1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2000-2014, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 *
9 * File reslist.c
10 *
11 * Modification History:
12 *
13 * Date Name Description
14 * 02/21/00 weiv Creation.
15 *******************************************************************************
16 */
17
18 #include <assert.h>
19 #include <stdio.h>
20 #include "reslist.h"
21 #include "unewdata.h"
22 #include "unicode/ures.h"
23 #include "unicode/putil.h"
24 #include "errmsg.h"
25
26 #include "uarrsort.h"
27 #include "uelement.h"
28 #include "uhash.h"
29 #include "uinvchar.h"
30 #include "ustr_imp.h"
31 #include "unicode/utf16.h"
32 /*
33 * Align binary data at a 16-byte offset from the start of the resource bundle,
34 * to be safe for any data type it may contain.
35 */
36 #define BIN_ALIGNMENT 16
37
38 static UBool gIncludeCopyright = FALSE;
39 static UBool gUsePoolBundle = FALSE;
40 static int32_t gFormatVersion = 2;
41
42 static UChar gEmptyString = 0;
43
44 /* How do we store string values? */
45 enum {
46 STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */
47 STRINGS_UTF16_V2 /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */
48 };
49
50 enum {
51 MAX_IMPLICIT_STRING_LENGTH = 40 /* do not store the length explicitly for such strings */
52 };
53
54 /*
55 * res_none() returns the address of kNoResource,
56 * for use in non-error cases when no resource is to be added to the bundle.
57 * (NULL is used in error cases.)
58 */
59 static const struct SResource kNoResource = { URES_NONE };
60
61 static UDataInfo dataInfo= {
62 sizeof(UDataInfo),
63 0,
64
65 U_IS_BIG_ENDIAN,
66 U_CHARSET_FAMILY,
67 sizeof(UChar),
68 0,
69
70 {0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */
71 {1, 3, 0, 0}, /* formatVersion */
72 {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/
73 };
74
75 static const UVersionInfo gFormatVersions[3] = { /* indexed by a major-formatVersion integer */
76 { 0, 0, 0, 0 },
77 { 1, 3, 0, 0 },
78 { 2, 0, 0, 0 }
79 };
80
calcPadding(uint32_t size)81 static uint8_t calcPadding(uint32_t size) {
82 /* returns space we need to pad */
83 return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0);
84
85 }
86
setIncludeCopyright(UBool val)87 void setIncludeCopyright(UBool val){
88 gIncludeCopyright=val;
89 }
90
getIncludeCopyright(void)91 UBool getIncludeCopyright(void){
92 return gIncludeCopyright;
93 }
94
setFormatVersion(int32_t formatVersion)95 void setFormatVersion(int32_t formatVersion) {
96 gFormatVersion = formatVersion;
97 }
98
setUsePoolBundle(UBool use)99 void setUsePoolBundle(UBool use) {
100 gUsePoolBundle = use;
101 }
102
103 static void
104 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status);
105
106 /* Writing Functions */
107
108 /*
109 * Preflight strings.
110 * Find duplicates and count the total number of string code units
111 * so that they can be written first to the 16-bit array,
112 * for minimal string and container storage.
113 *
114 * We walk the final parse tree, rather than collecting this information while building it,
115 * so that we need not deal with changes to the parse tree (especially removing resources).
116 */
117 static void
118 res_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
119 UErrorCode *status);
120
121 /*
122 * type_write16() functions write resource values into f16BitUnits
123 * and determine the resource item word, if possible.
124 */
125 static void
126 res_write16(struct SRBRoot *bundle, struct SResource *res,
127 UErrorCode *status);
128
129 /*
130 * type_preWrite() functions calculate ("preflight") and advance the *byteOffset
131 * by the size of their data in the binary file and
132 * determine the resource item word.
133 * Most type_preWrite() functions may add any number of bytes, but res_preWrite()
134 * will always pad it to a multiple of 4.
135 * The resource item type may be a related subtype of the fType.
136 *
137 * The type_preWrite() and type_write() functions start and end at the same
138 * byteOffset values.
139 * Prewriting allows bundle_write() to determine the root resource item word,
140 * before actually writing the bundle contents to the file,
141 * which is necessary because the root item is stored at the beginning.
142 */
143 static void
144 res_preWrite(uint32_t *byteOffset,
145 struct SRBRoot *bundle, struct SResource *res,
146 UErrorCode *status);
147
148 /*
149 * type_write() functions write their data to mem and update the byteOffset
150 * in parallel.
151 * (A kingdom for C++ and polymorphism...)
152 */
153 static void
154 res_write(UNewDataMemory *mem, uint32_t *byteOffset,
155 struct SRBRoot *bundle, struct SResource *res,
156 UErrorCode *status);
157
158 static void
string_preflightStrings(struct SRBRoot * bundle,struct SResource * res,UHashtable * stringSet,UErrorCode * status)159 string_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
160 UErrorCode *status) {
161 res->u.fString.fSame = uhash_get(stringSet, res);
162 if (res->u.fString.fSame != NULL) {
163 return; /* This is a duplicate of an earlier-visited string. */
164 }
165 /* Put this string into the set for finding duplicates. */
166 uhash_put(stringSet, res, res, status);
167
168 if (bundle->fStringsForm != STRINGS_UTF16_V1) {
169 const UChar *s = res->u.fString.fChars;
170 int32_t len = res->u.fString.fLength;
171 if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(s[0]) && len == u_strlen(s)) {
172 /*
173 * This string will be stored without an explicit length.
174 * Runtime will detect !U16_IS_TRAIL(s[0]) and call u_strlen().
175 */
176 res->u.fString.fNumCharsForLength = 0;
177 } else if (len <= 0x3ee) {
178 res->u.fString.fNumCharsForLength = 1;
179 } else if (len <= 0xfffff) {
180 res->u.fString.fNumCharsForLength = 2;
181 } else {
182 res->u.fString.fNumCharsForLength = 3;
183 }
184 bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1; /* +1 for the NUL */
185 }
186 }
187
188 static void
array_preflightStrings(struct SRBRoot * bundle,struct SResource * res,UHashtable * stringSet,UErrorCode * status)189 array_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
190 UErrorCode *status) {
191 struct SResource *current;
192
193 if (U_FAILURE(*status)) {
194 return;
195 }
196 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
197 res_preflightStrings(bundle, current, stringSet, status);
198 }
199 }
200
201 static void
table_preflightStrings(struct SRBRoot * bundle,struct SResource * res,UHashtable * stringSet,UErrorCode * status)202 table_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
203 UErrorCode *status) {
204 struct SResource *current;
205
206 if (U_FAILURE(*status)) {
207 return;
208 }
209 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
210 res_preflightStrings(bundle, current, stringSet, status);
211 }
212 }
213
214 static void
res_preflightStrings(struct SRBRoot * bundle,struct SResource * res,UHashtable * stringSet,UErrorCode * status)215 res_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
216 UErrorCode *status) {
217 if (U_FAILURE(*status) || res == NULL) {
218 return;
219 }
220 if (res->fRes != RES_BOGUS) {
221 /*
222 * The resource item word was already precomputed, which means
223 * no further data needs to be written.
224 * This might be an integer, or an empty string/binary/etc.
