error itself.
5369 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5370 ? nullptr
5371 : &NoArrowOperatorFound);
5372 if (Result.isInvalid()) {
5373 if (NoArrowOperatorFound) {
5374 if (FirstIteration) {
5375 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5376 << BaseType << 1 << Base->getSourceRange()
5377 << FixItHint::CreateReplacement(OpLoc, ".");
5378 OpKind = tok::period;
5379 break;
5380 }
5381 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5382 << BaseType << Base->getSourceRange();
5383 CallExpr *CE = dyn_cast<CallExpr>(Base);
5384 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5385 Diag(CD->getLocStart(),
5386 diag::note_member_reference_arrow_from_operator_arrow);
5387 }
5388 }
5389 return ExprError();
5390 }
5391 Base = Result.get();
5392 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5393 OperatorArrows.push_back(OpCall->getDirectCallee());
5394 BaseType = Base->getType();
5395 CanQualType CBaseType = Context.getCanonicalType(BaseType);
5396 if (!CTypes.insert(CBaseType).second) {
5397 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5398 noteOperatorArrows(*this, OperatorArrows);
5399 return ExprError();
5400 }
5401 FirstIteration = false;
5402 }
5403
5404 if (OpKind == tok::arrow &&
5405 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5406 BaseType = BaseType->getPointeeType();
5407 }
5408
5409 // Objective-C properties allow "." access on Objective-C pointer types,
5410 // so adjust the base type to the object type itself.
5411 if (BaseType->isObjCObjectPointerType())
5412 BaseType = BaseType->getPointeeType();
5413
5414 // C++ [basic.lookup.classref]p2:
5415 // [...] If the type of the object expression is of pointer to scalar
5416 // type, the unqualified-id is looked up in the context of the complete
5417 // postfix-expression.
5418 //
5419 // This also indicates that we could be parsing a pseudo-destructor-name.
5420 // Note that Objective-C class and object types can be pseudo-destructor
5421 // expressions or normal member (ivar or property) access expressions.
5422 if (BaseType->isObjCObjectOrInterfaceType()) {
5423 MayBePseudoDestructor = true;
5424 } else if (!BaseType->isRecordType()) {
5425 ObjectType = ParsedType();
5426 MayBePseudoDestructor = true;
5427 return Base;
5428 }
5429
5430 // The object type must be complete (or dependent), or
5431 // C++11 [expr.prim.general]p3:
5432 // Unlike the object expression in other contexts, *this is not required to
5433 // be of complete type for purposes of class member access (5.2.5) outside
5434 // the member function body.
5435 if (!BaseType->isDependentType() &&
5436 !isThisOutsideMemberFunctionBody(BaseType) &&
5437 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5438 return ExprError();
5439
5440 // C++ [basic.lookup.classref]p2:
5441 // If the id-expression in a class member access (5.2.5) is an
5442 // unqualified-id, and the type of the object expression is of a class
5443 // type C (or of pointer to a class type C), the unqualified-id is looked
5444 // up in the scope of class C. [...]
5445 ObjectType = ParsedType::make(BaseType);
5446 return Base;
5447 }
5448
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5449 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5450 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5451 if (Base->hasPlaceholderType()) {
5452 ExprResult result = S.CheckPlaceholderExpr(Base);
5453 if (result.isInvalid()) return true;
5454 Base = result.get();
5455 }
5456 ObjectType = Base->getType();
5457
5458 // C++ [expr.pseudo]p2:
5459 // The left-hand side of the dot operator shall be of scalar type. The
5460 // left-hand side of the arrow operator shall be of pointer to scalar type.
5461 // This scalar type is the object type.
5462 // Note that this is rather different from the normal handling for the
5463 // arrow operator.
5464 if (OpKind == tok::arrow) {
5465 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5466 ObjectType = Ptr->getPointeeType();
5467 } else if (!Base->isTypeDependent()) {
5468 // The user wrote "p->" when she probably meant "p."; fix it.
5469 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5470 << ObjectType << true
5471 << FixItHint::CreateReplacement(OpLoc, ".");
5472 if (S.isSFINAEContext())
5473 return true;
5474
5475 OpKind = tok::period;
5476 }
5477 }
5478
5479 return false;
5480 }
5481
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)5482 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5483 SourceLocation OpLoc,
5484 tok::TokenKind OpKind,
5485 const CXXScopeSpec &SS,
5486 TypeSourceInfo *ScopeTypeInfo,
5487 SourceLocation CCLoc,
5488 SourceLocation TildeLoc,
5489 PseudoDestructorTypeStorage Destructed) {
5490 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5491
5492 QualType ObjectType;
5493 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5494 return ExprError();
5495
5496 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5497 !ObjectType->isVectorType()) {
5498 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5499 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5500 else {
5501 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5502 << ObjectType << Base->getSourceRange();
5503 return ExprError();
5504 }
5505 }
5506
5507 // C++ [expr.pseudo]p2:
5508 // [...] The cv-unqualified versions of the object type and of the type
5509 // designated by the pseudo-destructor-name shall be the same type.
