1 /*
2  *******************************************************************************
3  * Copyright (C) 1996-2015, International Business Machines Corporation and    *
4  * others. All Rights Reserved.                                                *
5  *******************************************************************************
6  */
7 
8 #include "unicode/utypes.h"
9 
10 #if !UCONFIG_NO_FORMATTING
11 
12 #include "itrbnf.h"
13 
14 #include "unicode/umachine.h"
15 
16 #include "unicode/tblcoll.h"
17 #include "unicode/coleitr.h"
18 #include "unicode/ures.h"
19 #include "unicode/ustring.h"
20 #include "unicode/decimfmt.h"
21 #include "unicode/udata.h"
22 #include "testutil.h"
23 
24 #include <string.h>
25 
26 // import com.ibm.text.RuleBasedNumberFormat;
27 // import com.ibm.test.TestFmwk;
28 
29 // import java.util.Locale;
30 // import java.text.NumberFormat;
31 
32 // current macro not in icu1.8.1
33 #define TESTCASE(id,test)             \
34     case id:                          \
35         name = #test;                 \
36         if (exec) {                   \
37             logln(#test "---");       \
38             logln();                  \
39             test();                   \
40         }                             \
41         break
42 
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)43 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
44 {
45     if (exec) logln("TestSuite RuleBasedNumberFormat");
46     switch (index) {
47 #if U_HAVE_RBNF
48         TESTCASE(0, TestEnglishSpellout);
49         TESTCASE(1, TestOrdinalAbbreviations);
50         TESTCASE(2, TestDurations);
51         TESTCASE(3, TestSpanishSpellout);
52         TESTCASE(4, TestFrenchSpellout);
53         TESTCASE(5, TestSwissFrenchSpellout);
54         TESTCASE(6, TestItalianSpellout);
55         TESTCASE(7, TestGermanSpellout);
56         TESTCASE(8, TestThaiSpellout);
57         TESTCASE(9, TestAPI);
58         TESTCASE(10, TestFractionalRuleSet);
59         TESTCASE(11, TestSwedishSpellout);
60         TESTCASE(12, TestBelgianFrenchSpellout);
61         TESTCASE(13, TestSmallValues);
62         TESTCASE(14, TestLocalizations);
63         TESTCASE(15, TestAllLocales);
64         TESTCASE(16, TestHebrewFraction);
65         TESTCASE(17, TestPortugueseSpellout);
66         TESTCASE(18, TestMultiplierSubstitution);
67         TESTCASE(19, TestSetDecimalFormatSymbols);
68         TESTCASE(20, TestPluralRules);
69         TESTCASE(21, TestMultiplePluralRules);
70 #else
71         TESTCASE(0, TestRBNFDisabled);
72 #endif
73     default:
74         name = "";
75         break;
76     }
77 }
78 
79 #if U_HAVE_RBNF
80 
TestHebrewFraction()81 void IntlTestRBNF::TestHebrewFraction() {
82 
83     // this is the expected output for 123.45, with no '<' in it.
84     UChar text1[] = {
85         0x05de, 0x05d0, 0x05d4, 0x0020,
86         0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020,
87         0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020,
88         0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020,
89         0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020,
90         0x05d7, 0x05de, 0x05e9, 0x0000,
91     };
92     UChar text2[] = {
93         0x05DE, 0x05D0, 0x05D4, 0x0020,
94         0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020,
95         0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020,
96         0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020,
97         0x05D0, 0x05E4, 0x05E1, 0x0020,
98         0x05D0, 0x05E4, 0x05E1, 0x0020,
99         0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020,
100         0x05D7, 0x05DE, 0x05E9, 0x0000,
101     };
102     UErrorCode status = U_ZERO_ERROR;
103     RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status);
104     if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
105         errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status));
106         delete formatter;
107         return;
108     }
109     UnicodeString result;
110     Formattable parseResult;
111     ParsePosition pp(0);
112     {
113         UnicodeString expected(text1);
114         formatter->format(123.45, result);
115         if (result != expected) {
116             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
117         } else {
118 //            formatter->parse(result, parseResult, pp);
119 //            if (parseResult.getDouble() != 123.45) {
120 //                errln("expected 123.45 but got: %g", parseResult.getDouble());
121 //            }
122         }
123     }
124     {
125         UnicodeString expected(text2);
126         result.remove();
127         formatter->format(123.0045, result);
128         if (result != expected) {
129             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
130         } else {
131             pp.setIndex(0);
132 //            formatter->parse(result, parseResult, pp);
133 //            if (parseResult.getDouble() != 123.0045) {
134 //                errln("expected 123.0045 but got: %g", parseResult.getDouble());
135 //            }
136         }
137     }
138     delete formatter;
139 }
140 
141 void
TestAPI()142 IntlTestRBNF::TestAPI() {
143   // This test goes through the APIs that were not tested before.
144   // These tests are too small to have separate test classes/functions
145 
146   UErrorCode status = U_ZERO_ERROR;
147   RuleBasedNumberFormat* formatter
148       = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
149   if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
150     dataerrln("Unable to create formatter. - %s", u_errorName(status));
151     delete formatter;
152     return;
153   }
154 
155   logln("RBNF API test starting");
156   // test clone
157   {
158     logln("Testing Clone");
159     RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
160     if(rbnfClone != NULL) {
161       if(!(*rbnfClone == *formatter)) {
162         errln("Clone should be semantically equivalent to the original!");
163       }
164       delete rbnfClone;
165     } else {
166       errln("Cloning failed!");
167     }
168   }
169 
170   // test assignment
171   {
172     logln("Testing assignment operator");
173     RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
174     assignResult = *formatter;
175     if(!(assignResult == *formatter)) {
176       errln("Assignment result should be semantically equivalent to the original!");
177     }
178   }
179 
180   // test rule constructor
181   {
182     logln("Testing rule constructor");
183     LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status));
184     if(U_FAILURE(status)) {
185       errln("Unable to access resource bundle with data!");
186     } else {
187       int32_t ruleLen = 0;
188       int32_t len = 0;
189       LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status));
190       LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status));
191       UnicodeString desc;
192       while (ures_hasNext(ruleSets.getAlias())) {
193            const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status);
194            ruleLen += len;
195            desc.append(currentString);
196       }
197 
198       const UChar *spelloutRules = desc.getTerminatedBuffer();
199 
200       if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
201         errln("Unable to access the rules string!");
202       } else {
203         UParseError perror;
204         RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
205         if(!(ruleCtorResult == *formatter)) {
206           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
207         }
208 
209         // Jitterbug 4452, for coverage
210         RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status);
211         if(!(nf == *formatter)) {
212           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
213         }
214       }
215     }
216   }
217 
218   // test getRules
219   {
220     logln("Testing getRules function");
221     UnicodeString rules = formatter->getRules();
222     UParseError perror;
223     RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);
224 
225     if(!(fromRulesResult == *formatter)) {
226       errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
227     }
228   }
229 
230 
231   {
232     logln("Testing copy constructor");
233     RuleBasedNumberFormat copyCtorResult(*formatter);
234     if(!(copyCtorResult == *formatter)) {
235       errln("Copy constructor result result should be semantically equivalent to the original!");
236     }
237   }
238 
239 #if !UCONFIG_NO_COLLATION
240   // test ruleset names
241   {
242     logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
243     int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
244     if(noOfRuleSetNames == 0) {
245       errln("Number of rule set names should be more than zero");
246     }
247     UnicodeString ruleSetName;
248     int32_t i = 0;
249     int32_t intFormatNum = 34567;
250     double doubleFormatNum = 893411.234;
251     logln("number of rule set names is %i", noOfRuleSetNames);
252     for(i = 0; i < noOfRuleSetNames; i++) {
253       FieldPosition pos1, pos2;
254       UnicodeString intFormatResult, doubleFormatResult;
255       Formattable intParseResult, doubleParseResult;
256 
257       ruleSetName = formatter->getRuleSetName(i);
258       log("Rule set name %i is ", i);
259       log(ruleSetName);
260       logln(". Format results are: ");
261       intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
262       doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
263       if(U_FAILURE(status)) {
264         errln("Format using a rule set failed");
265         break;
266       }
267       logln(intFormatResult);
268       logln(doubleFormatResult);
269       formatter->setLenient(TRUE);
270       formatter->parse(intFormatResult, intParseResult, status);
271       formatter->parse(doubleFormatResult, doubleParseResult, status);
272 
273       logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
274 
275       formatter->setLenient(FALSE);
276       formatter->parse(intFormatResult, intParseResult, status);
277       formatter->parse(doubleFormatResult, doubleParseResult, status);
278 
279       logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
280 
281       if(U_FAILURE(status)) {
282         errln("Error during parsing");
283       }
284 
285       intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
286       if(U_SUCCESS(status)) {
287         errln("Using invalid rule set name should have failed");
288         break;
289       }
290       status = U_ZERO_ERROR;
291       doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
292       if(U_SUCCESS(status)) {
293         errln("Using invalid rule set name should have failed");
294         break;
295       }
296       status = U_ZERO_ERROR;
297     }
298     status = U_ZERO_ERROR;
299   }
300 #endif
301 
302   // test API
303   UnicodeString expected("four point five","");
304   logln("Testing format(double)");
305   UnicodeString result;
306   formatter->format(4.5,result);
307   if(result != expected) {
308       errln("Formatted 4.5, expected " + expected + " got " + result);
309   } else {
310       logln("Formatted 4.5, expected " + expected + " got " + result);
311   }
312   result.remove();
313   expected = "four";
314   formatter->format((int32_t)4,result);
315   if(result != expected) {
316       errln("Formatted 4, expected " + expected + " got " + result);
317   } else {
318       logln("Formatted 4, expected " + expected + " got " + result);
319   }
320 
321   result.remove();
322   FieldPosition pos;
323   formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR);
324   if(result != expected) {
325       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
326   } else {
327       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
328   }
329 
330   //Jitterbug 4452, for coverage
331   result.remove();
332   FieldPosition pos2;
333   formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR);
334   if(result != expected) {
335       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
336   } else {
337       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
338   }
339 
340   // clean up
341   logln("Cleaning up");
342   delete formatter;
343 }
344 
345 /**
346  * Perform a simple spot check on the parsing going into an infinite loop for alternate rules.