225 */
226 return;
227 }
228 switch (res->fType) {
229 case URES_STRING:
230 string_preflightStrings(bundle, res, stringSet, status);
231 break;
232 case URES_ARRAY:
233 array_preflightStrings(bundle, res, stringSet, status);
234 break;
235 case URES_TABLE:
236 table_preflightStrings(bundle, res, stringSet, status);
237 break;
238 default:
239 /* Neither a string nor a container. */
240 break;
241 }
242 }
243
244 static uint16_t *
reserve16BitUnits(struct SRBRoot * bundle,int32_t length,UErrorCode * status)245 reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) {
246 if (U_FAILURE(*status)) {
247 return NULL;
248 }
249 if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) {
250 uint16_t *newUnits;
251 int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024;
252 capacity &= ~1; /* ensures padding fits if f16BitUnitsLength needs it */
253 newUnits = (uint16_t *)uprv_malloc(capacity * 2);
254 if (newUnits == NULL) {
255 *status = U_MEMORY_ALLOCATION_ERROR;
256 return NULL;
257 }
258 if (bundle->f16BitUnitsLength > 0) {
259 uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2);
260 } else {
261 newUnits[0] = 0;
262 bundle->f16BitUnitsLength = 1;
263 }
264 uprv_free(bundle->f16BitUnits);
265 bundle->f16BitUnits = newUnits;
266 bundle->f16BitUnitsCapacity = capacity;
267 }
268 return bundle->f16BitUnits + bundle->f16BitUnitsLength;
269 }
270
271 static int32_t
makeRes16(uint32_t resWord)272 makeRes16(uint32_t resWord) {
273 uint32_t type, offset;
274 if (resWord == 0) {
275 return 0; /* empty string */
276 }
277 type = RES_GET_TYPE(resWord);
278 offset = RES_GET_OFFSET(resWord);
279 if (type == URES_STRING_V2 && offset <= 0xffff) {
280 return (int32_t)offset;
281 }
282 return -1;
283 }
284
285 static int32_t
mapKey(struct SRBRoot * bundle,int32_t oldpos)286 mapKey(struct SRBRoot *bundle, int32_t oldpos) {
287 const KeyMapEntry *map = bundle->fKeyMap;
288 int32_t i, start, limit;
289
290 /* do a binary search for the old, pre-bundle_compactKeys() key offset */
291 start = bundle->fPoolBundleKeysCount;
292 limit = start + bundle->fKeysCount;
293 while (start < limit - 1) {
294 i = (start + limit) / 2;
295 if (oldpos < map[i].oldpos) {
296 limit = i;
297 } else {
298 start = i;
299 }
300 }
301 assert(oldpos == map[start].oldpos);
302 return map[start].newpos;
303 }
304
305 static uint16_t
makeKey16(struct SRBRoot * bundle,int32_t key)306 makeKey16(struct SRBRoot *bundle, int32_t key) {
307 if (key >= 0) {
308 return (uint16_t)key;
309 } else {
310 return (uint16_t)(key + bundle->fLocalKeyLimit); /* offset in the pool bundle */
311 }
312 }
313
314 /*
315 * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings.
316 * For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS
317 * and exits early.
318 */
319 static void
string_write16(struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)320 string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) {
321 struct SResource *same;
322 if ((same = res->u.fString.fSame) != NULL) {
323 /* This is a duplicate. */
324 assert(same->fRes != RES_BOGUS && same->fWritten);
325 res->fRes = same->fRes;
326 res->fWritten = same->fWritten;
327 }
328 }
329
330 static void
array_write16(struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)331 array_write16(struct SRBRoot *bundle, struct SResource *res,
332 UErrorCode *status) {
333 struct SResource *current;
334 int32_t res16 = 0;
335
336 if (U_FAILURE(*status)) {
337 return;
338 }
339 if (res->u.fArray.fCount == 0 && gFormatVersion > 1) {
340 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY);
341 res->fWritten = TRUE;
342 return;
343 }
344 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
345 res_write16(bundle, current, status);
346 res16 |= makeRes16(current->fRes);
347 }
348 if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) {
349 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status);
350 if (U_SUCCESS(*status)) {
351 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength);
352 *p16++ = (uint16_t)res->u.fArray.fCount;
353 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
354 *p16++ = (uint16_t)makeRes16(current->fRes);
355 }
356 bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount;
357 res->fWritten = TRUE;
358 }
359 }
360 }
361
362 static void
table_write16(struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)363 table_write16(struct SRBRoot *bundle, struct SResource *res,
364 UErrorCode *status) {
365 struct SResource *current;
366 int32_t maxKey = 0, maxPoolKey = 0x80000000;
367 int32_t res16 = 0;
368 UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE;
369
370 if (U_FAILURE(*status)) {
371 return;
372 }
373 if (res->u.fTable.fCount == 0 && gFormatVersion > 1) {
374 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE);
375 res->fWritten = TRUE;
376 return;
377 }
378 /* Find the smallest table type that fits the data. */
379 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
380 int32_t key;
381 res_write16(bundle, current, status);
382 if (bundle->fKeyMap == NULL) {
383 key = current->fKey;
384 } else {
385 key = current->fKey = mapKey(bundle, current->fKey);
386 }
387 if (key >= 0) {
388 hasLocalKeys = TRUE;
389 if (key > maxKey) {
390 maxKey = key;
391 }
392 } else {
393 hasPoolKeys = TRUE;
394 if (key > maxPoolKey) {
395 maxPoolKey = key;
396 }
397 }
398 res16 |= makeRes16(current->fRes);
399 }
400 if (U_FAILURE(*status)) {
401 return;
402 }
403 if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) {
404 bundle->fMaxTableLength = res->u.fTable.fCount;
405 }
406 maxPoolKey &= 0x7fffffff;
407 if (res->u.fTable.fCount <= 0xffff &&
408 (!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) &&
409 (!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit))
410 ) {
411 if (res16 >= 0 && gFormatVersion > 1) {
412 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status);
413 if (U_SUCCESS(*status)) {
414 /* 16-bit count, key offsets and values */
415 res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength);
416 *p16++ = (uint16_t)res->u.fTable.fCount;
417 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
418 *p16++ = makeKey16(bundle, current->fKey);
419 }
420 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
421 *p16++ = (uint16_t)makeRes16(current->fRes);
422 }
423 bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2;
424 res->fWritten = TRUE;
425 }
426 } else {
427 /* 16-bit count, 16-bit key offsets, 32-bit values */
428 res->u.fTable.fType = URES_TABLE;
429 }
430 } else {
431 /* 32-bit count, key offsets and values */
432 res->u.fTable.fType = URES_TABLE32;
433 }
434 }
435
436 static void
res_write16(struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)437 res_write16(struct SRBRoot *bundle, struct SResource *res,
438 UErrorCode *status) {
439 if (U_FAILURE(*status) || res == NULL) {
440 return;
441 }
442 if (res->fRes != RES_BOGUS) {
443 /*
444 * The resource item word was already precomputed, which means
445 * no further data needs to be written.
446 * This might be an integer, or an empty or UTF-16 v2 string,
447 * an empty binary, etc.
448 */
449 return;
450 }
451 switch (res->fType) {
452 case URES_STRING:
453 string_write16(bundle, res, status);
454 break;
455 case URES_ARRAY:
456 array_write16(bundle, res, status);
457 break;
458 case URES_TABLE:
459 table_write16(bundle, res, status);
460 break;
461 default:
462 /* Only a few resource types write 16-bit units. */
463 break;
464 }
465 }
466
467 /*
468 * Only called for UTF-16 v1 strings.
469 * For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS
470 * and exits early.