5510 if (DestructedTypeInfo) {
5511 QualType DestructedType = DestructedTypeInfo->getType();
5512 SourceLocation DestructedTypeStart
5513 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5514 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5515 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5516 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5517 << ObjectType << DestructedType << Base->getSourceRange()
5518 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5519
5520 // Recover by setting the destructed type to the object type.
5521 DestructedType = ObjectType;
5522 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5523 DestructedTypeStart);
5524 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5525 } else if (DestructedType.getObjCLifetime() !=
5526 ObjectType.getObjCLifetime()) {
5527
5528 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5529 // Okay: just pretend that the user provided the correctly-qualified
5530 // type.
5531 } else {
5532 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5533 << ObjectType << DestructedType << Base->getSourceRange()
5534 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5535 }
5536
5537 // Recover by setting the destructed type to the object type.
5538 DestructedType = ObjectType;
5539 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5540 DestructedTypeStart);
5541 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5542 }
5543 }
5544 }
5545
5546 // C++ [expr.pseudo]p2:
5547 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5548 // form
5549 //
5550 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5551 //
5552 // shall designate the same scalar type.
5553 if (ScopeTypeInfo) {
5554 QualType ScopeType = ScopeTypeInfo->getType();
5555 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5556 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5557
5558 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5559 diag::err_pseudo_dtor_type_mismatch)
5560 << ObjectType << ScopeType << Base->getSourceRange()
5561 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5562
5563 ScopeType = QualType();
5564 ScopeTypeInfo = nullptr;
5565 }
5566 }
5567
5568 Expr *Result
5569 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5570 OpKind == tok::arrow, OpLoc,
5571 SS.getWithLocInContext(Context),
5572 ScopeTypeInfo,
5573 CCLoc,
5574 TildeLoc,
5575 Destructed);
5576
5577 return Result;
5578 }
5579
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)5580 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5581 SourceLocation OpLoc,
5582 tok::TokenKind OpKind,
5583 CXXScopeSpec &SS,
5584 UnqualifiedId &FirstTypeName,
5585 SourceLocation CCLoc,
5586 SourceLocation TildeLoc,
5587 UnqualifiedId &SecondTypeName) {
5588 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5589 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5590 "Invalid first type name in pseudo-destructor");
5591 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5592 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5593 "Invalid second type name in pseudo-destructor");
5594
5595 QualType ObjectType;
5596 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5597 return ExprError();
5598
5599 // Compute the object type that we should use for name lookup purposes. Only
5600 // record types and dependent types matter.
5601 ParsedType ObjectTypePtrForLookup;
5602 if (!SS.isSet()) {
5603 if (ObjectType->isRecordType())
5604 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5605 else if (ObjectType->isDependentType())
5606 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5607 }
5608
5609 // Convert the name of the type being destructed (following the ~) into a
5610 // type (with source-location information).
5611 QualType DestructedType;
5612 TypeSourceInfo *DestructedTypeInfo = nullptr;
5613 PseudoDestructorTypeStorage Destructed;
5614 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5615 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5616 SecondTypeName.StartLocation,
5617 S, &SS, true, false, ObjectTypePtrForLookup);
5618 if (!T &&
5619 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5620 (!SS.isSet() && ObjectType->isDependentType()))) {
5621 // The name of the type being destroyed is a dependent name, and we
5622 // couldn't find anything useful in scope. Just store the identifier and
5623 // it's location, and we'll perform (qualified) name lookup again at
5624 // template instantiation time.
5625 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5626 SecondTypeName.StartLocation);
5627 } else if (!T) {
5628 Diag(SecondTypeName.StartLocation,
5629 diag::err_pseudo_dtor_destructor_non_type)
5630 << SecondTypeName.Identifier << ObjectType;
5631 if (isSFINAEContext())
5632 return ExprError();
5633
5634 // Recover by assuming we had the right type all along.
5635 DestructedType = ObjectType;
5636 } else
5637 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5638 } else {
5639 // Resolve the template-id to a type.
5640 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5641 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5642 TemplateId->NumArgs);
5643 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5644 TemplateId->TemplateKWLoc,
5645 TemplateId->Template,
5646 TemplateId->TemplateNameLoc,
5647 TemplateId->LAngleLoc,
5648 TemplateArgsPtr,
5649 TemplateId->RAngleLoc);
5650 if (T.isInvalid() || !T.get()) {
5651 // Recover by assuming we had the right type all along.
5652 DestructedType = ObjectType;
5653 } else
5654 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5655 }
5656
5657 // If we've performed some kind of recovery, (re-)build the type source
5658 // information.
5659 if (!DestructedType.isNull()) {
5660 if (!DestructedTypeInfo)
5661 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5662 SecondTypeName.StartLocation);
5663 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5664 }
5665
5666 // Convert the name of the scope type (the type prior to '::') into a type.