347  */
TestMultiplePluralRules()348 void IntlTestRBNF::TestMultiplePluralRules() {
349     // This is trying to model the feminine form, but don't worry about the details too much.
350     // We're trying to test the plural rules where there are different prefixes.
351     UnicodeString rules("%spellout-cardinal-feminine-genitive:"
352                 "0: zero;"
353                 "1: ono;"
354                 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];"
355                 "%spellout-cardinal-feminine:"
356                 "0: zero;"
357                 "1: one;"
358                 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];");
359     UErrorCode status = U_ZERO_ERROR;
360     UParseError pError;
361     RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status);
362     Formattable result;
363     UnicodeString resultStr;
364     FieldPosition pos;
365 
366     if (U_FAILURE(status)) {
367         dataerrln("Unable to create formatter - %s", u_errorName(status));
368         return;
369     }
370 
371     formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status);
372     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
373         errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong());
374         errln(resultStr);
375     }
376     resultStr.remove();
377     formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status);
378     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) {
379         errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong());
380         errln(resultStr);
381     }
382     resultStr.remove();
383     formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status);
384     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
385         errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong());
386         errln(resultStr);
387     }
388 }
389 
TestFractionalRuleSet()390 void IntlTestRBNF::TestFractionalRuleSet()
391 {
392     UnicodeString fracRules(
393         "%main:\n"
394                // this rule formats the number if it's 1 or more.  It formats
395                // the integral part using a DecimalFormat ("#,##0" puts
396                // thousands separators in the right places) and the fractional
397                // part using %%frac.  If there is no fractional part, it
398                // just shows the integral part.
399         "    x.0: <#,##0<[ >%%frac>];\n"
400                // this rule formats the number if it's between 0 and 1.  It
401                // shows only the fractional part (0.5 shows up as "1/2," not
402                // "0 1/2")
403         "    0.x: >%%frac>;\n"
404         // the fraction rule set.  This works the same way as the one in the
405         // preceding example: We multiply the fractional part of the number
406         // being formatted by each rule's base value and use the rule that
407         // produces the result closest to 0 (or the first rule that produces 0).
408         // Since we only provide rules for the numbers from 2 to 10, we know
409         // we'll get a fraction with a denominator between 2 and 10.
410         // "<0<" causes the numerator of the fraction to be formatted
411         // using numerals
412         "%%frac:\n"
413         "    2: 1/2;\n"
414         "    3: <0</3;\n"
415         "    4: <0</4;\n"
416         "    5: <0</5;\n"
417         "    6: <0</6;\n"
418         "    7: <0</7;\n"
419         "    8: <0</8;\n"
420         "    9: <0</9;\n"
421         "   10: <0</10;\n");
422 
423     // mondo hack
424     int len = fracRules.length();
425     int change = 2;
426     for (int i = 0; i < len; ++i) {
427         UChar ch = fracRules.charAt(i);
428         if (ch == '\n') {
429             change = 2; // change ok
430         } else if (ch == ':') {
431             change = 1; // change, but once we hit a non-space char, don't change
432         } else if (ch == ' ') {
433             if (change != 0) {
434                 fracRules.setCharAt(i, (UChar)0x200e);
435             }
436         } else {
437             if (change == 1) {
438                 change = 0;
439             }
440         }
441     }
442 
443     UErrorCode status = U_ZERO_ERROR;
444     UParseError perror;
445     RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
446     if (U_FAILURE(status)) {
447         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
448     } else {
449         static const char* const testData[][2] = {
450             { "0", "0" },
451             { ".1", "1/10" },
452             { ".11", "1/9" },
453             { ".125", "1/8" },
454             { ".1428", "1/7" },
455             { ".1667", "1/6" },
456             { ".2", "1/5" },
457             { ".25", "1/4" },
458             { ".333", "1/3" },
459             { ".5", "1/2" },
460             { "1.1", "1 1/10" },
461             { "2.11", "2 1/9" },
462             { "3.125", "3 1/8" },
463             { "4.1428", "4 1/7" },
464             { "5.1667", "5 1/6" },
465             { "6.2", "6 1/5" },
466             { "7.25", "7 1/4" },
467             { "8.333", "8 1/3" },
468             { "9.5", "9 1/2" },
469             { ".2222", "2/9" },
470             { ".4444", "4/9" },
471             { ".5555", "5/9" },
472             { "1.2856", "1 2/7" },
473             { NULL, NULL }
474         };
475        doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
476     }
477 }
478 
479 #if 0
480 #define LLAssert(a) \
481   if (!(a)) errln("FAIL: " #a)
482 
483 void IntlTestRBNF::TestLLongConstructors()
484 {
485     logln("Testing constructors");
486 
487     // constant (shouldn't really be public)
488     LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
489 
490     // internal constructor (shouldn't really be public)
491     LLAssert(llong(0, 1).asDouble() == 1);
492     LLAssert(llong(1, 0).asDouble() == llong::kD32);
493     LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
494 
495     // public empty constructor
496     LLAssert(llong().asDouble() == 0);
497 
498     // public int32_t constructor
499     LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
500     LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
501     LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
502     LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
503     LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
504     LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
505 
506     // public int16_t constructor
507     LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
508     LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
509     LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
510     LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
511     LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
512     LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
513 
514     // public int8_t constructor
515     LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
516     LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
517     LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
518     LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
519     LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
520     LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
521 
522     // public uint16_t constructor
523     LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
524     LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
525     LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
526     LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
527     LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
528     LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
529 
530     // public uint32_t constructor
531     LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
532     LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
533     LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
534     LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
535     LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
536     LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
537 
538     // public double constructor
539     LLAssert(llong((double)0).asDouble() == (double)0);
540     LLAssert(llong((double)1).asDouble() == (double)1);
541     LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
542     LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
543     LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
544 
545     // can't access uprv_maxmantissa, so fake it
546     double maxmantissa = (llong((int32_t)1) << 40).asDouble();
547     LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
548     LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
549 
550     // copy constructor
551     LLAssert(llong(llong(0, 1)).asDouble() == 1);
552     LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
553     LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
554 
555     // asInt - test unsigned to signed narrowing conversion
556     LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
557     LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
558 
559     // asUInt - test signed to unsigned narrowing conversion
560     LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
561     LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
562 
563     // asDouble already tested
564 
565 }
566 
567 void IntlTestRBNF::TestLLongSimpleOperators()
568 {
569     logln("Testing simple operators");
570 
571     // operator==
572     LLAssert(llong() == llong(0, 0));
573     LLAssert(llong(1,0) == llong(1, 0));
574     LLAssert(llong(0,1) == llong(0, 1));
575 
576     // operator!=
577     LLAssert(llong(1,0) != llong(1,1));
578     LLAssert(llong(0,1) != llong(1,1));
579     LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
580 
581     // unsigned >
582     LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
583 
584     // unsigned <
585     LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
586 
587     // unsigned >=
588     LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
589     LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
590 
591     // unsigned <=
592     LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
593     LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
594 
595     // operator>
596     LLAssert(llong(1, 1) > llong(1, 0));
597     LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
598     LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