471 */
472 static void
string_preWrite(uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)473 string_preWrite(uint32_t *byteOffset,
474 struct SRBRoot *bundle, struct SResource *res,
475 UErrorCode *status) {
476 /* Write the UTF-16 v1 string. */
477 res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2);
478 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
479 }
480
481 static void
bin_preWrite(uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)482 bin_preWrite(uint32_t *byteOffset,
483 struct SRBRoot *bundle, struct SResource *res,
484 UErrorCode *status) {
485 uint32_t pad = 0;
486 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
487
488 if (dataStart % BIN_ALIGNMENT) {
489 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
490 *byteOffset += pad; /* pad == 4 or 8 or 12 */
491 }
492 res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2);
493 *byteOffset += 4 + res->u.fBinaryValue.fLength;
494 }
495
496 static void
array_preWrite(uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)497 array_preWrite(uint32_t *byteOffset,
498 struct SRBRoot *bundle, struct SResource *res,
499 UErrorCode *status) {
500 struct SResource *current;
501
502 if (U_FAILURE(*status)) {
503 return;
504 }
505 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
506 res_preWrite(byteOffset, bundle, current, status);
507 }
508 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2);
509 *byteOffset += (1 + res->u.fArray.fCount) * 4;
510 }
511
512 static void
table_preWrite(uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)513 table_preWrite(uint32_t *byteOffset,
514 struct SRBRoot *bundle, struct SResource *res,
515 UErrorCode *status) {
516 struct SResource *current;
517
518 if (U_FAILURE(*status)) {
519 return;
520 }
521 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
522 res_preWrite(byteOffset, bundle, current, status);
523 }
524 if (res->u.fTable.fType == URES_TABLE) {
525 /* 16-bit count, 16-bit key offsets, 32-bit values */
526 res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2);
527 *byteOffset += 2 + res->u.fTable.fCount * 6;
528 } else {
529 /* 32-bit count, key offsets and values */
530 res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2);
531 *byteOffset += 4 + res->u.fTable.fCount * 8;
532 }
533 }
534
535 static void
res_preWrite(uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)536 res_preWrite(uint32_t *byteOffset,
537 struct SRBRoot *bundle, struct SResource *res,
538 UErrorCode *status) {
539 if (U_FAILURE(*status) || res == NULL) {
540 return;
541 }
542 if (res->fRes != RES_BOGUS) {
543 /*
544 * The resource item word was already precomputed, which means
545 * no further data needs to be written.
546 * This might be an integer, or an empty or UTF-16 v2 string,
547 * an empty binary, etc.
548 */
549 return;
550 }
551 switch (res->fType) {
552 case URES_STRING:
553 string_preWrite(byteOffset, bundle, res, status);
554 break;
555 case URES_ALIAS:
556 res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2);
557 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
558 break;
559 case URES_INT_VECTOR:
560 if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) {
561 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR);
562 res->fWritten = TRUE;
563 } else {
564 res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2);
565 *byteOffset += (1 + res->u.fIntVector.fCount) * 4;
566 }
567 break;
568 case URES_BINARY:
569 bin_preWrite(byteOffset, bundle, res, status);
570 break;
571 case URES_INT:
572 break;
573 case URES_ARRAY:
574 array_preWrite(byteOffset, bundle, res, status);
575 break;
576 case URES_TABLE:
577 table_preWrite(byteOffset, bundle, res, status);
578 break;
579 default:
580 *status = U_INTERNAL_PROGRAM_ERROR;
581 break;
582 }
583 *byteOffset += calcPadding(*byteOffset);
584 }
585
586 /*
587 * Only called for UTF-16 v1 strings. For UTF-16 v2 strings,
588 * res_write() sees fWritten and exits early.
589 */
string_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)590 static void string_write(UNewDataMemory *mem, uint32_t *byteOffset,
591 struct SRBRoot *bundle, struct SResource *res,
592 UErrorCode *status) {
593 /* Write the UTF-16 v1 string. */
594 int32_t length = res->u.fString.fLength;
595 udata_write32(mem, length);
596 udata_writeUString(mem, res->u.fString.fChars, length + 1);
597 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
598 res->fWritten = TRUE;
599 }
600
alias_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)601 static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset,
602 struct SRBRoot *bundle, struct SResource *res,
603 UErrorCode *status) {
604 int32_t length = res->u.fString.fLength;
605 udata_write32(mem, length);
606 udata_writeUString(mem, res->u.fString.fChars, length + 1);
607 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
608 }
609
array_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)610 static void array_write(UNewDataMemory *mem, uint32_t *byteOffset,
611 struct SRBRoot *bundle, struct SResource *res,
612 UErrorCode *status) {
613 uint32_t i;
614
615 struct SResource *current = NULL;
616
617 if (U_FAILURE(*status)) {
618 return;
619 }
620 for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) {
621 res_write(mem, byteOffset, bundle, current, status);
622 }
623 assert(i == res->u.fArray.fCount);
624
625 udata_write32(mem, res->u.fArray.fCount);
626 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
627 udata_write32(mem, current->fRes);
628 }
629 *byteOffset += (1 + res->u.fArray.fCount) * 4;
630 }
631
intvector_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)632 static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset,
633 struct SRBRoot *bundle, struct SResource *res,
634 UErrorCode *status) {
635 uint32_t i = 0;
636 udata_write32(mem, res->u.fIntVector.fCount);
637 for(i = 0; i<res->u.fIntVector.fCount; i++) {
638 udata_write32(mem, res->u.fIntVector.fArray[i]);
639 }
640 *byteOffset += (1 + res->u.fIntVector.fCount) * 4;
641 }
642
bin_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)643 static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset,
644 struct SRBRoot *bundle, struct SResource *res,
645 UErrorCode *status) {
646 uint32_t pad = 0;
647 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
648
649 if (dataStart % BIN_ALIGNMENT) {
650 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
651 udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */
652 *byteOffset += pad;
653 }
654
655 udata_write32(mem, res->u.fBinaryValue.fLength);
656 if (res->u.fBinaryValue.fLength > 0) {
657 udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength);
658 }
659 *byteOffset += 4 + res->u.fBinaryValue.fLength;
660 }
661
table_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)662 static void table_write(UNewDataMemory *mem, uint32_t *byteOffset,
663 struct SRBRoot *bundle, struct SResource *res,
664 UErrorCode *status) {
665 struct SResource *current;
666 uint32_t i;
667
668 if (U_FAILURE(*status)) {
669 return;
670 }
671 for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) {
672 assert(i < res->u.fTable.fCount);
673 res_write(mem, byteOffset, bundle, current, status);
674 }
675 assert(i == res->u.fTable.fCount);
676
677 if(res->u.fTable.fType == URES_TABLE) {
678 udata_write16(mem, (uint16_t)res->u.fTable.fCount);
679 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
680 udata_write16(mem, makeKey16(bundle, current->fKey));
681 }
682 *byteOffset += (1 + res->u.fTable.fCount)* 2;
683 if ((res->u.fTable.fCount & 1) == 0) {
684 /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */
685 udata_writePadding(mem, 2);
686 *byteOffset += 2;
687 }
688 } else /* URES_TABLE32 */ {
689 udata_write32(mem, res->u.fTable.fCount);
690 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
691 udata_write32(mem, (uint32_t)current->fKey);
692 }
693 *byteOffset += (1 + res->u.fTable.fCount)* 4;
694 }
695 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
696 udata_write32(mem, current->fRes);
697 }
698 *byteOffset += res->u.fTable.fCount * 4;
699 }
700
res_write(UNewDataMemory * mem,uint32_t * byteOffset,struct SRBRoot * bundle,struct SResource * res,UErrorCode * status)701 void res_write(UNewDataMemory *mem, uint32_t *byteOffset,
702 struct SRBRoot *bundle, struct SResource *res,
703 UErrorCode *status) {
704 uint8_t paddingSize;
705
706 if (U_FAILURE(*status) || res == NULL) {
707 return;
708 }
709 if (res->fWritten) {
710 assert(res->fRes != RES_BOGUS);
711 return;
712 }
713 switch (res->fType) {
714 case URES_STRING:
715 string_write (mem, byteOffset, bundle, res, status);
716 break;
717 case URES_ALIAS:
718 alias_write (mem, byteOffset, bundle, res, status);
719 break;
720 case URES_INT_VECTOR:
721 intvector_write (mem, byteOffset, bundle, res, status);
722 break;
723 case URES_BINARY:
724 bin_write (mem, byteOffset, bundle, res, status);
725 break;
726 case URES_INT:
727 break; /* fRes was set by int_open() */
728 case URES_ARRAY:
729 array_write (mem, byteOffset, bundle, res, status);
730 break;
731 case URES_TABLE:
732 table_write (mem, byteOffset, bundle, res, status);
733 break;
734 default:
735 *status = U_INTERNAL_PROGRAM_ERROR;
736 break;
737 }
738 paddingSize = calcPadding(*byteOffset);
739 if (paddingSize > 0) {
740 udata_writePadding(mem, paddingSize);
741 *byteOffset += paddingSize;
742 }
743 res->fWritten = TRUE;
744 }
745
bundle_write(struct SRBRoot * bundle,const char * outputDir,const char * outputPkg,char * writtenFilename,int writtenFilenameLen,UErrorCode * status)746 void bundle_write(struct SRBRoot *bundle,
747 const char *outputDir, const char *outputPkg,
748 char *writtenFilename, int writtenFilenameLen,
749 UErrorCode *status) {
750 UNewDataMemory *mem = NULL;
751 uint32_t byteOffset = 0;
752 uint32_t top, size;
753 char dataName[1024];
754 int32_t indexes[URES_INDEX_TOP];
755
756 bundle_compactKeys(bundle, status);
757 /*
758 * Add padding bytes to fKeys so that fKeysTop is 4-aligned.