5667 TypeSourceInfo *ScopeTypeInfo = nullptr;
5668 QualType ScopeType;
5669 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5670 FirstTypeName.Identifier) {
5671 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5672 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5673 FirstTypeName.StartLocation,
5674 S, &SS, true, false, ObjectTypePtrForLookup);
5675 if (!T) {
5676 Diag(FirstTypeName.StartLocation,
5677 diag::err_pseudo_dtor_destructor_non_type)
5678 << FirstTypeName.Identifier << ObjectType;
5679
5680 if (isSFINAEContext())
5681 return ExprError();
5682
5683 // Just drop this type. It's unnecessary anyway.
5684 ScopeType = QualType();
5685 } else
5686 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5687 } else {
5688 // Resolve the template-id to a type.
5689 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5690 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5691 TemplateId->NumArgs);
5692 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5693 TemplateId->TemplateKWLoc,
5694 TemplateId->Template,
5695 TemplateId->TemplateNameLoc,
5696 TemplateId->LAngleLoc,
5697 TemplateArgsPtr,
5698 TemplateId->RAngleLoc);
5699 if (T.isInvalid() || !T.get()) {
5700 // Recover by dropping this type.
5701 ScopeType = QualType();
5702 } else
5703 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5704 }
5705 }
5706
5707 if (!ScopeType.isNull() && !ScopeTypeInfo)
5708 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5709 FirstTypeName.StartLocation);
5710
5711
5712 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5713 ScopeTypeInfo, CCLoc, TildeLoc,
5714 Destructed);
5715 }
5716
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)5717 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5718 SourceLocation OpLoc,
5719 tok::TokenKind OpKind,
5720 SourceLocation TildeLoc,
5721 const DeclSpec& DS) {
5722 QualType ObjectType;
5723 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5724 return ExprError();
5725
5726 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
5727 false);
5728
5729 TypeLocBuilder TLB;
5730 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5731 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5732 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5733 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5734
5735 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5736 nullptr, SourceLocation(), TildeLoc,
5737 Destructed);
5738 }
5739
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5740 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5741 CXXConversionDecl *Method,
5742 bool HadMultipleCandidates) {
5743 if (Method->getParent()->isLambda() &&
5744 Method->getConversionType()->isBlockPointerType()) {
5745 // This is a lambda coversion to block pointer; check if the argument
5746 // is a LambdaExpr.
5747 Expr *SubE = E;
5748 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5749 if (CE && CE->getCastKind() == CK_NoOp)
5750 SubE = CE->getSubExpr();
5751 SubE = SubE->IgnoreParens();
5752 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5753 SubE = BE->getSubExpr();
5754 if (isa<LambdaExpr>(SubE)) {
5755 // For the conversion to block pointer on a lambda expression, we
5756 // construct a special BlockLiteral instead; this doesn't really make
5757 // a difference in ARC, but outside of ARC the resulting block literal
5758 // follows the normal lifetime rules for block literals instead of being
5759 // autoreleased.
5760 DiagnosticErrorTrap Trap(Diags);
5761 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5762 E->getExprLoc(),
5763 Method, E);
5764 if (Exp.isInvalid())
5765 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5766 return Exp;
5767 }
5768 }
5769
5770 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
5771 FoundDecl, Method);
5772 if (Exp.isInvalid())
5773 return true;
5774
5775 MemberExpr *ME = new (Context) MemberExpr(
5776 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
5777 Context.BoundMemberTy, VK_RValue, OK_Ordinary);
5778 if (HadMultipleCandidates)
5779 ME->setHadMultipleCandidates(true);
5780 MarkMemberReferenced(ME);
5781
5782 QualType ResultType = Method->getReturnType();
5783 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5784 ResultType = ResultType.getNonLValueExprType(Context);
5785
5786 CXXMemberCallExpr *CE =
5787 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5788 Exp.get()->getLocEnd());
5789 return CE;
5790 }
5791
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5792 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5793 SourceLocation RParen) {
5794 if (ActiveTemplateInstantiations.empty() &&
5795 Operand->HasSideEffects(Context, false)) {
5796 // The expression operand for noexcept is in an unevaluated expression
5797 // context, so side effects could result in unintended consequences.
5798 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
5799 }
5800
5801 CanThrowResult CanThrow = canThrow(Operand);
5802 return new (Context)
5803 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
5804 }
5805
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5806 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5807 Expr *Operand, SourceLocation RParen) {
5808 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5809 }
5810
IsSpecialDiscardedValue(Expr * E)5811 static bool IsSpecialDiscardedValue(Expr *E) {
5812 // In C++11, discarded-value expressions of a certain form are special,
5813 // according to [expr]p10:
5814 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5815 // expression is an lvalue of volatile-qualified type and it has
5816 // one of the following forms:
5817 E = E->IgnoreParens();
5818
5819 // - id-expression (5.1.1),
5820 if (isa<DeclRefExpr>(E))
5821 return true;
5822
5823 // - subscripting (5.2.1),
5824 if (isa<ArraySubscriptExpr>(E))
5825 return true;
5826
5827 // - class member access (5.2.5),
5828 if (isa<MemberExpr>(E))
5829 return true;
5830
5831 // - indirection (5.3.1),
5832 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5833 if (UO->getOpcode() == UO_Deref)
5834 return true;
5835
5836 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5837 // - pointer-to-member operation (5.5),
5838 if (BO->isPtrMemOp())
5839 return true;
5840
5841 // - comma expression (5.18) where the right operand is one of the above.