599     LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
600     LLAssert(llong(1, 0) > llong(0, 0xffffffff));
601     LLAssert(llong(0, 0) > llong(0x80000000, 1));
602 
603     // operator<
604     LLAssert(llong(1, 0) < llong(1, 1));
605     LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
606     LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
607     LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
608     LLAssert(llong(0, 0xffffffff) < llong(1, 0));
609     LLAssert(llong(0x80000000, 1) < llong(0, 0));
610 
611     // operator>=
612     LLAssert(llong(1, 1) >= llong(1, 0));
613     LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
614     LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
615     LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
616     LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
617     LLAssert(llong(0, 0) >= llong(0x80000000, 1));
618     LLAssert(llong() >= llong(0, 0));
619     LLAssert(llong(1,0) >= llong(1, 0));
620     LLAssert(llong(0,1) >= llong(0, 1));
621 
622     // operator<=
623     LLAssert(llong(1, 0) <= llong(1, 1));
624     LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
625     LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
626     LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
627     LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
628     LLAssert(llong(0x80000000, 1) <= llong(0, 0));
629     LLAssert(llong() <= llong(0, 0));
630     LLAssert(llong(1,0) <= llong(1, 0));
631     LLAssert(llong(0,1) <= llong(0, 1));
632 
633     // operator==(int32)
634     LLAssert(llong() == (int32_t)0);
635     LLAssert(llong(0,1) == (int32_t)1);
636 
637     // operator!=(int32)
638     LLAssert(llong(1,0) != (int32_t)0);
639     LLAssert(llong(0,1) != (int32_t)2);
640     LLAssert(llong(0,0xffffffff) != (int32_t)-1);
641 
642     llong negOne(0xffffffff, 0xffffffff);
643 
644     // operator>(int32)
645     LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
646     LLAssert(negOne > (int32_t)-2);
647     LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
648     LLAssert(llong(0, 0) > (int32_t)-1);
649 
650     // operator<(int32)
651     LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
652     LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
653 
654     // operator>=(int32)
655     LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
656     LLAssert(negOne >= (int32_t)-2);
657     LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
658     LLAssert(llong(0, 0) >= (int32_t)-1);
659     LLAssert(llong() >= (int32_t)0);
660     LLAssert(llong(0,1) >= (int32_t)1);
661 
662     // operator<=(int32)
663     LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
664     LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
665     LLAssert(llong() <= (int32_t)0);
666     LLAssert(llong(0,1) <= (int32_t)1);
667 
668     // operator=
669     LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
670 
671     // operator <<=
672     LLAssert((llong(1, 1) <<= 0) ==  llong(1, 1));
673     LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
674     LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
675     LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
676     LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
677     LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
678 
679     // operator <<
680     LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
681 
682     // operator >>= (sign extended)
683     LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
684     LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
685     LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
686     LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
687     LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
688     LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
689 
690     // operator >> sign extended)
691     LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));
692 
693     // ushr (right shift without sign extension)
694     LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
695     LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
696     LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
697     LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
698     LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
699     LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
700 
701     // operator&(llong)
702     LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
703 
704     // operator|(llong)
705     LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
706 
707     // operator^(llong)
708     LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
709 
710     // operator&(uint32)
711     LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
712 
713     // operator|(uint32)
714     LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
715 
716     // operator^(uint32)
717     LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
718 
719     // operator~
720     LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
721 
722     // operator&=(llong)
723     LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
724 
725     // operator|=(llong)
726     LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
727 
728     // operator^=(llong)
729     LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
730 
731     // operator&=(uint32)
732     LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
733 
734     // operator|=(uint32)
735     LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
736 
737     // operator^=(uint32)
738     LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
739 
740     // prefix inc
741     LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
742 
743     // prefix dec
744     LLAssert(llong(0,0xffffffff) == --llong(1, 0));
745 
746     // postfix inc
747     {
748         llong n(0, 0xffffffff);
749         LLAssert(llong(0, 0xffffffff) == n++);
750         LLAssert(llong(1, 0) == n);
751     }
752 
753     // postfix dec
754     {
755         llong n(1, 0);
756         LLAssert(llong(1, 0) == n--);
757         LLAssert(llong(0, 0xffffffff) == n);
758     }
759 
760     // unary minus
761     LLAssert(llong(0, 0) == -llong(0, 0));
762     LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
763     LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
764     LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
765     LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow
766 
767     // operator-=
768     {
769         llong n;
770         LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
771         LLAssert(n == llong(0xffffffff, 0xffffffff));
772 
773         n = llong(1, 0);
774         LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
775         LLAssert(n == llong(0, 0xffffffff));
776     }
777 
778     // operator-
779     {
780         llong n;
781         LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
782         LLAssert(n == llong(0, 0));
783 
784         n = llong(1, 0);
785         LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
786         LLAssert(n == llong(1, 0));
787     }
788 
789     // operator+=
790     {
791         llong n(0xffffffff, 0xffffffff);
792         LLAssert((n += llong(0, 1)) == llong(0, 0));
793         LLAssert(n == llong(0, 0));
794 
795         n = llong(0, 0xffffffff);
796         LLAssert((n += llong(0, 1)) == llong(1, 0));
797         LLAssert(n == llong(1, 0));
798     }
799 
800     // operator+
801     {
802         llong n(0xffffffff, 0xffffffff);
803         LLAssert((n + llong(0, 1)) == llong(0, 0));
804         LLAssert(n == llong(0xffffffff, 0xffffffff));
805 
806         n = llong(0, 0xffffffff);
807         LLAssert((n + llong(0, 1)) == llong(1, 0));
808         LLAssert(n == llong(0, 0xffffffff));
809     }
810 
811 }
812 
813 void IntlTestRBNF::TestLLong()
814 {
815     logln("Starting TestLLong");
816 
817     TestLLongConstructors();
818 
819     TestLLongSimpleOperators();
820 
821     logln("Testing operator*=, operator*");
822 
823     // operator*=, operator*
824     // small and large values, positive, &NEGative, zero
825     // also test commutivity
826     {
827         const llong ZERO;
828         const llong ONE(0, 1);
829         const llong NEG_ONE((int32_t)-1);
830         const llong THREE(0, 3);
831         const llong NEG_THREE((int32_t)-3);
832         const llong TWO_TO_16(0, 0x10000);
833         const llong NEG_TWO_TO_16 = -TWO_TO_16;
834         const llong TWO_TO_32(1, 0);
835         const llong NEG_TWO_TO_32 = -TWO_TO_32;
836 
837         const llong NINE(0, 9);
838         const llong NEG_NINE = -NINE;
839 
840         const llong TWO_TO_16X3(0, 0x00030000);
841         const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
842 
843         const llong TWO_TO_32X3(3, 0);
844         const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
845 
846         const llong TWO_TO_48(0x10000, 0);
847         const llong NEG_TWO_TO_48 = -TWO_TO_48;
848 
849         const int32_t VALUE_WIDTH = 9;
850         const llong* values[VALUE_WIDTH] = {
851             &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
852         };
853 
854         const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
855             &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
856             &ZERO, &ONE,  &NEG_ONE, &THREE, &NEG_THREE,  &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
857             &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
858             &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
859             &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
860             &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
861             &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
862             &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
863             &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
864         };
865 
866         for (int i = 0; i < VALUE_WIDTH; ++i) {
867             for (int j = 0; j < VALUE_WIDTH; ++j) {
868                 llong lhs = *values[i];
869                 llong rhs = *values[j];
870                 llong ans = *answers[i*VALUE_WIDTH + j];
871 
872                 llong n = lhs;
873 
874                 LLAssert((n *= rhs) == ans);
875                 LLAssert(n == ans);
876 
877                 n = lhs;
878                 LLAssert((n * rhs) == ans);
879                 LLAssert(n == lhs);
880             }