759 * Safe because the capacity is a multiple of 4.
760 */
761 while (bundle->fKeysTop & 3) {
762 bundle->fKeys[bundle->fKeysTop++] = (char)0xaa;
763 }
764 /*
765 * In URES_TABLE, use all local key offsets that fit into 16 bits,
766 * and use the remaining 16-bit offsets for pool key offsets
767 * if there are any.
768 * If there are no local keys, then use the whole 16-bit space
769 * for pool key offsets.
770 * Note: This cannot be changed without changing the major formatVersion.
771 */
772 if (bundle->fKeysBottom < bundle->fKeysTop) {
773 if (bundle->fKeysTop <= 0x10000) {
774 bundle->fLocalKeyLimit = bundle->fKeysTop;
775 } else {
776 bundle->fLocalKeyLimit = 0x10000;
777 }
778 } else {
779 bundle->fLocalKeyLimit = 0;
780 }
781
782 bundle_compactStrings(bundle, status);
783 res_write16(bundle, bundle->fRoot, status);
784 if (bundle->f16BitUnitsLength & 1) {
785 bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa; /* pad to multiple of 4 bytes */
786 }
787 /* all keys have been mapped */
788 uprv_free(bundle->fKeyMap);
789 bundle->fKeyMap = NULL;
790
791 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
792 res_preWrite(&byteOffset, bundle, bundle->fRoot, status);
793
794 /* total size including the root item */
795 top = byteOffset;
796
797 if (U_FAILURE(*status)) {
798 return;
799 }
800
801 if (writtenFilename && writtenFilenameLen) {
802 *writtenFilename = 0;
803 }
804
805 if (writtenFilename) {
806 int32_t off = 0, len = 0;
807 if (outputDir) {
808 len = (int32_t)uprv_strlen(outputDir);
809 if (len > writtenFilenameLen) {
810 len = writtenFilenameLen;
811 }
812 uprv_strncpy(writtenFilename, outputDir, len);
813 }
814 if (writtenFilenameLen -= len) {
815 off += len;
816 writtenFilename[off] = U_FILE_SEP_CHAR;
817 if (--writtenFilenameLen) {
818 ++off;
819 if(outputPkg != NULL)
820 {
821 uprv_strcpy(writtenFilename+off, outputPkg);
822 off += (int32_t)uprv_strlen(outputPkg);
823 writtenFilename[off] = '_';
824 ++off;
825 }
826
827 len = (int32_t)uprv_strlen(bundle->fLocale);
828 if (len > writtenFilenameLen) {
829 len = writtenFilenameLen;
830 }
831 uprv_strncpy(writtenFilename + off, bundle->fLocale, len);
832 if (writtenFilenameLen -= len) {
833 off += len;
834 len = 5;
835 if (len > writtenFilenameLen) {
836 len = writtenFilenameLen;
837 }
838 uprv_strncpy(writtenFilename + off, ".res", len);
839 }
840 }
841 }
842 }
843
844 if(outputPkg)
845 {
846 uprv_strcpy(dataName, outputPkg);
847 uprv_strcat(dataName, "_");
848 uprv_strcat(dataName, bundle->fLocale);
849 }
850 else
851 {
852 uprv_strcpy(dataName, bundle->fLocale);
853 }
854
855 uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo));
856
857 mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status);
858 if(U_FAILURE(*status)){
859 return;
860 }
861
862 /* write the root item */
863 udata_write32(mem, bundle->fRoot->fRes);
864
865 /*
866 * formatVersion 1.1 (ICU 2.8):
867 * write int32_t indexes[] after root and before the strings
868 * to make it easier to parse resource bundles in icuswap or from Java etc.
869 */
870 uprv_memset(indexes, 0, sizeof(indexes));
871 indexes[URES_INDEX_LENGTH]= bundle->fIndexLength;
872 indexes[URES_INDEX_KEYS_TOP]= bundle->fKeysTop>>2;
873 indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2);
874 indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP];
875 indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength;
876
877 /*
878 * formatVersion 1.2 (ICU 3.6):
879 * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set
880 * the memset() above initialized all indexes[] to 0
881 */
882 if (bundle->noFallback) {
883 indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK;
884 }
885 /*
886 * formatVersion 2.0 (ICU 4.4):
887 * more compact string value storage, optional pool bundle
888 */
889 if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) {
890 indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1);
891 }
892 if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) {
893 if (bundle->fIsPoolBundle) {
894 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK;
895 indexes[URES_INDEX_POOL_CHECKSUM] =
896 (int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom),
897 (uint32_t)(bundle->fKeysTop - bundle->fKeysBottom),
898 0);
899 } else if (gUsePoolBundle) {
900 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE;
901 indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum;
902 }
903 }
904
905 /* write the indexes[] */
906 udata_writeBlock(mem, indexes, bundle->fIndexLength*4);
907
908 /* write the table key strings */
909 udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom,
910 bundle->fKeysTop-bundle->fKeysBottom);
911
912 /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */
913 udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2);
914
915 /* write all of the bundle contents: the root item and its children */
916 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
917 res_write(mem, &byteOffset, bundle, bundle->fRoot, status);
918 assert(byteOffset == top);
919
920 size = udata_finish(mem, status);
921 if(top != size) {
922 fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n",
923 (int)size, (int)top);
924 *status = U_INTERNAL_PROGRAM_ERROR;
925 }
926 }
927
928 /* Opening Functions */
929
930 /* gcc 4.2 complained "no previous prototype for res_open" without this prototype... */
931 struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
932 const struct UString* comment, UErrorCode* status);
933
res_open(struct SRBRoot * bundle,const char * tag,const struct UString * comment,UErrorCode * status)934 struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
935 const struct UString* comment, UErrorCode* status){
936 struct SResource *res;
937 int32_t key = bundle_addtag(bundle, tag, status);
938 if (U_FAILURE(*status)) {
939 return NULL;
940 }
941
942 res = (struct SResource *) uprv_malloc(sizeof(struct SResource));
943 if (res == NULL) {
944 *status = U_MEMORY_ALLOCATION_ERROR;
945 return NULL;
946 }
947 uprv_memset(res, 0, sizeof(struct SResource));
948 res->fKey = key;
949 res->fRes = RES_BOGUS;
950
951 ustr_init(&res->fComment);
952 if(comment != NULL){
953 ustr_cpy(&res->fComment, comment, status);
954 if (U_FAILURE(*status)) {
955 res_close(res);
956 return NULL;
957 }
958 }
959 return res;
960 }
961
res_none()962 struct SResource* res_none() {
963 return (struct SResource*)&kNoResource;
964 }
965
table_open(struct SRBRoot * bundle,const char * tag,const struct UString * comment,UErrorCode * status)966 struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
967 struct SResource *res = res_open(bundle, tag, comment, status);
968 if (U_FAILURE(*status)) {
969 return NULL;
970 }
971 res->fType = URES_TABLE;
972 res->u.fTable.fRoot = bundle;
973 return res;
974 }
975
array_open(struct SRBRoot * bundle,const char * tag,const struct UString * comment,UErrorCode * status)976 struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
977 struct SResource *res = res_open(bundle, tag, comment, status);
978 if (U_FAILURE(*status)) {
979 return NULL;
980 }
981 res->fType = URES_ARRAY;
982 return res;
983 }
984
985 static int32_t U_CALLCONV
string_hash(const UElement key)986 string_hash(const UElement key) {
987 const struct SResource *res = (struct SResource *)key.pointer;
988 return ustr_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength);
989 }
990
991 static UBool U_CALLCONV
string_comp(const UElement key1,const UElement key2)992 string_comp(const UElement key1, const UElement key2) {
993 const struct SResource *res1 = (struct SResource *)key1.pointer;