5842 if (BO->getOpcode() == BO_Comma)
5843 return IsSpecialDiscardedValue(BO->getRHS());
5844 }
5845
5846 // - conditional expression (5.16) where both the second and the third
5847 // operands are one of the above, or
5848 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5849 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5850 IsSpecialDiscardedValue(CO->getFalseExpr());
5851 // The related edge case of "*x ?: *x".
5852 if (BinaryConditionalOperator *BCO =
5853 dyn_cast<BinaryConditionalOperator>(E)) {
5854 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5855 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5856 IsSpecialDiscardedValue(BCO->getFalseExpr());
5857 }
5858
5859 // Objective-C++ extensions to the rule.
5860 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5861 return true;
5862
5863 return false;
5864 }
5865
5866 /// Perform the conversions required for an expression used in a
5867 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5868 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5869 if (E->hasPlaceholderType()) {
5870 ExprResult result = CheckPlaceholderExpr(E);
5871 if (result.isInvalid()) return E;
5872 E = result.get();
5873 }
5874
5875 // C99 6.3.2.1:
5876 // [Except in specific positions,] an lvalue that does not have
5877 // array type is converted to the value stored in the
5878 // designated object (and is no longer an lvalue).
5879 if (E->isRValue()) {
5880 // In C, function designators (i.e. expressions of function type)
5881 // are r-values, but we still want to do function-to-pointer decay
5882 // on them. This is both technically correct and convenient for
5883 // some clients.
5884 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5885 return DefaultFunctionArrayConversion(E);
5886
5887 return E;
5888 }
5889
5890 if (getLangOpts().CPlusPlus) {
5891 // The C++11 standard defines the notion of a discarded-value expression;
5892 // normally, we don't need to do anything to handle it, but if it is a
5893 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5894 // conversion.
5895 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5896 E->getType().isVolatileQualified() &&
5897 IsSpecialDiscardedValue(E)) {
5898 ExprResult Res = DefaultLvalueConversion(E);
5899 if (Res.isInvalid())
5900 return E;
5901 E = Res.get();
5902 }
5903 return E;
5904 }
5905
5906 // GCC seems to also exclude expressions of incomplete enum type.
5907 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5908 if (!T->getDecl()->isComplete()) {
5909 // FIXME: stupid workaround for a codegen bug!
5910 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
5911 return E;
5912 }
5913 }
5914
5915 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5916 if (Res.isInvalid())
5917 return E;
5918 E = Res.get();
5919
5920 if (!E->getType()->isVoidType())
5921 RequireCompleteType(E->getExprLoc(), E->getType(),
5922 diag::err_incomplete_type);
5923 return E;
5924 }
5925
5926 // If we can unambiguously determine whether Var can never be used
5927 // in a constant expression, return true.
5928 // - if the variable and its initializer are non-dependent, then
5929 // we can unambiguously check if the variable is a constant expression.
5930 // - if the initializer is not value dependent - we can determine whether
5931 // it can be used to initialize a constant expression. If Init can not
5932 // be used to initialize a constant expression we conclude that Var can
5933 // never be a constant expression.
5934 // - FXIME: if the initializer is dependent, we can still do some analysis and
5935 // identify certain cases unambiguously as non-const by using a Visitor:
5936 // - such as those that involve odr-use of a ParmVarDecl, involve a new
5937 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)5938 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
5939 ASTContext &Context) {
5940 if (isa<ParmVarDecl>(Var)) return true;
5941 const VarDecl *DefVD = nullptr;
5942
5943 // If there is no initializer - this can not be a constant expression.
5944 if (!Var->getAnyInitializer(DefVD)) return true;
5945 assert(DefVD);
5946 if (DefVD->isWeak()) return false;
5947 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
5948
5949 Expr *Init = cast<Expr>(Eval->Value);
5950
5951 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
5952 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
5953 // of value-dependent expressions, and use it here to determine whether the
5954 // initializer is a potential constant expression.
5955 return false;
5956 }
5957
5958 return !IsVariableAConstantExpression(Var, Context);
5959 }
5960
5961 /// \brief Check if the current lambda has any potential captures
5962 /// that must be captured by any of its enclosing lambdas that are ready to
5963 /// capture. If there is a lambda that can capture a nested
5964 /// potential-capture, go ahead and do so. Also, check to see if any
5965 /// variables are uncaptureable or do not involve an odr-use so do not
5966 /// need to be captured.
5967
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)5968 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
5969 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
5970
5971 assert(!S.isUnevaluatedContext());
5972 assert(S.CurContext->isDependentContext());
5973 assert(CurrentLSI->CallOperator == S.CurContext &&
5974 "The current call operator must be synchronized with Sema's CurContext");
5975
5976 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
5977
5978 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
5979 S.FunctionScopes.data(), S.FunctionScopes.size());
5980
5981 // All the potentially captureable variables in the current nested
5982 // lambda (within a generic outer lambda), must be captured by an
5983 // outer lambda that is enclosed within a non-dependent context.