881         }
882     }
883 
884     logln("Testing operator/=, operator/");
885     // operator/=, operator/
886     // test num = 0, div = 0, pos/neg, > 2^32, div > num
887     {
888         const llong ZERO;
889         const llong ONE(0, 1);
890         const llong NEG_ONE = -ONE;
891         const llong MAX(0x7fffffff, 0xffffffff);
892         const llong MIN(0x80000000, 0);
893         const llong TWO(0, 2);
894         const llong NEG_TWO = -TWO;
895         const llong FIVE(0, 5);
896         const llong NEG_FIVE = -FIVE;
897         const llong TWO_TO_32(1, 0);
898         const llong NEG_TWO_TO_32 = -TWO_TO_32;
899         const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
900         const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
901         const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
902         const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
903 
904         const llong* tuples[] = { // lhs, rhs, ans
905             &ZERO, &ZERO, &ZERO,
906             &ONE, &ZERO,&MAX,
907             &NEG_ONE, &ZERO, &MIN,
908             &ONE, &ONE, &ONE,
909             &ONE, &NEG_ONE, &NEG_ONE,
910             &NEG_ONE, &ONE, &NEG_ONE,
911             &NEG_ONE, &NEG_ONE, &ONE,
912             &FIVE, &TWO, &TWO,
913             &FIVE, &NEG_TWO, &NEG_TWO,
914             &NEG_FIVE, &TWO, &NEG_TWO,
915             &NEG_FIVE, &NEG_TWO, &TWO,
916             &TWO, &FIVE, &ZERO,
917             &TWO, &NEG_FIVE, &ZERO,
918             &NEG_TWO, &FIVE, &ZERO,
919             &NEG_TWO, &NEG_FIVE, &ZERO,
920             &TWO_TO_32, &TWO_TO_32, &ONE,
921             &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
922             &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
923             &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
924             &TWO_TO_32, &FIVE, &TWO_TO_32d5,
925             &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
926             &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
927             &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
928             &TWO_TO_32X5, &FIVE, &TWO_TO_32,
929             &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
930             &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
931             &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
932             &TWO_TO_32X5, &TWO_TO_32, &FIVE,
933             &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
934             &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
935             &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
936         };
937         const int TUPLE_WIDTH = 3;
938         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
939         for (int i = 0; i < TUPLE_COUNT; ++i) {
940             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
941             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
942             const llong ans = *tuples[i*TUPLE_WIDTH+2];
943 
944             llong n = lhs;
945             if (!((n /= rhs) == ans)) {
946                 errln("fail: (n /= rhs) == ans");
947             }
948             LLAssert(n == ans);
949 
950             n = lhs;
951             LLAssert((n / rhs) == ans);
952             LLAssert(n == lhs);
953         }
954     }
955 
956     logln("Testing operator%%=, operator%%");
957     //operator%=, operator%
958     {
959         const llong ZERO;
960         const llong ONE(0, 1);
961         const llong TWO(0, 2);
962         const llong THREE(0,3);
963         const llong FOUR(0, 4);
964         const llong FIVE(0, 5);
965         const llong SIX(0, 6);
966 
967         const llong NEG_ONE = -ONE;
968         const llong NEG_TWO = -TWO;
969         const llong NEG_THREE = -THREE;
970         const llong NEG_FOUR = -FOUR;
971         const llong NEG_FIVE = -FIVE;
972         const llong NEG_SIX = -SIX;
973 
974         const llong NINETY_NINE(0, 99);
975         const llong HUNDRED(0, 100);
976         const llong HUNDRED_ONE(0, 101);
977 
978         const llong BIG(0x12345678, 0x9abcdef0);
979         const llong BIG_FIVE(BIG * FIVE);
980         const llong BIG_FIVEm1 = BIG_FIVE - ONE;
981         const llong BIG_FIVEp1 = BIG_FIVE + ONE;
982 
983         const llong* tuples[] = {
984             &ZERO, &FIVE, &ZERO,
985             &ONE, &FIVE, &ONE,
986             &TWO, &FIVE, &TWO,
987             &THREE, &FIVE, &THREE,
988             &FOUR, &FIVE, &FOUR,
989             &FIVE, &FIVE, &ZERO,
990             &SIX, &FIVE, &ONE,
991             &ZERO, &NEG_FIVE, &ZERO,
992             &ONE, &NEG_FIVE, &ONE,
993             &TWO, &NEG_FIVE, &TWO,
994             &THREE, &NEG_FIVE, &THREE,
995             &FOUR, &NEG_FIVE, &FOUR,
996             &FIVE, &NEG_FIVE, &ZERO,
997             &SIX, &NEG_FIVE, &ONE,
998             &NEG_ONE, &FIVE, &NEG_ONE,
999             &NEG_TWO, &FIVE, &NEG_TWO,
1000             &NEG_THREE, &FIVE, &NEG_THREE,
1001             &NEG_FOUR, &FIVE, &NEG_FOUR,
1002             &NEG_FIVE, &FIVE, &ZERO,
1003             &NEG_SIX, &FIVE, &NEG_ONE,
1004             &NEG_ONE, &NEG_FIVE, &NEG_ONE,
1005             &NEG_TWO, &NEG_FIVE, &NEG_TWO,
1006             &NEG_THREE, &NEG_FIVE, &NEG_THREE,
1007             &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
1008             &NEG_FIVE, &NEG_FIVE, &ZERO,
1009             &NEG_SIX, &NEG_FIVE, &NEG_ONE,
1010             &NINETY_NINE, &FIVE, &FOUR,
1011             &HUNDRED, &FIVE, &ZERO,
1012             &HUNDRED_ONE, &FIVE, &ONE,
1013             &BIG_FIVEm1, &FIVE, &FOUR,
1014             &BIG_FIVE, &FIVE, &ZERO,
1015             &BIG_FIVEp1, &FIVE, &ONE
1016         };
1017         const int TUPLE_WIDTH = 3;
1018         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
1019         for (int i = 0; i < TUPLE_COUNT; ++i) {
1020             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
1021             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
1022             const llong ans = *tuples[i*TUPLE_WIDTH+2];
1023 
1024             llong n = lhs;
1025             if (!((n %= rhs) == ans)) {
1026                 errln("fail: (n %= rhs) == ans");
1027             }
1028             LLAssert(n == ans);
1029 
1030             n = lhs;
1031             LLAssert((n % rhs) == ans);
1032             LLAssert(n == lhs);
1033         }
1034     }
1035 
1036     logln("Testing pow");
1037     // pow
1038     LLAssert(llong(0, 0).pow(0) == llong(0, 0));
1039     LLAssert(llong(0, 0).pow(2) == llong(0, 0));
1040     LLAssert(llong(0, 2).pow(0) == llong(0, 1));
1041     LLAssert(llong(0, 2).pow(2) == llong(0, 4));
1042     LLAssert(llong(0, 2).pow(32) == llong(1, 0));
1043     LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
1044 
1045     // absolute value
1046     {
1047         const llong n(0xffffffff,0xffffffff);
1048         LLAssert(n.abs() == llong(0, 1));
1049     }
1050 
1051 #ifdef RBNF_DEBUG
1052     logln("Testing atoll");
1053     // atoll
1054     const char empty[] = "";
1055     const char zero[] = "0";
1056     const char neg_one[] = "-1";
1057     const char neg_12345[] = "-12345";
1058     const char big1[] = "123456789abcdef0";
1059     const char big2[] = "fFfFfFfFfFfFfFfF";
1060     LLAssert(llong::atoll(empty) == llong(0, 0));
1061     LLAssert(llong::atoll(zero) == llong(0, 0));
1062     LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
1063     LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
1064     LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
1065     LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
1066 #endif
1067 
1068     // u_atoll
1069     const UChar uempty[] = { 0 };
1070     const UChar uzero[] = { 0x30, 0 };
1071     const UChar uneg_one[] = { 0x2d, 0x31, 0 };
1072     const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
1073     const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
1074     const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
1075     LLAssert(llong::utoll(uempty) == llong(0, 0));
1076     LLAssert(llong::utoll(uzero) == llong(0, 0));
1077     LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
1078     LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
1079     LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
1080     LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
1081 
1082 #ifdef RBNF_DEBUG
1083     logln("Testing lltoa");
1084     // lltoa
1085     {
1086         char buf[64]; // ascii
1087         LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
1088         LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
1089         LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
1090         LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
1091     }
1092 #endif
1093 
1094     logln("Testing u_lltoa");
1095     // u_lltoa
1096     {
1097         UChar buf[64];
1098         LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
1099         LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
1100         LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
1101         LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
1102     }
1103 }
1104 
1105 /* if 0 */
1106 #endif
1107 
1108 void
TestEnglishSpellout()1109 IntlTestRBNF::TestEnglishSpellout()
1110 {
1111     UErrorCode status = U_ZERO_ERROR;
1112     RuleBasedNumberFormat* formatter
1113         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
1114     if (U_FAILURE(status)) {
1115         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1116     } else {
1117         static const char* const testData[][2] = {
1118             { "1", "one" },
1119             { "2", "two" },
1120             { "15", "fifteen" },
1121             { "20", "twenty" },
1122             { "23", "twenty-three" },
1123             { "73", "seventy-three" },
1124             { "88", "eighty-eight" },
1125             { "100", "one hundred" },
1126             { "106", "one hundred six" },
1127             { "127", "one hundred twenty-seven" },
1128             { "200", "two hundred" },
1129             { "579", "five hundred seventy-nine" },
1130             { "1,000", "one thousand" },
1131             { "2,000", "two thousand" },
1132             { "3,004", "three thousand four" },
1133             { "4,567", "four thousand five hundred sixty-seven" },
1134             { "15,943", "fifteen thousand nine hundred forty-three" },
1135             { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" },
1136             { "-36", "minus thirty-six" },