994 const struct SResource *res2 = (struct SResource *)key2.pointer;
995 return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength,
996 res2->u.fString.fChars, res2->u.fString.fLength,
997 FALSE);
998 }
999
1000 static struct SResource *
stringbase_open(struct SRBRoot * bundle,const char * tag,int8_t type,const UChar * value,int32_t len,const struct UString * comment,UErrorCode * status)1001 stringbase_open(struct SRBRoot *bundle, const char *tag, int8_t type,
1002 const UChar *value, int32_t len, const struct UString* comment,
1003 UErrorCode *status) {
1004 struct SResource *res = res_open(bundle, tag, comment, status);
1005 if (U_FAILURE(*status)) {
1006 return NULL;
1007 }
1008 res->fType = type;
1009
1010 if (len == 0 && gFormatVersion > 1) {
1011 res->u.fString.fChars = &gEmptyString;
1012 res->fRes = URES_MAKE_EMPTY_RESOURCE(type);
1013 res->fWritten = TRUE;
1014 return res;
1015 }
1016
1017 res->u.fString.fLength = len;
1018 res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
1019 if (res->u.fString.fChars == NULL) {
1020 *status = U_MEMORY_ALLOCATION_ERROR;
1021 uprv_free(res);
1022 return NULL;
1023 }
1024 uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len);
1025 res->u.fString.fChars[len] = 0;
1026 return res;
1027 }
1028
string_open(struct SRBRoot * bundle,const char * tag,const UChar * value,int32_t len,const struct UString * comment,UErrorCode * status)1029 struct SResource *string_open(struct SRBRoot *bundle, const char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
1030 return stringbase_open(bundle, tag, URES_STRING, value, len, comment, status);
1031 }
1032
alias_open(struct SRBRoot * bundle,const char * tag,UChar * value,int32_t len,const struct UString * comment,UErrorCode * status)1033 struct SResource *alias_open(struct SRBRoot *bundle, const char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
1034 return stringbase_open(bundle, tag, URES_ALIAS, value, len, comment, status);
1035 }
1036
1037
intvector_open(struct SRBRoot * bundle,const char * tag,const struct UString * comment,UErrorCode * status)1038 struct SResource* intvector_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
1039 struct SResource *res = res_open(bundle, tag, comment, status);
1040 if (U_FAILURE(*status)) {
1041 return NULL;
1042 }
1043 res->fType = URES_INT_VECTOR;
1044
1045 res->u.fIntVector.fCount = 0;
1046 res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR);
1047 if (res->u.fIntVector.fArray == NULL) {
1048 *status = U_MEMORY_ALLOCATION_ERROR;
1049 uprv_free(res);
1050 return NULL;
1051 }
1052 return res;
1053 }
1054
int_open(struct SRBRoot * bundle,const char * tag,int32_t value,const struct UString * comment,UErrorCode * status)1055 struct SResource *int_open(struct SRBRoot *bundle, const char *tag, int32_t value, const struct UString* comment, UErrorCode *status) {
1056 struct SResource *res = res_open(bundle, tag, comment, status);
1057 if (U_FAILURE(*status)) {
1058 return NULL;
1059 }
1060 res->fType = URES_INT;
1061 res->u.fIntValue.fValue = value;
1062 res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF);
1063 res->fWritten = TRUE;
1064 return res;
1065 }
1066
bin_open(struct SRBRoot * bundle,const char * tag,uint32_t length,uint8_t * data,const char * fileName,const struct UString * comment,UErrorCode * status)1067 struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) {
1068 struct SResource *res = res_open(bundle, tag, comment, status);
1069 if (U_FAILURE(*status)) {
1070 return NULL;
1071 }
1072 res->fType = URES_BINARY;
1073
1074 res->u.fBinaryValue.fLength = length;
1075 res->u.fBinaryValue.fFileName = NULL;
1076 if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){
1077 res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1));
1078 uprv_strcpy(res->u.fBinaryValue.fFileName,fileName);
1079 }
1080 if (length > 0) {
1081 res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length);
1082
1083 if (res->u.fBinaryValue.fData == NULL) {
1084 *status = U_MEMORY_ALLOCATION_ERROR;
1085 uprv_free(res);
1086 return NULL;
1087 }
1088
1089 uprv_memcpy(res->u.fBinaryValue.fData, data, length);
1090 }
1091 else {
1092 res->u.fBinaryValue.fData = NULL;
1093 if (gFormatVersion > 1) {
1094 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY);
1095 res->fWritten = TRUE;
1096 }
1097 }
1098
1099 return res;
1100 }
1101
bundle_open(const struct UString * comment,UBool isPoolBundle,UErrorCode * status)1102 struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) {
1103 struct SRBRoot *bundle;
1104
1105 if (U_FAILURE(*status)) {
1106 return NULL;
1107 }
1108
1109 bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot));
1110 if (bundle == NULL) {
1111 *status = U_MEMORY_ALLOCATION_ERROR;
1112 return 0;
1113 }
1114 uprv_memset(bundle, 0, sizeof(struct SRBRoot));
1115
1116 bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE);
1117 bundle->fRoot = table_open(bundle, NULL, comment, status);
1118 if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) {
1119 if (U_SUCCESS(*status)) {
1120 *status = U_MEMORY_ALLOCATION_ERROR;
1121 }
1122 bundle_close(bundle, status);
1123 return NULL;
1124 }
1125
1126 bundle->fLocale = NULL;
1127 bundle->fKeysCapacity = KEY_SPACE_SIZE;
1128 /* formatVersion 1.1: start fKeysTop after the root item and indexes[] */
1129 bundle->fIsPoolBundle = isPoolBundle;
1130 if (gUsePoolBundle || isPoolBundle) {
1131 bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1;
1132 } else if (gFormatVersion >= 2) {
1133 bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1;
1134 } else /* formatVersion 1 */ {
1135 bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1;
1136 }
1137 bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4;
1138 uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom);
1139 bundle->fKeysTop = bundle->fKeysBottom;
1140
1141 if (gFormatVersion == 1) {
1142 bundle->fStringsForm = STRINGS_UTF16_V1;
1143 } else {
1144 bundle->fStringsForm = STRINGS_UTF16_V2;
1145 }
1146
1147 return bundle;
1148 }
1149
1150 /* Closing Functions */
table_close(struct SResource * table)1151 static void table_close(struct SResource *table) {
1152 struct SResource *current = NULL;
1153 struct SResource *prev = NULL;
1154
1155 current = table->u.fTable.fFirst;
1156
1157 while (current != NULL) {
1158 prev = current;
1159 current = current->fNext;
1160
1161 res_close(prev);
1162 }
1163
1164 table->u.fTable.fFirst = NULL;
1165 }
1166
array_close(struct SResource * array)1167 static void array_close(struct SResource *array) {
1168 struct SResource *current = NULL;
1169 struct SResource *prev = NULL;
1170
1171 if(array==NULL){
1172 return;
1173 }
1174 current = array->u.fArray.fFirst;
1175
1176 while (current != NULL) {
1177 prev = current;
1178 current = current->fNext;
1179
1180 res_close(prev);
1181 }
1182 array->u.fArray.fFirst = NULL;
1183 }
1184
string_close(struct SResource * string)1185 static void string_close(struct SResource *string) {
1186 if (string->u.fString.fChars != NULL &&
1187 string->u.fString.fChars != &gEmptyString) {
1188 uprv_free(string->u.fString.fChars);
1189 string->u.fString.fChars =NULL;
1190 }
1191 }
1192
alias_close(struct SResource * alias)1193 static void alias_close(struct SResource *alias) {
1194 if (alias->u.fString.fChars != NULL) {
1195 uprv_free(alias->u.fString.fChars);
1196 alias->u.fString.fChars =NULL;
1197 }
1198 }
1199
intvector_close(struct SResource * intvector)1200 static void intvector_close(struct SResource *intvector) {
1201 if (intvector->u.fIntVector.fArray != NULL) {