5984 const unsigned NumPotentialCaptures =
5985 CurrentLSI->getNumPotentialVariableCaptures();
5986 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
5987 Expr *VarExpr = nullptr;
5988 VarDecl *Var = nullptr;
5989 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
5990 // If the variable is clearly identified as non-odr-used and the full
5991 // expression is not instantiation dependent, only then do we not
5992 // need to check enclosing lambda's for speculative captures.
5993 // For e.g.:
5994 // Even though 'x' is not odr-used, it should be captured.
5995 // int test() {
5996 // const int x = 10;
5997 // auto L = [=](auto a) {
5998 // (void) +x + a;
5999 // };
6000 // }
6001 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
6002 !IsFullExprInstantiationDependent)
6003 continue;
6004
6005 // If we have a capture-capable lambda for the variable, go ahead and
6006 // capture the variable in that lambda (and all its enclosing lambdas).
6007 if (const Optional<unsigned> Index =
6008 getStackIndexOfNearestEnclosingCaptureCapableLambda(
6009 FunctionScopesArrayRef, Var, S)) {
6010 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6011 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
6012 &FunctionScopeIndexOfCapturableLambda);
6013 }
6014 const bool IsVarNeverAConstantExpression =
6015 VariableCanNeverBeAConstantExpression(Var, S.Context);
6016 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
6017 // This full expression is not instantiation dependent or the variable
6018 // can not be used in a constant expression - which means
6019 // this variable must be odr-used here, so diagnose a
6020 // capture violation early, if the variable is un-captureable.
6021 // This is purely for diagnosing errors early. Otherwise, this
6022 // error would get diagnosed when the lambda becomes capture ready.
6023 QualType CaptureType, DeclRefType;
6024 SourceLocation ExprLoc = VarExpr->getExprLoc();
6025 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6026 /*EllipsisLoc*/ SourceLocation(),
6027 /*BuildAndDiagnose*/false, CaptureType,
6028 DeclRefType, nullptr)) {
6029 // We will never be able to capture this variable, and we need
6030 // to be able to in any and all instantiations, so diagnose it.
6031 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6032 /*EllipsisLoc*/ SourceLocation(),
6033 /*BuildAndDiagnose*/true, CaptureType,
6034 DeclRefType, nullptr);
6035 }
6036 }
6037 }
6038
6039 // Check if 'this' needs to be captured.
6040 if (CurrentLSI->hasPotentialThisCapture()) {
6041 // If we have a capture-capable lambda for 'this', go ahead and capture
6042 // 'this' in that lambda (and all its enclosing lambdas).
6043 if (const Optional<unsigned> Index =
6044 getStackIndexOfNearestEnclosingCaptureCapableLambda(
6045 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
6046 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6047 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
6048 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
6049 &FunctionScopeIndexOfCapturableLambda);
6050 }
6051 }
6052
6053 // Reset all the potential captures at the end of each full-expression.
6054 CurrentLSI->clearPotentialCaptures();
6055 }
6056
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,TypoCorrection TC)6057 static ExprResult attemptRecovery(Sema &SemaRef,
6058 const TypoCorrectionConsumer &Consumer,
6059 TypoCorrection TC) {
6060 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
6061 Consumer.getLookupResult().getLookupKind());
6062 const CXXScopeSpec *SS = Consumer.getSS();
6063 CXXScopeSpec NewSS;
6064
6065 // Use an approprate CXXScopeSpec for building the expr.
6066 if (auto *NNS = TC.getCorrectionSpecifier())
6067 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
6068 else if (SS && !TC.WillReplaceSpecifier())
6069 NewSS = *SS;
6070
6071 if (auto *ND = TC.getCorrectionDecl()) {
6072 R.setLookupName(ND->getDeclName());
6073 R.addDecl(ND);
6074 if (ND->isCXXClassMember()) {
6075 // Figure out the correct naming class to add to the LookupResult.
6076 CXXRecordDecl *Record = nullptr;
6077 if (auto *NNS = TC.getCorrectionSpecifier())
6078 Record = NNS->getAsType()->getAsCXXRecordDecl();
6079 if (!Record)
6080 Record =
6081 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
6082 if (Record)
6083 R.setNamingClass(Record);
6084
6085 // Detect and handle the case where the decl might be an implicit
6086 // member.
6087 bool MightBeImplicitMember;
6088 if (!Consumer.isAddressOfOperand())
6089 MightBeImplicitMember = true;
6090 else if (!NewSS.isEmpty())
6091 MightBeImplicitMember = false;
6092 else if (R.isOverloadedResult())
6093 MightBeImplicitMember = false;
6094 else if (R.isUnresolvableResult())
6095 MightBeImplicitMember = true;
6096 else
6097 MightBeImplicitMember = isa<FieldDecl>(ND) ||
6098 isa<IndirectFieldDecl>(ND) ||
6099 isa<MSPropertyDecl>(ND);
6100
6101 if (MightBeImplicitMember)
6102 return SemaRef.BuildPossibleImplicitMemberExpr(
6103 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
6104 /*TemplateArgs*/ nullptr);
6105 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
6106 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
6107 Ivar->getIdentifier());
6108 }
6109 }
6110
6111 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6112 /*AcceptInvalidDecl*/ true);
6113 }
6114
6115 namespace {
6116 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6117 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6118
6119 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)6120 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6121 : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)6122 bool VisitTypoExpr(TypoExpr *TE) {
6123 TypoExprs.insert(TE);
6124 return true;
6125 }
6126 };
6127
6128 class TransformTypos : public TreeTransform<TransformTypos> {
6129 typedef TreeTransform<TransformTypos> BaseTransform;
6130
6131 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6132 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6133 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6134 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6135
6136 /// \brief Emit diagnostics for all of the TypoExprs encountered.