1137             { "234.567", "two hundred thirty-four point five six seven" },
1138             { NULL, NULL}
1139         };
1140 
1141         doTest(formatter, testData, TRUE);
1142 
1143 #if !UCONFIG_NO_COLLATION
1144         if( !logKnownIssue("9503") ) {
1145           formatter->setLenient(TRUE);
1146           static const char* lpTestData[][2] = {
1147             { "fifty-7", "57" },
1148             { " fifty-7", "57" },
1149             { "  fifty-7", "57" },
1150             { "2 thousand six    HUNDRED fifty-7", "2,657" },
1151             { "fifteen hundred and zero", "1,500" },
1152             { "FOurhundred     thiRTY six", "436" },
1153             { NULL, NULL}
1154           };
1155           doLenientParseTest(formatter, lpTestData);
1156         }
1157 #endif
1158     }
1159     delete formatter;
1160 }
1161 
1162 void
TestOrdinalAbbreviations()1163 IntlTestRBNF::TestOrdinalAbbreviations()
1164 {
1165     UErrorCode status = U_ZERO_ERROR;
1166     RuleBasedNumberFormat* formatter
1167         = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
1168 
1169     if (U_FAILURE(status)) {
1170         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1171     } else {
1172         static const char* const testData[][2] = {
1173             { "1", "1st" },
1174             { "2", "2nd" },
1175             { "3", "3rd" },
1176             { "4", "4th" },
1177             { "7", "7th" },
1178             { "10", "10th" },
1179             { "11", "11th" },
1180             { "13", "13th" },
1181             { "20", "20th" },
1182             { "21", "21st" },
1183             { "22", "22nd" },
1184             { "23", "23rd" },
1185             { "24", "24th" },
1186             { "33", "33rd" },
1187             { "102", "102nd" },
1188             { "312", "312th" },
1189             { "12,345", "12,345th" },
1190             { NULL, NULL}
1191         };
1192 
1193         doTest(formatter, testData, FALSE);
1194     }
1195     delete formatter;
1196 }
1197 
1198 void
TestDurations()1199 IntlTestRBNF::TestDurations()
1200 {
1201     UErrorCode status = U_ZERO_ERROR;
1202     RuleBasedNumberFormat* formatter
1203         = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
1204 
1205     if (U_FAILURE(status)) {
1206         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1207     } else {
1208         static const char* const testData[][2] = {
1209             { "3,600", "1:00:00" },     //move me and I fail
1210             { "0", "0 sec." },
1211             { "1", "1 sec." },
1212             { "24", "24 sec." },
1213             { "60", "1:00" },
1214             { "73", "1:13" },
1215             { "145", "2:25" },
1216             { "666", "11:06" },
1217             //            { "3,600", "1:00:00" },
1218             { "3,740", "1:02:20" },
1219             { "10,293", "2:51:33" },
1220             { NULL, NULL}
1221         };
1222 
1223         doTest(formatter, testData, TRUE);
1224 
1225 #if !UCONFIG_NO_COLLATION
1226         formatter->setLenient(TRUE);
1227         static const char* lpTestData[][2] = {
1228             { "2-51-33", "10,293" },
1229             { NULL, NULL}
1230         };
1231         doLenientParseTest(formatter, lpTestData);
1232 #endif
1233     }
1234     delete formatter;
1235 }
1236 
1237 void
TestSpanishSpellout()1238 IntlTestRBNF::TestSpanishSpellout()
1239 {
1240     UErrorCode status = U_ZERO_ERROR;
1241     RuleBasedNumberFormat* formatter
1242         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
1243 
1244     if (U_FAILURE(status)) {
1245         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1246     } else {
1247         static const char* const testData[][2] = {
1248             { "1", "uno" },
1249             { "6", "seis" },
1250             { "16", "diecis\\u00e9is" },
1251             { "20", "veinte" },
1252             { "24", "veinticuatro" },
1253             { "26", "veintis\\u00e9is" },
1254             { "73", "setenta y tres" },
1255             { "88", "ochenta y ocho" },
1256             { "100", "cien" },
1257             { "106", "ciento seis" },
1258             { "127", "ciento veintisiete" },
1259             { "200", "doscientos" },
1260             { "579", "quinientos setenta y nueve" },
1261             { "1,000", "mil" },
1262             { "2,000", "dos mil" },
1263             { "3,004", "tres mil cuatro" },
1264             { "4,567", "cuatro mil quinientos sesenta y siete" },
1265             { "15,943", "quince mil novecientos cuarenta y tres" },
1266             { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
1267             { "-36", "menos treinta y seis" },
1268             { "234.567", "doscientos treinta y cuatro coma cinco seis siete" },
1269             { NULL, NULL}
1270         };
1271 
1272         doTest(formatter, testData, TRUE);
1273     }
1274     delete formatter;
1275 }
1276 
1277 void
TestFrenchSpellout()1278 IntlTestRBNF::TestFrenchSpellout()
1279 {
1280     UErrorCode status = U_ZERO_ERROR;
1281     RuleBasedNumberFormat* formatter
1282         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status);
1283 
1284     if (U_FAILURE(status)) {
1285         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1286     } else {
1287         static const char* const testData[][2] = {
1288             { "1", "un" },
1289             { "15", "quinze" },
1290             { "20", "vingt" },
1291             { "21", "vingt-et-un" },
1292             { "23", "vingt-trois" },
1293             { "62", "soixante-deux" },
1294             { "70", "soixante-dix" },
1295             { "71", "soixante-et-onze" },
1296             { "73", "soixante-treize" },
1297             { "80", "quatre-vingts" },
1298             { "88", "quatre-vingt-huit" },
1299             { "100", "cent" },
1300             { "106", "cent six" },
1301             { "127", "cent vingt-sept" },
1302             { "200", "deux cents" },
1303             { "579", "cinq cent soixante-dix-neuf" },
1304             { "1,000", "mille" },
1305             { "1,123", "mille cent vingt-trois" },
1306             { "1,594", "mille cinq cent quatre-vingt-quatorze" },
1307             { "2,000", "deux mille" },
1308             { "3,004", "trois mille quatre" },
1309             { "4,567", "quatre mille cinq cent soixante-sept" },
1310             { "15,943", "quinze mille neuf cent quarante-trois" },
1311             { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" },
1312             { "-36", "moins trente-six" },
1313             { "234.567", "deux cent trente-quatre virgule cinq six sept" },
1314             { NULL, NULL}
1315         };
1316 
1317         doTest(formatter, testData, TRUE);
1318 
1319 #if !UCONFIG_NO_COLLATION
1320         formatter->setLenient(TRUE);
1321         static const char* lpTestData[][2] = {
1322             { "trente-et-un", "31" },
1323             { "un cent quatre vingt dix huit", "198" },
1324             { NULL, NULL}
1325         };
1326         doLenientParseTest(formatter, lpTestData);
1327 #endif
1328     }
1329     delete formatter;
1330 }
1331 
1332 static const char* const swissFrenchTestData[][2] = {
1333     { "1", "un" },
1334     { "15", "quinze" },
1335     { "20", "vingt" },
1336     { "21", "vingt-et-un" },
1337     { "23", "vingt-trois" },
1338     { "62", "soixante-deux" },
1339     { "70", "septante" },
1340     { "71", "septante-et-un" },
1341     { "73", "septante-trois" },
1342     { "80", "huitante" },
1343     { "88", "huitante-huit" },
1344     { "100", "cent" },
1345     { "106", "cent six" },
1346     { "127", "cent vingt-sept" },
1347     { "200", "deux cents" },
1348     { "579", "cinq cent septante-neuf" },
1349     { "1,000", "mille" },
1350     { "1,123", "mille cent vingt-trois" },
1351     { "1,594", "mille cinq cent nonante-quatre" },
1352     { "2,000", "deux mille" },
1353     { "3,004", "trois mille quatre" },
1354     { "4,567", "quatre mille cinq cent soixante-sept" },
1355     { "15,943", "quinze mille neuf cent quarante-trois" },
1356     { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
1357     { "-36", "moins trente-six" },
1358     { "234.567", "deux cent trente-quatre virgule cinq six sept" },
1359     { NULL, NULL}
1360 };
1361 
1362 void
TestSwissFrenchSpellout()1363 IntlTestRBNF::TestSwissFrenchSpellout()
1364 {
1365     UErrorCode status = U_ZERO_ERROR;
1366     RuleBasedNumberFormat* formatter
1367         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
1368 
1369     if (U_FAILURE(status)) {
1370         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1371     } else {
1372         doTest(formatter, swissFrenchTestData, TRUE);
1373     }
1374     delete formatter;
1375 }
1376 
1377 static const char* const belgianFrenchTestData[][2] = {
1378     { "1", "un" },
1379     { "15", "quinze" },
1380     { "20", "vingt" },
1381     { "21", "vingt-et-un" },
1382     { "23", "vingt-trois" },
1383     { "62", "soixante-deux" },
1384     { "70", "septante" },
1385     { "71", "septante-et-un" },
1386     { "73", "septante-trois" },
1387     { "80", "quatre-vingts" },
1388     { "88", "quatre-vingt huit" },
1389     { "90", "nonante" },
1390     { "91", "nonante-et-un" },
1391     { "95", "nonante-cinq" },
1392     { "100", "cent" },
1393     { "106", "cent six" },
1394     { "127", "cent vingt-sept" },
1395     { "200", "deux cents" },
1396     { "579", "cinq cent septante-neuf" },
1397     { "1,000", "mille" },
1398     { "1,123", "mille cent vingt-trois" },
1399     { "1,594", "mille cinq cent nonante-quatre" },
1400     { "2,000", "deux mille" },
1401     { "3,004", "trois mille quatre" },
1402     { "4,567", "quatre mille cinq cent soixante-sept" },
1403     { "15,943", "quinze mille neuf cent quarante-trois" },
1404     { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
1405     { "-36", "moins trente-six" },
1406     { "234.567", "deux cent trente-quatre virgule cinq six sept" },
1407     { NULL, NULL}
1408 };
1409 
1410 
1411 void
TestBelgianFrenchSpellout()1412 IntlTestRBNF::TestBelgianFrenchSpellout()
1413 {
1414     UErrorCode status = U_ZERO_ERROR;
1415     RuleBasedNumberFormat* formatter
1416         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status);
1417 
1418     if (U_FAILURE(status)) {
1419         errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status));
1420         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1421     } else {
1422         // Belgian french should match Swiss french.