1202 uprv_free(intvector->u.fIntVector.fArray);
1203 intvector->u.fIntVector.fArray =NULL;
1204 }
1205 }
1206
int_close(struct SResource * intres)1207 static void int_close(struct SResource *intres) {
1208 /* Intentionally left blank */
1209 }
1210
bin_close(struct SResource * binres)1211 static void bin_close(struct SResource *binres) {
1212 if (binres->u.fBinaryValue.fData != NULL) {
1213 uprv_free(binres->u.fBinaryValue.fData);
1214 binres->u.fBinaryValue.fData = NULL;
1215 }
1216 if (binres->u.fBinaryValue.fFileName != NULL) {
1217 uprv_free(binres->u.fBinaryValue.fFileName);
1218 binres->u.fBinaryValue.fFileName = NULL;
1219 }
1220 }
1221
res_close(struct SResource * res)1222 void res_close(struct SResource *res) {
1223 if (res != NULL) {
1224 switch(res->fType) {
1225 case URES_STRING:
1226 string_close(res);
1227 break;
1228 case URES_ALIAS:
1229 alias_close(res);
1230 break;
1231 case URES_INT_VECTOR:
1232 intvector_close(res);
1233 break;
1234 case URES_BINARY:
1235 bin_close(res);
1236 break;
1237 case URES_INT:
1238 int_close(res);
1239 break;
1240 case URES_ARRAY:
1241 array_close(res);
1242 break;
1243 case URES_TABLE:
1244 table_close(res);
1245 break;
1246 default:
1247 /* Shouldn't happen */
1248 break;
1249 }
1250
1251 ustr_deinit(&res->fComment);
1252 uprv_free(res);
1253 }
1254 }
1255
bundle_close(struct SRBRoot * bundle,UErrorCode * status)1256 void bundle_close(struct SRBRoot *bundle, UErrorCode *status) {
1257 res_close(bundle->fRoot);
1258 uprv_free(bundle->fLocale);
1259 uprv_free(bundle->fKeys);
1260 uprv_free(bundle->fKeyMap);
1261 uprv_free(bundle->f16BitUnits);
1262 uprv_free(bundle);
1263 }
1264
1265 /* Adding Functions */
table_add(struct SResource * table,struct SResource * res,int linenumber,UErrorCode * status)1266 void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) {
1267 struct SResource *current = NULL;
1268 struct SResource *prev = NULL;
1269 struct SResTable *list;
1270 const char *resKeyString;
1271
1272 if (U_FAILURE(*status)) {
1273 return;
1274 }
1275 if (res == &kNoResource) {
1276 return;
1277 }
1278
1279 /* remember this linenumber to report to the user if there is a duplicate key */
1280 res->line = linenumber;
1281
1282 /* here we need to traverse the list */
1283 list = &(table->u.fTable);
1284 ++(list->fCount);
1285
1286 /* is list still empty? */
1287 if (list->fFirst == NULL) {
1288 list->fFirst = res;
1289 res->fNext = NULL;
1290 return;
1291 }
1292
1293 resKeyString = list->fRoot->fKeys + res->fKey;
1294
1295 current = list->fFirst;
1296
1297 while (current != NULL) {
1298 const char *currentKeyString = list->fRoot->fKeys + current->fKey;
1299 int diff;
1300 /*
1301 * formatVersion 1: compare key strings in native-charset order
1302 * formatVersion 2 and up: compare key strings in ASCII order
1303 */
1304 if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) {
1305 diff = uprv_strcmp(currentKeyString, resKeyString);
1306 } else {
1307 diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString);
1308 }
1309 if (diff < 0) {
1310 prev = current;
1311 current = current->fNext;
1312 } else if (diff > 0) {
1313 /* we're either in front of list, or in middle */
1314 if (prev == NULL) {
1315 /* front of the list */
1316 list->fFirst = res;
1317 } else {
1318 /* middle of the list */
1319 prev->fNext = res;
1320 }
1321
1322 res->fNext = current;
1323 return;
1324 } else {
1325 /* Key already exists! ERROR! */
1326 error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line);
1327 *status = U_UNSUPPORTED_ERROR;
1328 return;
1329 }
1330 }
1331
1332 /* end of list */
1333 prev->fNext = res;
1334 res->fNext = NULL;
1335 }
1336
array_add(struct SResource * array,struct SResource * res,UErrorCode * status)1337 void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) {
1338 if (U_FAILURE(*status)) {
1339 return;
1340 }
1341
1342 if (array->u.fArray.fFirst == NULL) {
1343 array->u.fArray.fFirst = res;
1344 array->u.fArray.fLast = res;
1345 } else {
1346 array->u.fArray.fLast->fNext = res;
1347 array->u.fArray.fLast = res;
1348 }
1349
1350 (array->u.fArray.fCount)++;
1351 }
1352
intvector_add(struct SResource * intvector,int32_t value,UErrorCode * status)1353 void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) {
1354 if (U_FAILURE(*status)) {
1355 return;
1356 }
1357
1358 *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value;
1359 intvector->u.fIntVector.fCount++;
1360 }
1361
1362 /* Misc Functions */
1363
bundle_setlocale(struct SRBRoot * bundle,UChar * locale,UErrorCode * status)1364 void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) {
1365
1366 if(U_FAILURE(*status)) {
1367 return;
1368 }
1369
1370 if (bundle->fLocale!=NULL) {
1371 uprv_free(bundle->fLocale);
1372 }
1373
1374 bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1));
1375
1376 if(bundle->fLocale == NULL) {
1377 *status = U_MEMORY_ALLOCATION_ERROR;
1378 return;
1379 }
1380
1381 /*u_strcpy(bundle->fLocale, locale);*/
1382 u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1);
1383
1384 }
1385
1386 static const char *
getKeyString(const struct SRBRoot * bundle,int32_t key)1387 getKeyString(const struct SRBRoot *bundle, int32_t key) {
1388 if (key < 0) {
1389 return bundle->fPoolBundleKeys + (key & 0x7fffffff);
1390 } else {
1391 return bundle->fKeys + key;
1392 }
1393 }
1394
1395 const char *
res_getKeyString(const struct SRBRoot * bundle,const struct SResource * res,char temp[8])1396 res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) {
1397 if (res->fKey == -1) {
1398 return NULL;
1399 }
1400 return getKeyString(bundle, res->fKey);
1401 }
1402
1403 const char *
bundle_getKeyBytes(struct SRBRoot * bundle,int32_t * pLength)1404 bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) {
1405 *pLength = bundle->fKeysTop - bundle->fKeysBottom;
1406 return bundle->fKeys + bundle->fKeysBottom;
1407 }
1408
1409 int32_t
bundle_addKeyBytes(struct SRBRoot * bundle,const char * keyBytes,int32_t length,UErrorCode * status)1410 bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) {
1411 int32_t keypos;
1412
1413 if (U_FAILURE(*status)) {
1414 return -1;
1415 }
1416 if (length < 0 || (keyBytes == NULL && length != 0)) {
1417 *status = U_ILLEGAL_ARGUMENT_ERROR;
1418 return -1;
1419 }
1420 if (length == 0) {
1421 return bundle->fKeysTop;
1422 }
1423
1424 keypos = bundle->fKeysTop;
1425 bundle->fKeysTop += length;
1426 if (bundle->fKeysTop >= bundle->fKeysCapacity) {
1427 /* overflow - resize the keys buffer */
1428 bundle->fKeysCapacity += KEY_SPACE_SIZE;
1429 bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity);
1430 if(bundle->fKeys == NULL) {
1431 *status = U_MEMORY_ALLOCATION_ERROR;
1432 return -1;
1433 }
1434 }
1435
1436 uprv_memcpy(bundle->fKeys + keypos, keyBytes, length);
1437
1438 return keypos;
1439 }
1440
1441 int32_t
bundle_addtag(struct SRBRoot * bundle,const char * tag,UErrorCode * status)1442 bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) {
1443 int32_t keypos;
1444
1445 if (U_FAILURE(*status)) {
1446 return -1;
1447 }
1448
1449 if (tag == NULL) {
1450 /* no error: the root table and array items have no keys */
1451 return -1;
1452 }
1453
1454 keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status);
1455 if (U_SUCCESS(*status)) {
1456 ++bundle->fKeysCount;
1457 }
1458 return keypos;
1459 }
1460
1461 static int32_t
compareInt32(int32_t lPos,int32_t rPos)1462 compareInt32(int32_t lPos, int32_t rPos) {
1463 /*
1464 * Compare possibly-negative key offsets. Don't just return lPos - rPos
1465 * because that is prone to negative-integer underflows.