6137 /// If the TypoExprs were successfully corrected, then the diagnostics should
6138 /// suggest the corrections. Otherwise the diagnostics will not suggest
6139 /// anything (having been passed an empty TypoCorrection).
EmitAllDiagnostics()6140 void EmitAllDiagnostics() {
6141 for (auto E : TypoExprs) {
6142 TypoExpr *TE = cast<TypoExpr>(E);
6143 auto &State = SemaRef.getTypoExprState(TE);
6144 if (State.DiagHandler) {
6145 TypoCorrection TC = State.Consumer->getCurrentCorrection();
6146 ExprResult Replacement = TransformCache[TE];
6147
6148 // Extract the NamedDecl from the transformed TypoExpr and add it to the
6149 // TypoCorrection, replacing the existing decls. This ensures the right
6150 // NamedDecl is used in diagnostics e.g. in the case where overload
6151 // resolution was used to select one from several possible decls that
6152 // had been stored in the TypoCorrection.
6153 if (auto *ND = getDeclFromExpr(
6154 Replacement.isInvalid() ? nullptr : Replacement.get()))
6155 TC.setCorrectionDecl(ND);
6156
6157 State.DiagHandler(TC);
6158 }
6159 SemaRef.clearDelayedTypo(TE);
6160 }
6161 }
6162
6163 /// \brief If corrections for the first TypoExpr have been exhausted for a
6164 /// given combination of the other TypoExprs, retry those corrections against
6165 /// the next combination of substitutions for the other TypoExprs by advancing
6166 /// to the next potential correction of the second TypoExpr. For the second
6167 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6168 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6169 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6170 /// TransformCache). Returns true if there is still any untried combinations
6171 /// of corrections.
CheckAndAdvanceTypoExprCorrectionStreams()6172 bool CheckAndAdvanceTypoExprCorrectionStreams() {
6173 for (auto TE : TypoExprs) {
6174 auto &State = SemaRef.getTypoExprState(TE);
6175 TransformCache.erase(TE);
6176 if (!State.Consumer->finished())
6177 return true;
6178 State.Consumer->resetCorrectionStream();
6179 }
6180 return false;
6181 }
6182
getDeclFromExpr(Expr * E)6183 NamedDecl *getDeclFromExpr(Expr *E) {
6184 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6185 E = OverloadResolution[OE];
6186
6187 if (!E)
6188 return nullptr;
6189 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6190 return DRE->getDecl();
6191 if (auto *ME = dyn_cast<MemberExpr>(E))
6192 return ME->getMemberDecl();
6193 // FIXME: Add any other expr types that could be be seen by the delayed typo
6194 // correction TreeTransform for which the corresponding TypoCorrection could
6195 // contain multiple decls.
6196 return nullptr;
6197 }
6198
TryTransform(Expr * E)6199 ExprResult TryTransform(Expr *E) {
6200 Sema::SFINAETrap Trap(SemaRef);
6201 ExprResult Res = TransformExpr(E);
6202 if (Trap.hasErrorOccurred() || Res.isInvalid())
6203 return ExprError();
6204
6205 return ExprFilter(Res.get());
6206 }
6207
6208 public:
TransformTypos(Sema & SemaRef,llvm::function_ref<ExprResult (Expr *)> Filter)6209 TransformTypos(Sema &SemaRef, llvm::function_ref<ExprResult(Expr *)> Filter)
6210 : BaseTransform(SemaRef), ExprFilter(Filter) {}
6211
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)6212 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6213 MultiExprArg Args,
6214 SourceLocation RParenLoc,
6215 Expr *ExecConfig = nullptr) {
6216 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6217 RParenLoc, ExecConfig);
6218 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6219 if (Result.isUsable()) {
6220 Expr *ResultCall = Result.get();
6221 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6222 ResultCall = BE->getSubExpr();
6223 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6224 OverloadResolution[OE] = CE->getCallee();
6225 }
6226 }
6227 return Result;
6228 }
6229
TransformLambdaExpr(LambdaExpr * E)6230 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6231
Transform(Expr * E)6232 ExprResult Transform(Expr *E) {
6233 ExprResult Res;
6234 while (true) {
6235 Res = TryTransform(E);
6236
6237 // Exit if either the transform was valid or if there were no TypoExprs
6238 // to transform that still have any untried correction candidates..