1423         doTest(formatter, belgianFrenchTestData, TRUE);
1424     }
1425     delete formatter;
1426 }
1427 
1428 void
TestItalianSpellout()1429 IntlTestRBNF::TestItalianSpellout()
1430 {
1431     UErrorCode status = U_ZERO_ERROR;
1432     RuleBasedNumberFormat* formatter
1433         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);
1434 
1435     if (U_FAILURE(status)) {
1436         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1437     } else {
1438         static const char* const testData[][2] = {
1439             { "1", "uno" },
1440             { "15", "quindici" },
1441             { "20", "venti" },
1442             { "23", "venti\\u00ADtr\\u00E9" },
1443             { "73", "settanta\\u00ADtr\\u00E9" },
1444             { "88", "ottant\\u00ADotto" },
1445             { "100", "cento" },
1446             { "101", "cento\\u00ADuno" },
1447             { "103", "cento\\u00ADtr\\u00E9" },
1448             { "106", "cento\\u00ADsei" },
1449             { "108", "cent\\u00ADotto" },
1450             { "127", "cento\\u00ADventi\\u00ADsette" },
1451             { "181", "cent\\u00ADottant\\u00ADuno" },
1452             { "200", "due\\u00ADcento" },
1453             { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" },
1454             { "1,000", "mille" },
1455             { "2,000", "due\\u00ADmila" },
1456             { "3,004", "tre\\u00ADmila\\u00ADquattro" },
1457             { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" },
1458             { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" },
1459             { "-36", "meno trenta\\u00ADsei" },
1460             { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" },
1461             { NULL, NULL}
1462         };
1463 
1464         doTest(formatter, testData, TRUE);
1465     }
1466     delete formatter;
1467 }
1468 
1469 void
TestPortugueseSpellout()1470 IntlTestRBNF::TestPortugueseSpellout()
1471 {
1472     UErrorCode status = U_ZERO_ERROR;
1473     RuleBasedNumberFormat* formatter
1474         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status);
1475 
1476     if (U_FAILURE(status)) {
1477         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1478     } else {
1479         static const char* const testData[][2] = {
1480             { "1", "um" },
1481             { "15", "quinze" },
1482             { "20", "vinte" },
1483             { "23", "vinte e tr\\u00EAs" },
1484             { "73", "setenta e tr\\u00EAs" },
1485             { "88", "oitenta e oito" },
1486             { "100", "cem" },
1487             { "106", "cento e seis" },
1488             { "108", "cento e oito" },
1489             { "127", "cento e vinte e sete" },
1490             { "181", "cento e oitenta e um" },
1491             { "200", "duzentos" },
1492             { "579", "quinhentos e setenta e nove" },
1493             { "1,000", "mil" },
1494             { "2,000", "dois mil" },
1495             { "3,004", "tr\\u00EAs mil e quatro" },
1496             { "4,567", "quatro mil e quinhentos e sessenta e sete" },
1497             { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" },
1498             { "-36", "menos trinta e seis" },
1499             { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" },
1500             { NULL, NULL}
1501         };
1502 
1503         doTest(formatter, testData, TRUE);
1504     }
1505     delete formatter;
1506 }
1507 void
TestGermanSpellout()1508 IntlTestRBNF::TestGermanSpellout()
1509 {
1510     UErrorCode status = U_ZERO_ERROR;
1511     RuleBasedNumberFormat* formatter
1512         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
1513 
1514     if (U_FAILURE(status)) {
1515         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1516     } else {
1517         static const char* const testData[][2] = {
1518             { "1", "eins" },
1519             { "15", "f\\u00fcnfzehn" },
1520             { "20", "zwanzig" },
1521             { "23", "drei\\u00ADund\\u00ADzwanzig" },
1522             { "73", "drei\\u00ADund\\u00ADsiebzig" },
1523             { "88", "acht\\u00ADund\\u00ADachtzig" },
1524             { "100", "ein\\u00ADhundert" },
1525             { "106", "ein\\u00ADhundert\\u00ADsechs" },
1526             { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" },
1527             { "200", "zwei\\u00ADhundert" },
1528             { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" },
1529             { "1,000", "ein\\u00ADtausend" },
1530             { "2,000", "zwei\\u00ADtausend" },
1531             { "3,004", "drei\\u00ADtausend\\u00ADvier" },
1532             { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" },
1533             { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" },
1534             { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" },
1535             { NULL, NULL}
1536         };
1537 
1538         doTest(formatter, testData, TRUE);
1539 
1540 #if !UCONFIG_NO_COLLATION
1541         formatter->setLenient(TRUE);
1542         static const char* lpTestData[][2] = {
1543             { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
1544             { NULL, NULL}
1545         };
1546         doLenientParseTest(formatter, lpTestData);
1547 #endif
1548     }
1549     delete formatter;
1550 }
1551 
1552 void
TestThaiSpellout()1553 IntlTestRBNF::TestThaiSpellout()
1554 {
1555     UErrorCode status = U_ZERO_ERROR;
1556     RuleBasedNumberFormat* formatter
1557         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
1558 
1559     if (U_FAILURE(status)) {
1560         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1561     } else {
1562         static const char* const testData[][2] = {
1563             { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
1564             { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
1565             { "10", "\\u0e2a\\u0e34\\u0e1a" },
1566             { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
1567             { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
1568             { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
1569             { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
1570             { NULL, NULL}
1571         };
1572 
1573         doTest(formatter, testData, TRUE);
1574     }
1575     delete formatter;
1576 }
1577 
1578 void
TestSwedishSpellout()1579 IntlTestRBNF::TestSwedishSpellout()
1580 {
1581     UErrorCode status = U_ZERO_ERROR;
1582     RuleBasedNumberFormat* formatter
1583         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status);
1584 
1585     if (U_FAILURE(status)) {
1586         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1587     } else {
1588         static const char* testDataDefault[][2] = {
1589             { "101", "ett\\u00adhundra\\u00adett" },
1590             { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" },
1591             { "1,001", "et\\u00adtusen ett" },
1592             { "1,100", "et\\u00adtusen ett\\u00adhundra" },
1593             { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
1594             { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" },
1595             { "10,001", "tio\\u00adtusen ett" },
1596             { "11,000", "elva\\u00adtusen" },
1597             { "12,000", "tolv\\u00adtusen" },
1598             { "20,000", "tjugo\\u00adtusen" },
1599             { "21,000", "tjugo\\u00adet\\u00adtusen" },
1600             { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
1601             { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" },
1602             { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" },
1603             { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" },
1604             { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" },
1605             { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" },
1606             { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" },
1607             { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" },
1608             { NULL, NULL }
1609         };
1610         doTest(formatter, testDataDefault, TRUE);
1611 
1612           static const char* testDataNeutrum[][2] = {
1613               { "101", "ett\\u00adhundra\\u00adett" },
1614               { "1,001", "et\\u00adtusen ett" },
1615               { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
1616               { "10,001", "tio\\u00adtusen ett" },
1617               { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
1618               { NULL, NULL }
1619           };
1620 
1621           formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status);
1622           if (U_SUCCESS(status)) {
1623           logln("        testing spellout-cardinal-neuter rules");
1624           doTest(formatter, testDataNeutrum, TRUE);
1625           }
1626           else {
1627           errln("Can't test spellout-cardinal-neuter rules");
1628           }
1629 
1630         static const char* testDataYear[][2] = {
1631             { "101", "ett\\u00adhundra\\u00adett" },
1632             { "900", "nio\\u00adhundra" },
1633             { "1,001", "et\\u00adtusen ett" },
1634             { "1,100", "elva\\u00adhundra" },
1635             { "1,101", "elva\\u00adhundra\\u00adett" },
1636             { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" },
1637             { "2,001", "tjugo\\u00adhundra\\u00adett" },
1638             { "10,001", "tio\\u00adtusen ett" },
1639             { NULL, NULL }
1640         };
1641 
1642         status = U_ZERO_ERROR;
1643         formatter->setDefaultRuleSet("%spellout-numbering-year", status);
1644         if (U_SUCCESS(status)) {
1645             logln("testing year rules");
1646             doTest(formatter, testDataYear, TRUE);
1647         }
1648         else {
1649             errln("Can't test year rules");
1650         }
1651 
1652     }
1653     delete formatter;
1654 }
1655 
1656 void
TestSmallValues()1657 IntlTestRBNF::TestSmallValues()
1658 {
1659     UErrorCode status = U_ZERO_ERROR;
1660     RuleBasedNumberFormat* formatter
1661         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status);
1662 
1663     if (U_FAILURE(status)) {
1664         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1665     } else {
1666         static const char* const testDataDefault[][2] = {
1667         { "0.001", "zero point zero zero one" },
1668         { "0.0001", "zero point zero zero zero one" },
1669         { "0.00001", "zero point zero zero zero zero one" },
1670         { "0.000001", "zero point zero zero zero zero zero one" },
1671         { "0.0000001", "zero point zero zero zero zero zero zero one" },
1672         { "0.00000001", "zero point zero zero zero zero zero zero zero one" },
1673         { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" },
1674         { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" },
1675         { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" },
1676         { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" },
1677         { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" },
1678         { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
1679         { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
1680         { "10,000,000.001", "ten million point zero zero one" },
1681         { "10,000,000.0001", "ten million point zero zero zero one" },
1682         { "10,000,000.00001", "ten million point zero zero zero zero one" },
1683         { "10,000,000.000001", "ten million point zero zero zero zero zero one" },
1684         { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" },
1685 //        { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" },
1686 //        { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" },
1687         { "10,000,000", "ten million" },
1688 //        { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" },
1689 //        { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" },
1690 //        { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" },
1691         { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" },
1692         { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" },
1693         { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" },
1694         { "1,234.4321", "one thousand two hundred thirty-four point four three two one" },
1695         { "123.321", "one hundred twenty-three point three two one" },
1696         { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" },
1697         { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" },
1698         { NULL, NULL }
1699         };
1700 
1701         doTest(formatter, testDataDefault, TRUE);
1702 
1703         delete formatter;
1704     }
1705 }
1706 
1707 void
TestLocalizations(void)1708 IntlTestRBNF::TestLocalizations(void)
1709 {
1710     int i;
1711     UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n"
1712         "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need");
1713 
1714     UErrorCode status = U_ZERO_ERROR;
1715     UParseError perror;
1716     RuleBasedNumberFormat formatter(rules, perror, status);
1717     if (U_FAILURE(status)) {
1718         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
1719     } else {
1720         {
1721             static const char* const testData[][2] = {
1722                 { "0", "nada" },
1723                 { "5", "yah, some" },
1724                 { "423", "plenty" },
1725                 { "12345", "more'n you'll ever need" },
1726                 { NULL, NULL }
1727             };
1728             doTest(&formatter, testData, FALSE);
1729         }
1730 
1731         {
1732             UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>");
1733             static const char* const testData[][2] = {