1466 */
1467 if (lPos < rPos) {
1468 return -1;
1469 } else if (lPos > rPos) {
1470 return 1;
1471 } else {
1472 return 0;
1473 }
1474 }
1475
1476 static int32_t U_CALLCONV
compareKeySuffixes(const void * context,const void * l,const void * r)1477 compareKeySuffixes(const void *context, const void *l, const void *r) {
1478 const struct SRBRoot *bundle=(const struct SRBRoot *)context;
1479 int32_t lPos = ((const KeyMapEntry *)l)->oldpos;
1480 int32_t rPos = ((const KeyMapEntry *)r)->oldpos;
1481 const char *lStart = getKeyString(bundle, lPos);
1482 const char *lLimit = lStart;
1483 const char *rStart = getKeyString(bundle, rPos);
1484 const char *rLimit = rStart;
1485 int32_t diff;
1486 while (*lLimit != 0) { ++lLimit; }
1487 while (*rLimit != 0) { ++rLimit; }
1488 /* compare keys in reverse character order */
1489 while (lStart < lLimit && rStart < rLimit) {
1490 diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit;
1491 if (diff != 0) {
1492 return diff;
1493 }
1494 }
1495 /* sort equal suffixes by descending key length */
1496 diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart);
1497 if (diff != 0) {
1498 return diff;
1499 }
1500 /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */
1501 return compareInt32(lPos, rPos);
1502 }
1503
1504 static int32_t U_CALLCONV
compareKeyNewpos(const void * context,const void * l,const void * r)1505 compareKeyNewpos(const void *context, const void *l, const void *r) {
1506 return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos);
1507 }
1508
1509 static int32_t U_CALLCONV
compareKeyOldpos(const void * context,const void * l,const void * r)1510 compareKeyOldpos(const void *context, const void *l, const void *r) {
1511 return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos);
1512 }
1513
1514 void
bundle_compactKeys(struct SRBRoot * bundle,UErrorCode * status)1515 bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) {
1516 KeyMapEntry *map;
1517 char *keys;
1518 int32_t i;
1519 int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount;
1520 if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) {
1521 return;
1522 }
1523 map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry));
1524 if (map == NULL) {
1525 *status = U_MEMORY_ALLOCATION_ERROR;
1526 return;
1527 }
1528 keys = (char *)bundle->fPoolBundleKeys;
1529 for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) {
1530 map[i].oldpos =
1531 (int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000; /* negative oldpos */
1532 map[i].newpos = 0;
1533 while (*keys != 0) { ++keys; } /* skip the key */
1534 ++keys; /* skip the NUL */
1535 }
1536 keys = bundle->fKeys + bundle->fKeysBottom;
1537 for (; i < keysCount; ++i) {
1538 map[i].oldpos = (int32_t)(keys - bundle->fKeys);
1539 map[i].newpos = 0;
1540 while (*keys != 0) { ++keys; } /* skip the key */
1541 ++keys; /* skip the NUL */
1542 }
1543 /* Sort the keys so that each one is immediately followed by all of its suffixes. */
1544 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1545 compareKeySuffixes, bundle, FALSE, status);
1546 /*
1547 * Make suffixes point into earlier, longer strings that contain them
1548 * and mark the old, now unused suffix bytes as deleted.
1549 */
1550 if (U_SUCCESS(*status)) {
1551 keys = bundle->fKeys;
1552 for (i = 0; i < keysCount;) {
1553 /*
1554 * This key is not a suffix of the previous one;
1555 * keep this one and delete the following ones that are
1556 * suffixes of this one.
1557 */
1558 const char *key;
1559 const char *keyLimit;
1560 int32_t j = i + 1;
1561 map[i].newpos = map[i].oldpos;
1562 if (j < keysCount && map[j].oldpos < 0) {
1563 /* Key string from the pool bundle, do not delete. */
1564 i = j;
1565 continue;
1566 }
1567 key = getKeyString(bundle, map[i].oldpos);
1568 for (keyLimit = key; *keyLimit != 0; ++keyLimit) {}
1569 for (; j < keysCount && map[j].oldpos >= 0; ++j) {
1570 const char *k;
1571 char *suffix;
1572 const char *suffixLimit;
1573 int32_t offset;
1574 suffix = keys + map[j].oldpos;
1575 for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {}
1576 offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix);
1577 if (offset < 0) {
1578 break; /* suffix cannot be longer than the original */
1579 }
1580 /* Is it a suffix of the earlier, longer key? */
1581 for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {}
1582 if (suffix == suffixLimit && *k == *suffixLimit) {
1583 map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */
1584 /* mark the suffix as deleted */
1585 while (*suffix != 0) { *suffix++ = 1; }
1586 *suffix = 1;
1587 } else {
1588 break; /* not a suffix, restart from here */
1589 }
1590 }
1591 i = j;
1592 }
1593 /*
1594 * Re-sort by newpos, then modify the key characters array in-place
1595 * to squeeze out unused bytes, and readjust the newpos offsets.