6239 if (!Res.isInvalid() ||
6240 !CheckAndAdvanceTypoExprCorrectionStreams())
6241 break;
6242 }
6243
6244 // Ensure none of the TypoExprs have multiple typo correction candidates
6245 // with the same edit length that pass all the checks and filters.
6246 // TODO: Properly handle various permutations of possible corrections when
6247 // there is more than one potentially ambiguous typo correction.
6248 while (!AmbiguousTypoExprs.empty()) {
6249 auto TE = AmbiguousTypoExprs.back();
6250 auto Cached = TransformCache[TE];
6251 auto &State = SemaRef.getTypoExprState(TE);
6252 State.Consumer->saveCurrentPosition();
6253 TransformCache.erase(TE);
6254 if (!TryTransform(E).isInvalid()) {
6255 State.Consumer->resetCorrectionStream();
6256 TransformCache.erase(TE);
6257 Res = ExprError();
6258 break;
6259 }
6260 AmbiguousTypoExprs.remove(TE);
6261 State.Consumer->restoreSavedPosition();
6262 TransformCache[TE] = Cached;
6263 }
6264
6265 // Ensure that all of the TypoExprs within the current Expr have been found.
6266 if (!Res.isUsable())
6267 FindTypoExprs(TypoExprs).TraverseStmt(E);
6268
6269 EmitAllDiagnostics();
6270
6271 return Res;
6272 }
6273
TransformTypoExpr(TypoExpr * E)6274 ExprResult TransformTypoExpr(TypoExpr *E) {
6275 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6276 // cached transformation result if there is one and the TypoExpr isn't the
6277 // first one that was encountered.
6278 auto &CacheEntry = TransformCache[E];
6279 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6280 return CacheEntry;
6281 }
6282
6283 auto &State = SemaRef.getTypoExprState(E);
6284 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
6285
6286 // For the first TypoExpr and an uncached TypoExpr, find the next likely
6287 // typo correction and return it.
6288 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6289 ExprResult NE = State.RecoveryHandler ?
6290 State.RecoveryHandler(SemaRef, E, TC) :
6291 attemptRecovery(SemaRef, *State.Consumer, TC);
6292 if (!NE.isInvalid()) {
6293 // Check whether there may be a second viable correction with the same
6294 // edit distance; if so, remember this TypoExpr may have an ambiguous
6295 // correction so it can be more thoroughly vetted later.
6296 TypoCorrection Next;
6297 if ((Next = State.Consumer->peekNextCorrection()) &&
6298 Next.getEditDistance(false) == TC.getEditDistance(false)) {
6299 AmbiguousTypoExprs.insert(E);
6300 } else {
6301 AmbiguousTypoExprs.remove(E);
6302 }
6303 assert(!NE.isUnset() &&
6304 "Typo was transformed into a valid-but-null ExprResult");
6305 return CacheEntry = NE;
6306 }
6307 }
6308 return CacheEntry = ExprError();
6309 }
6310 };
6311 }
6312
CorrectDelayedTyposInExpr(Expr * E,llvm::function_ref<ExprResult (Expr *)> Filter)6313 ExprResult Sema::CorrectDelayedTyposInExpr(
6314 Expr *E, llvm::function_ref<ExprResult(Expr *)> Filter) {
6315 // If the current evaluation context indicates there are uncorrected typos
6316 // and the current expression isn't guaranteed to not have typos, try to
6317 // resolve any TypoExpr nodes that might be in the expression.
6318 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6319 (E->isTypeDependent() || E->isValueDependent() ||
6320 E->isInstantiationDependent())) {
6321 auto TyposInContext = ExprEvalContexts.back().NumTypos;
6322 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
6323 ExprEvalContexts.back().NumTypos = ~0U;
6324 auto TyposResolved = DelayedTypos.size();
6325 auto Result = TransformTypos(*this, Filter).Transform(E);
6326 ExprEvalContexts.back().NumTypos = TyposInContext;
6327 TyposResolved -= DelayedTypos.size();
6328 if (Result.isInvalid() || Result.get() != E) {
6329 ExprEvalContexts.back().NumTypos -= TyposResolved;
6330 return Result;
6331 }
6332 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
6333 }
6334 return E;
6335 }
6336
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr,bool IsLambdaInitCaptureInitializer)6337 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6338 bool DiscardedValue,
6339 bool IsConstexpr,
6340 bool IsLambdaInitCaptureInitializer) {
6341 ExprResult FullExpr = FE;
6342
6343 if (!FullExpr.get())
6344 return ExprError();
6345
6346 // If we are an init-expression in a lambdas init-capture, we should not
6347 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
6348 // containing full-expression is done).
6349 // template<class ... Ts> void test(Ts ... t) {
6350 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6351 // return a;
6352 // }() ...);
6353 // }
6354 // FIXME: This is a hack. It would be better if we pushed the lambda scope
6355 // when we parse the lambda introducer, and teach capturing (but not
6356 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6357 // corresponding class yet (that is, have LambdaScopeInfo either represent a
6358 // lambda where we've entered the introducer but not the body, or represent a
6359 // lambda where we've entered the body, depending on where the
6360 // parser/instantiation has got to).