1734                 { "0", "no" },
1735                 { "5", "some" },
1736                 { "423", "a lot" },
1737                 { "12345", "tons" },
1738                 { NULL, NULL }
1739             };
1740             RuleBasedNumberFormat formatter0(rules, loc, perror, status);
1741             if (U_FAILURE(status)) {
1742                 errln("failed to build second formatter");
1743             } else {
1744                 doTest(&formatter0, testData, FALSE);
1745 
1746                 {
1747                 // exercise localization info
1748                     Locale locale0("en__VALLEY@turkey=gobblegobble");
1749                     Locale locale1("de_DE_FOO");
1750                     Locale locale2("ja_JP");
1751                     UnicodeString name = formatter0.getRuleSetName(0);
1752                     if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main"
1753                       && formatter0.getRuleSetDisplayName(0, locale1) == "das Main"
1754                       && formatter0.getRuleSetDisplayName(0, locale2) == "%main"
1755                       && formatter0.getRuleSetDisplayName(name, locale0) == "Main"
1756                       && formatter0.getRuleSetDisplayName(name, locale1) == "das Main"
1757                       && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){
1758                           logln("getRuleSetDisplayName tested");
1759                     }else {
1760                         errln("failed to getRuleSetDisplayName");
1761                     }
1762                 }
1763 
1764                 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) {
1765                     Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status);
1766                     if (U_SUCCESS(status)) {
1767                         for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) {
1768                             UnicodeString name = formatter0.getRuleSetName(j);
1769                             UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale);
1770                             UnicodeString msg = locale.getName();
1771                             msg.append(": ");
1772                             msg.append(name);
1773                             msg.append(" = ");
1774                             msg.append(lname);
1775                             logln(msg);
1776                         }
1777                     }
1778                 }
1779             }
1780         }
1781 
1782         {
1783             static const char* goodLocs[] = {
1784                 "", // zero-length ok, same as providing no localization data
1785                 "<<>>", // no public rule sets ok
1786                 "<<%main>>", // no localizations ok
1787                 "<<%main,>,<en, Main,>>", // comma before close angle ok
1788                 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote
1789                 "<<%main>,<'en', \"it's ok\">>", // double quotes work too
1790                 "  \n <\n  <\n  %main\n  >\n  , \t <\t   en\t  ,  \tfoo \t\t > \n\n >  \n ", // Pattern_White_Space ok
1791            };
1792             int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]);
1793 
1794             static const char* badLocs[] = {
1795                 " ", // non-zero length
1796                 "<>", // empty array
1797                 "<", // unclosed outer array
1798                 "<<", // unclosed inner array
1799                 "<<,>>", // unexpected comma
1800                 "<<''>>", // empty string
1801                 "  x<<%main>>", // first non space char not open angle bracket
1802                 "<%main>", // missing inner array
1803                 "<<%main %other>>", // elements missing separating commma (spaces must be quoted)
1804                 "<<%main><en, Main>>", // arrays missing separating comma
1805                 "<<%main>,<en, main, foo>>", // too many elements in locale data
1806                 "<<%main>,<en>>", // too few elements in locale data
1807                 "<<<%main>>>", // unexpected open angle
1808                 "<<%main<>>>", // unexpected open angle
1809                 "<<%main, %other>,<en,,>>", // implicit empty strings
1810                 "<<%main>,<en,''>>", // empty string
1811                 "<<%main>, < en, '>>", // unterminated quote
1812                 "<<%main>, < en, \"<>>", // unterminated quote
1813                 "<<%main\">>", // quote in string
1814                 "<<%main'>>", // quote in string
1815                 "<<%main<>>", // open angle in string
1816                 "<<%main>> x", // extra non-space text at end
1817 
1818             };
1819             int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]);
1820 
1821             for (i = 0; i < goodLocsLen; ++i) {
1822                 logln("[%d] '%s'", i, goodLocs[i]);
1823                 UErrorCode status = U_ZERO_ERROR;
1824                 UnicodeString loc(goodLocs[i]);
1825                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
1826                 if (U_FAILURE(status)) {
1827                     errln("Failed parse of good localization string: '%s'", goodLocs[i]);
1828                 }
1829             }
1830 
1831             for (i = 0; i < badLocsLen; ++i) {
1832                 logln("[%d] '%s'", i, badLocs[i]);
1833                 UErrorCode status = U_ZERO_ERROR;
1834                 UnicodeString loc(badLocs[i]);
1835                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
1836                 if (U_SUCCESS(status)) {
1837                     errln("Successful parse of bad localization string: '%s'", badLocs[i]);
1838                 }
1839             }
1840         }
1841     }
1842 }
1843 
1844 void
TestAllLocales()1845 IntlTestRBNF::TestAllLocales()
1846 {
1847     const char* names[] = {
1848         " (spellout) ",
1849         " (ordinal)  "
1850         // " (duration) " // This is English only, and it's not really supported in CLDR anymore.
1851     };
1852     double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111};
1853 
1854     int32_t count = 0;
1855     const Locale* locales = Locale::getAvailableLocales(count);
1856     for (int i = 0; i < count; ++i) {
1857         const Locale* loc = &locales[i];
1858 
1859         for (int j = 0; j < 2; ++j) {
1860             UErrorCode status = U_ZERO_ERROR;
1861             RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status);
1862 
1863             if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) {
1864                 // Skip it.
1865                 delete f;
1866                 break;
1867             }
1868             if (U_FAILURE(status)) {
1869                 errln(UnicodeString(loc->getName()) + names[j]
1870                     + "ERROR could not instantiate -> " + u_errorName(status));
1871                 continue;
1872             }
1873 #if !UCONFIG_NO_COLLATION
1874             for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) {
1875                 double n = numbers[numidx];
1876                 UnicodeString str;
1877                 f->format(n, str);
1878 
1879                 if (verbose) {
1880                     logln(UnicodeString(loc->getName()) + names[j]
1881                         + "success: " + n + " -> " + str);
1882                 }
1883 
1884                 // We do not validate the result in this test case,
1885                 // because there are cases which do not round trip by design.
1886                 Formattable num;
1887 
1888                 // regular parse
1889                 status = U_ZERO_ERROR;
1890                 f->setLenient(FALSE);
1891                 f->parse(str, num, status);
1892                 if (U_FAILURE(status)) {
1893                     errln(UnicodeString(loc->getName()) + names[j]
1894                         + "ERROR could not parse '" + str + "' -> " + u_errorName(status));
1895                 }
1896                 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
1897                 if (j == 0) {
1898                     if (num.getType() == Formattable::kLong && num.getLong() != n) {
1899                         errln(UnicodeString(loc->getName()) + names[j]
1900                             + UnicodeString("ERROR could not roundtrip ") + n
1901                             + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
1902                     }
1903                     else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
1904                         // The epsilon difference is too high.
1905                         errln(UnicodeString(loc->getName()) + names[j]
1906                             + UnicodeString("ERROR could not roundtrip ") + n
1907                             + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
1908                     }
1909                 }
1910                 if (!quick && !logKnownIssue("9503") ) {
1911                     // lenient parse
1912                     status = U_ZERO_ERROR;
1913                     f->setLenient(TRUE);
1914                     f->parse(str, num, status);
1915                     if (U_FAILURE(status)) {
1916                         errln(UnicodeString(loc->getName()) + names[j]
1917                             + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status));
1918                     }
1919                     // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
1920                     if (j == 0) {
1921                         if (num.getType() == Formattable::kLong && num.getLong() != n) {
1922                             errln(UnicodeString(loc->getName()) + names[j]
1923                                 + UnicodeString("ERROR could not roundtrip ") + n
1924                                 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
1925                         }
1926                         else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
1927                             // The epsilon difference is too high.
1928                             errln(UnicodeString(loc->getName()) + names[j]
1929                                 + UnicodeString("ERROR could not roundtrip ") + n
1930                                 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
1931                         }
1932                     }
1933                 }
1934             }
1935 #endif
1936             delete f;
1937         }
1938     }
1939 }
1940 
1941 void
TestMultiplierSubstitution(void)1942 IntlTestRBNF::TestMultiplierSubstitution(void) {
1943     UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;");
1944     UErrorCode status = U_ZERO_ERROR;
1945     UParseError parse_error;
1946     RuleBasedNumberFormat *rbnf =
1947         new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status);
1948     if (U_SUCCESS(status)) {
1949         UnicodeString res;
1950         FieldPosition pos;
1951         double n = 1234000.0;
1952         rbnf->format(n, res, pos);
1953         delete rbnf;
1954 
1955         UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million"));
1956         if (expected != res) {
1957             UnicodeString msg = "Expected: ";
1958             msg.append(expected);
1959             msg.append(" but got ");
1960             msg.append(res);
1961             errln(msg);
1962         }
1963     }
1964 }
1965 
1966 void
TestSetDecimalFormatSymbols()1967 IntlTestRBNF::TestSetDecimalFormatSymbols() {
1968     UErrorCode status = U_ZERO_ERROR;
1969 
1970     RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status);
1971     if (U_FAILURE(status)) {
1972         dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
1973         return;
1974     }
1975 
1976     DecimalFormatSymbols dfs(Locale::getEnglish(), status);
1977     if (U_FAILURE(status)) {
1978         errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status)));
1979         return;
1980     }
1981 
1982     UnicodeString expected[] = {
1983             UnicodeString("1,001st"),
1984             UnicodeString("1&001st")
1985     };
1986 
1987     double number = 1001;
1988 
1989     UnicodeString result;
1990 
1991     rbnf.format(number, result);
1992     if (result != expected[0]) {
1993         errln("Format Error - Got: " + result + " Expected: " + expected[0]);
1994     }
1995 
1996     result.remove();
1997 
1998     /* Set new symbol for testing */
1999     dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE);
2000     rbnf.setDecimalFormatSymbols(dfs);
2001 
2002     rbnf.format(number, result);
2003     if (result != expected[1]) {
2004         errln("Format Error - Got: " + result + " Expected: " + expected[1]);
2005     }
2006 }
2007 
TestPluralRules()2008 void IntlTestRBNF::TestPluralRules() {
2009     UErrorCode status = U_ZERO_ERROR;
2010     UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;");
2011     UParseError parseError;
2012     RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status);
2013     if (U_FAILURE(status)) {
2014         dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
2015         return;
2016     }
2017     const char* const enTestData[][2] = {
2018             { "1", "1st" },
2019             { "2", "2nd" },
2020             { "3", "3rd" },
2021             { "4", "4th" },
2022             { "11", "11th" },
2023             { "12", "12th" },
2024             { "13", "13th" },
2025             { "14", "14th" },
2026             { "21", "21st" },
2027             { "22", "22nd" },
2028             { "23", "23rd" },
2029             { "24", "24th" },
2030             { NULL, NULL }
2031     };
2032 
2033     doTest(&enFormatter, enTestData, TRUE);
2034 
2035     // This is trying to model the feminine form, but don't worry about the details too much.