1596 */
1597 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1598 compareKeyNewpos, NULL, FALSE, status);
1599 if (U_SUCCESS(*status)) {
1600 int32_t oldpos, newpos, limit;
1601 oldpos = newpos = bundle->fKeysBottom;
1602 limit = bundle->fKeysTop;
1603 /* skip key offsets that point into the pool bundle rather than this new bundle */
1604 for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {}
1605 if (i < keysCount) {
1606 while (oldpos < limit) {
1607 if (keys[oldpos] == 1) {
1608 ++oldpos; /* skip unused bytes */
1609 } else {
1610 /* adjust the new offsets for keys starting here */
1611 while (i < keysCount && map[i].newpos == oldpos) {
1612 map[i++].newpos = newpos;
1613 }
1614 /* move the key characters to their new position */
1615 keys[newpos++] = keys[oldpos++];
1616 }
1617 }
1618 assert(i == keysCount);
1619 }
1620 bundle->fKeysTop = newpos;
1621 /* Re-sort once more, by old offsets for binary searching. */
1622 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1623 compareKeyOldpos, NULL, FALSE, status);
1624 if (U_SUCCESS(*status)) {
1625 /* key size reduction by limit - newpos */
1626 bundle->fKeyMap = map;
1627 map = NULL;
1628 }
1629 }
1630 }
1631 uprv_free(map);
1632 }
1633
1634 static int32_t U_CALLCONV
compareStringSuffixes(const void * context,const void * l,const void * r)1635 compareStringSuffixes(const void *context, const void *l, const void *r) {
1636 struct SResource *left = *((struct SResource **)l);
1637 struct SResource *right = *((struct SResource **)r);
1638 const UChar *lStart = left->u.fString.fChars;
1639 const UChar *lLimit = lStart + left->u.fString.fLength;
1640 const UChar *rStart = right->u.fString.fChars;
1641 const UChar *rLimit = rStart + right->u.fString.fLength;
1642 int32_t diff;
1643 /* compare keys in reverse character order */
1644 while (lStart < lLimit && rStart < rLimit) {
1645 diff = (int32_t)*--lLimit - (int32_t)*--rLimit;
1646 if (diff != 0) {
1647 return diff;
1648 }
1649 }
1650 /* sort equal suffixes by descending string length */
1651 return right->u.fString.fLength - left->u.fString.fLength;
1652 }
1653
1654 static int32_t U_CALLCONV
compareStringLengths(const void * context,const void * l,const void * r)1655 compareStringLengths(const void *context, const void *l, const void *r) {
1656 struct SResource *left = *((struct SResource **)l);
1657 struct SResource *right = *((struct SResource **)r);
1658 int32_t diff;
1659 /* Make "is suffix of another string" compare greater than a non-suffix. */
1660 diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL);
1661 if (diff != 0) {
1662 return diff;
1663 }
1664 /* sort by ascending string length */
1665 return left->u.fString.fLength - right->u.fString.fLength;
1666 }
1667
1668 static int32_t
string_writeUTF16v2(struct SRBRoot * bundle,struct SResource * res,int32_t utf16Length)1669 string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) {
1670 int32_t length = res->u.fString.fLength;
1671 res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length);
1672 res->fWritten = TRUE;
1673 switch(res->u.fString.fNumCharsForLength) {
1674 case 0:
1675 break;
1676 case 1:
1677 bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length);
1678 break;
1679 case 2:
1680 bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16));
1681 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length;
1682 utf16Length += 2;
1683 break;
1684 case 3:
1685 bundle->f16BitUnits[utf16Length] = 0xdfff;
1686 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16);
1687 bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length;
1688 utf16Length += 3;
1689 break;
1690 default:
1691 break; /* will not occur */
1692 }
1693 u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1);
1694 return utf16Length + length + 1;
1695 }
1696
1697 static void
bundle_compactStrings(struct SRBRoot * bundle,UErrorCode * status)1698 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) {
1699 UHashtable *stringSet;
1700 if (gFormatVersion > 1) {
1701 stringSet = uhash_open(string_hash, string_comp, string_comp, status);
1702 res_preflightStrings(bundle, bundle->fRoot, stringSet, status);
1703 } else {
1704 stringSet = NULL;
1705 }
1706 if (U_FAILURE(*status)) {
1707 uhash_close(stringSet);
1708 return;
1709 }
1710 switch(bundle->fStringsForm) {
1711 case STRINGS_UTF16_V2:
1712 if (bundle->f16BitUnitsLength > 0) {
1713 struct SResource **array;
1714 int32_t count = uhash_count(stringSet);
1715 int32_t i, pos;
1716 /*
1717 * Allocate enough space for the initial NUL and the UTF-16 v2 strings,
1718 * and some extra for URES_TABLE16 and URES_ARRAY16 values.
1719 * Round down to an even number.
1720 */
1721 int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1;
1722 bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR);
1723 array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **));
1724 if (bundle->f16BitUnits == NULL || array == NULL) {
1725 uprv_free(bundle->f16BitUnits);
1726 bundle->f16BitUnits = NULL;
1727 uprv_free(array);
1728 uhash_close(stringSet);
1729 *status = U_MEMORY_ALLOCATION_ERROR;
1730 return;
1731 }
1732 bundle->f16BitUnitsCapacity = utf16Length;
1733 /* insert the initial NUL */
1734 bundle->f16BitUnits[0] = 0;
1735 utf16Length = 1;
1736 ++bundle->f16BitUnitsLength;
1737 for (pos = UHASH_FIRST, i = 0; i < count; ++i) {
1738 array[i] = (struct SResource *)uhash_nextElement(stringSet, &pos)->key.pointer;
1739 }
1740 /* Sort the strings so that each one is immediately followed by all of its suffixes. */
1741 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
1742 compareStringSuffixes, NULL, FALSE, status);
1743 /*
1744 * Make suffixes point into earlier, longer strings that contain them.
1745 * Temporarily use fSame and fSuffixOffset for suffix strings to
1746 * refer to the remaining ones.
1747 */
1748 if (U_SUCCESS(*status)) {
1749 for (i = 0; i < count;) {
1750 /*
1751 * This string is not a suffix of the previous one;
1752 * write this one and subsume the following ones that are
1753 * suffixes of this one.
1754 */
1755 struct SResource *res = array[i];
1756 const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength;
1757 int32_t j;
1758 for (j = i + 1; j < count; ++j) {
1759 struct SResource *suffixRes = array[j];
1760 const UChar *s;
1761 const UChar *suffix = suffixRes->u.fString.fChars;
1762 const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength;
1763 int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength;
1764 if (offset < 0) {
1765 break; /* suffix cannot be longer than the original */
1766 }
1767 /* Is it a suffix of the earlier, longer key? */
1768 for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {}
1769 if (suffix == suffixLimit && *s == *suffixLimit) {
1770 if (suffixRes->u.fString.fNumCharsForLength == 0) {
1771 /* yes, point to the earlier string */
1772 suffixRes->u.fString.fSame = res;
1773 suffixRes->u.fString.fSuffixOffset = offset;
1774 } else {
1775 /* write the suffix by itself if we need explicit length */
1776 }
1777 } else {
1778 break; /* not a suffix, restart from here */
1779 }
1780 }
1781 i = j;
1782 }
1783 }
1784 /*
1785 * Re-sort the strings by ascending length (except suffixes last)
1786 * to optimize for URES_TABLE16 and URES_ARRAY16:
1787 * Keep as many as possible within reach of 16-bit offsets.
1788 */
1789 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
1790 compareStringLengths, NULL, FALSE, status);
1791 if (U_SUCCESS(*status)) {
1792 /* Write the non-suffix strings. */
1793 for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) {
1794 utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length);
1795 }
1796 /* Write the suffix strings. Make each point to the real string. */
1797 for (; i < count; ++i) {
1798 struct SResource *res = array[i];
1799 struct SResource *same = res->u.fString.fSame;
1800 res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset;
1801 res->u.fString.fSame = NULL;
1802 res->fWritten = TRUE;
1803 }
1804 }
1805 assert(utf16Length <= bundle->f16BitUnitsLength);
1806 bundle->f16BitUnitsLength = utf16Length;
1807 uprv_free(array);
1808 }
1809 break;
1810 default:
1811 break;
1812 }
1813 uhash_close(stringSet);
1814 }
1815