6361 if (!IsLambdaInitCaptureInitializer &&
6362 DiagnoseUnexpandedParameterPack(FullExpr.get()))
6363 return ExprError();
6364
6365 // Top-level expressions default to 'id' when we're in a debugger.
6366 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
6367 FullExpr.get()->getType() == Context.UnknownAnyTy) {
6368 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
6369 if (FullExpr.isInvalid())
6370 return ExprError();
6371 }
6372
6373 if (DiscardedValue) {
6374 FullExpr = CheckPlaceholderExpr(FullExpr.get());
6375 if (FullExpr.isInvalid())
6376 return ExprError();
6377
6378 FullExpr = IgnoredValueConversions(FullExpr.get());
6379 if (FullExpr.isInvalid())
6380 return ExprError();
6381 }
6382
6383 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
6384 if (FullExpr.isInvalid())
6385 return ExprError();
6386
6387 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
6388
6389 // At the end of this full expression (which could be a deeply nested
6390 // lambda), if there is a potential capture within the nested lambda,
6391 // have the outer capture-able lambda try and capture it.
6392 // Consider the following code:
6393 // void f(int, int);
6394 // void f(const int&, double);
6395 // void foo() {
6396 // const int x = 10, y = 20;
6397 // auto L = [=](auto a) {
6398 // auto M = [=](auto b) {
6399 // f(x, b); <-- requires x to be captured by L and M
6400 // f(y, a); <-- requires y to be captured by L, but not all Ms
6401 // };
6402 // };
6403 // }
6404
6405 // FIXME: Also consider what happens for something like this that involves
6406 // the gnu-extension statement-expressions or even lambda-init-captures:
6407 // void f() {
6408 // const int n = 0;
6409 // auto L = [&](auto a) {
6410 // +n + ({ 0; a; });
6411 // };
6412 // }
6413 //
6414 // Here, we see +n, and then the full-expression 0; ends, so we don't
6415 // capture n (and instead remove it from our list of potential captures),
6416 // and then the full-expression +n + ({ 0; }); ends, but it's too late
6417 // for us to see that we need to capture n after all.
6418
6419 LambdaScopeInfo *const CurrentLSI = getCurLambda();
6420 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6421 // even if CurContext is not a lambda call operator. Refer to that Bug Report
6422 // for an example of the code that might cause this asynchrony.
6423 // By ensuring we are in the context of a lambda's call operator
6424 // we can fix the bug (we only need to check whether we need to capture
6425 // if we are within a lambda's body); but per the comments in that
6426 // PR, a proper fix would entail :
6427 // "Alternative suggestion:
6428 // - Add to Sema an integer holding the smallest (outermost) scope
6429 // index that we are *lexically* within, and save/restore/set to
6430 // FunctionScopes.size() in InstantiatingTemplate's
6431 // constructor/destructor.
6432 // - Teach the handful of places that iterate over FunctionScopes to
6433 // stop at the outermost enclosing lexical scope."
6434 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6435 if (IsInLambdaDeclContext && CurrentLSI &&
6436 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6437 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6438 *this);
6439 return MaybeCreateExprWithCleanups(FullExpr);
6440 }
6441
ActOnFinishFullStmt(Stmt * FullStmt)6442 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6443 if (!FullStmt) return StmtError();
6444
6445 return MaybeCreateStmtWithCleanups(FullStmt);
6446 }
6447
6448 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)6449 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6450 CXXScopeSpec &SS,
6451 const DeclarationNameInfo &TargetNameInfo) {
6452 DeclarationName TargetName = TargetNameInfo.getName();
6453 if (!TargetName)
6454 return IER_DoesNotExist;
6455
6456 // If the name itself is dependent, then the result is dependent.
6457 if (TargetName.isDependentName())
6458 return IER_Dependent;
6459
6460 // Do the redeclaration lookup in the current scope.
6461 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6462 Sema::NotForRedeclaration);
6463 LookupParsedName(R, S, &SS);
6464 R.suppressDiagnostics();
6465
6466 switch (R.getResultKind()) {
6467 case LookupResult::Found:
6468 case LookupResult::FoundOverloaded:
6469 case LookupResult::FoundUnresolvedValue:
6470 case LookupResult::Ambiguous:
6471 return IER_Exists;
6472
6473 case LookupResult::NotFound:
6474 return IER_DoesNotExist;
6475
6476 case LookupResult::NotFoundInCurrentInstantiation:
6477 return IER_Dependent;
6478 }
6479
6480 llvm_unreachable("Invalid LookupResult Kind!");
6481 }
6482
6483 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)6484 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6485 bool IsIfExists, CXXScopeSpec &SS,
6486 UnqualifiedId &Name) {
6487 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6488
6489 // Check for unexpanded parameter packs.
6490 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6491 collectUnexpandedParameterPacks(SS, Unexpanded);
6492 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6493 if (!Unexpanded.empty()) {
6494 DiagnoseUnexpandedParameterPacks(KeywordLoc,
6495 IsIfExists? UPPC_IfExists
6496 : UPPC_IfNotExists,
6497 Unexpanded);
6498 return IER_Error;
6499 }
6500
6501 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6502 }
6503