2036     // We're trying to test the plural rules.
2037     UnicodeString ruRules("%spellout-numbering:"
2038             "-x: minus >>;"
2039             "x.x: << point >>;"
2040             "0: zero;"
2041             "1: one;"
2042             "2: two;"
2043             "3: three;"
2044             "4: four;"
2045             "5: five;"
2046             "6: six;"
2047             "7: seven;"
2048             "8: eight;"
2049             "9: nine;"
2050             "10: ten;"
2051             "11: eleven;"
2052             "12: twelve;"
2053             "13: thirteen;"
2054             "14: fourteen;"
2055             "15: fifteen;"
2056             "16: sixteen;"
2057             "17: seventeen;"
2058             "18: eighteen;"
2059             "19: nineteen;"
2060             "20: twenty[->>];"
2061             "30: thirty[->>];"
2062             "40: forty[->>];"
2063             "50: fifty[->>];"
2064             "60: sixty[->>];"
2065             "70: seventy[->>];"
2066             "80: eighty[->>];"
2067             "90: ninety[->>];"
2068             "100: hundred[ >>];"
2069             "200: << hundred[ >>];"
2070             "300: << hundreds[ >>];"
2071             "500: << hundredss[ >>];"
2072             "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];"
2073             "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];");
2074     RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status);
2075     const char* const ruTestData[][2] = {
2076             { "1", "one" },
2077             { "100", "hundred" },
2078             { "125", "hundred twenty-five" },
2079             { "399", "three hundreds ninety-nine" },
2080             { "1,000", "one thousand" },
2081             { "1,001", "one thousand one" },
2082             { "2,000", "two thousands" },
2083             { "2,001", "two thousands one" },
2084             { "2,002", "two thousands two" },
2085             { "3,333", "three thousands three hundreds thirty-three" },
2086             { "5,000", "five thousandss" },
2087             { "11,000", "eleven thousandss" },
2088             { "21,000", "twenty-one thousand" },
2089             { "22,000", "twenty-two thousands" },
2090             { "25,001", "twenty-five thousandss one" },
2091             { NULL, NULL }
2092     };
2093 
2094     if (U_FAILURE(status)) {
2095         errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
2096         return;
2097     }
2098     doTest(&ruFormatter, ruTestData, TRUE);
2099 
2100     // Make sure there are no divide by 0 errors.
2101     UnicodeString result;
2102     RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result);
2103     if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) {
2104         errln("Got " + result + " for 21000");
2105     }
2106 
2107 }
2108 
2109 void
doTest(RuleBasedNumberFormat * formatter,const char * const testData[][2],UBool testParsing)2110 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing)
2111 {
2112   // man, error reporting would be easier with printf-style syntax for unicode string and formattable
2113 
2114     UErrorCode status = U_ZERO_ERROR;
2115     DecimalFormatSymbols dfs("en", status);
2116     // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
2117     DecimalFormat decFmt("#,###.################", dfs, status);
2118     if (U_FAILURE(status)) {
2119         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
2120     } else {
2121         for (int i = 0; testData[i][0]; ++i) {
2122             const char* numString = testData[i][0];
2123             const char* expectedWords = testData[i][1];
2124 
2125             log("[%i] %s = ", i, numString);
2126             Formattable expectedNumber;
2127             decFmt.parse(numString, expectedNumber, status);
2128             if (U_FAILURE(status)) {
2129                 errln("FAIL: decFmt could not parse %s", numString);
2130                 break;
2131             } else {
2132                 UnicodeString actualString;
2133                 FieldPosition pos;
2134                 formatter->format(expectedNumber, actualString/* , pos*/, status);
2135                 if (U_FAILURE(status)) {
2136                     UnicodeString msg = "Fail: formatter could not format ";
2137                     decFmt.format(expectedNumber, msg, status);
2138                     errln(msg);
2139                     break;
2140                 } else {
2141                     UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape();
2142                     if (actualString != expectedString) {
2143                         UnicodeString msg = "FAIL: check failed for ";
2144                         decFmt.format(expectedNumber, msg, status);
2145                         msg.append(", expected ");
2146                         msg.append(expectedString);
2147                         msg.append(" but got ");
2148                         msg.append(actualString);
2149                         errln(msg);
2150                         break;
2151                     } else {
2152                         logln(actualString);
2153                         if (testParsing) {
2154                             Formattable parsedNumber;
2155                             formatter->parse(actualString, parsedNumber, status);
2156                             if (U_FAILURE(status)) {
2157                                 UnicodeString msg = "FAIL: formatter could not parse ";
2158                                 msg.append(actualString);
2159                                 msg.append(" status code: " );
2160                                 msg.append(u_errorName(status));
2161                                 errln(msg);
2162                                 break;
2163                             } else {
2164                                 if (parsedNumber != expectedNumber) {
2165                                     UnicodeString msg = "FAIL: parse failed for ";
2166                                     msg.append(actualString);
2167                                     msg.append(", expected ");
2168                                     decFmt.format(expectedNumber, msg, status);
2169                                     msg.append(", but got ");
2170                                     decFmt.format(parsedNumber, msg, status);
2171                                     errln(msg);
2172                                     break;
2173                                 }
2174                             }
2175                         }
2176                     }
2177                 }
2178             }
2179         }
2180     }
2181 }
2182 
2183 void
doLenientParseTest(RuleBasedNumberFormat * formatter,const char * testData[][2])2184 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2])
2185 {
2186     UErrorCode status = U_ZERO_ERROR;
2187     NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
2188     if (U_FAILURE(status)) {
2189         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
2190     } else {
2191         for (int i = 0; testData[i][0]; ++i) {
2192             const char* spelledNumber = testData[i][0]; // spelled-out number
2193             const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
2194 
2195             UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
2196             Formattable actualNumber;
2197             formatter->parse(spelledNumberString, actualNumber, status);
2198             if (U_FAILURE(status)) {
2199                 UnicodeString msg = "FAIL: formatter could not parse ";
2200                 msg.append(spelledNumberString);
2201                 errln(msg);
2202                 break;
2203             } else {
2204                 // I changed the logic of this test somewhat from Java-- instead of comparing the
2205                 // strings, I compare the Formattables.  Hmmm, but the Formattables don't compare,
2206                 // so change it back.
2207 
2208                 UnicodeString asciiUSNumberString = asciiUSNumber;
2209                 Formattable expectedNumber;
2210                 decFmt->parse(asciiUSNumberString, expectedNumber, status);
2211                 if (U_FAILURE(status)) {
2212                     UnicodeString msg = "FAIL: decFmt could not parse ";
2213                     msg.append(asciiUSNumberString);
2214                     errln(msg);
2215                     break;
2216                 } else {
2217                     UnicodeString actualNumberString;
2218                     UnicodeString expectedNumberString;
2219                     decFmt->format(actualNumber, actualNumberString, status);
2220                     decFmt->format(expectedNumber, expectedNumberString, status);
2221                     if (actualNumberString != expectedNumberString) {
2222                         UnicodeString msg = "FAIL: parsing";
2223                         msg.append(asciiUSNumberString);
2224                         msg.append("\n");
2225                         msg.append("  lenient parse failed for ");
2226                         msg.append(spelledNumberString);
2227                         msg.append(", expected ");
2228                         msg.append(expectedNumberString);
2229                         msg.append(", but got ");
2230                         msg.append(actualNumberString);
2231                         errln(msg);
2232                         break;
2233                     }
2234                 }
2235             }
2236         }
2237         delete decFmt;
2238     }
2239 }
2240 
2241 /* U_HAVE_RBNF */
2242 #else
2243 
2244 void
TestRBNFDisabled()2245 IntlTestRBNF::TestRBNFDisabled() {
2246     errln("*** RBNF currently disabled on this platform ***\n");
2247 }
2248 
2249 /* U_HAVE_RBNF */
2250 #endif
2251 
2252 #endif /* #if !UCONFIG_NO_FORMATTING */
2253