1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include "llvm/IR/ValueSymbolTable.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 namespace {
30 struct OrderMap {
31   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
32   unsigned LastGlobalConstantID;
33   unsigned LastGlobalValueID;
34 
OrderMap__anon409929a60111::OrderMap35   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
36 
isGlobalConstant__anon409929a60111::OrderMap37   bool isGlobalConstant(unsigned ID) const {
38     return ID <= LastGlobalConstantID;
39   }
isGlobalValue__anon409929a60111::OrderMap40   bool isGlobalValue(unsigned ID) const {
41     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
42   }
43 
size__anon409929a60111::OrderMap44   unsigned size() const { return IDs.size(); }
operator []__anon409929a60111::OrderMap45   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
lookup__anon409929a60111::OrderMap46   std::pair<unsigned, bool> lookup(const Value *V) const {
47     return IDs.lookup(V);
48   }
index__anon409929a60111::OrderMap49   void index(const Value *V) {
50     // Explicitly sequence get-size and insert-value operations to avoid UB.
51     unsigned ID = IDs.size() + 1;
52     IDs[V].first = ID;
53   }
54 };
55 }
56 
orderValue(const Value * V,OrderMap & OM)57 static void orderValue(const Value *V, OrderMap &OM) {
58   if (OM.lookup(V).first)
59     return;
60 
61   if (const Constant *C = dyn_cast<Constant>(V))
62     if (C->getNumOperands() && !isa<GlobalValue>(C))
63       for (const Value *Op : C->operands())
64         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
65           orderValue(Op, OM);
66 
67   // Note: we cannot cache this lookup above, since inserting into the map
68   // changes the map's size, and thus affects the other IDs.
69   OM.index(V);
70 }
71 
orderModule(const Module & M)72 static OrderMap orderModule(const Module &M) {
73   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
74   // and ValueEnumerator::incorporateFunction().
75   OrderMap OM;
76 
77   // In the reader, initializers of GlobalValues are set *after* all the
78   // globals have been read.  Rather than awkwardly modeling this behaviour
79   // directly in predictValueUseListOrderImpl(), just assign IDs to
80   // initializers of GlobalValues before GlobalValues themselves to model this
81   // implicitly.
82   for (const GlobalVariable &G : M.globals())
83     if (G.hasInitializer())
84       if (!isa<GlobalValue>(G.getInitializer()))
85         orderValue(G.getInitializer(), OM);
86   for (const GlobalAlias &A : M.aliases())
87     if (!isa<GlobalValue>(A.getAliasee()))
88       orderValue(A.getAliasee(), OM);
89   for (const Function &F : M) {
90     if (F.hasPrefixData())
91       if (!isa<GlobalValue>(F.getPrefixData()))
92         orderValue(F.getPrefixData(), OM);
93     if (F.hasPrologueData())
94       if (!isa<GlobalValue>(F.getPrologueData()))
95         orderValue(F.getPrologueData(), OM);
96   }
97   OM.LastGlobalConstantID = OM.size();
98 
99   // Initializers of GlobalValues are processed in
100   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
101   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
102   // by giving IDs in reverse order.
103   //
104   // Since GlobalValues never reference each other directly (just through
105   // initializers), their relative IDs only matter for determining order of
106   // uses in their initializers.
107   for (const Function &F : M)
108     orderValue(&F, OM);
109   for (const GlobalAlias &A : M.aliases())
110     orderValue(&A, OM);
111   for (const GlobalVariable &G : M.globals())
112     orderValue(&G, OM);
113   OM.LastGlobalValueID = OM.size();
114 
115   for (const Function &F : M) {
116     if (F.isDeclaration())
117       continue;
118     // Here we need to match the union of ValueEnumerator::incorporateFunction()
119     // and WriteFunction().  Basic blocks are implicitly declared before
120     // anything else (by declaring their size).
121     for (const BasicBlock &BB : F)
122       orderValue(&BB, OM);
123     for (const Argument &A : F.args())
124       orderValue(&A, OM);
125     for (const BasicBlock &BB : F)
126       for (const Instruction &I : BB)
127         for (const Value *Op : I.operands())
128           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
129               isa<InlineAsm>(*Op))
130             orderValue(Op, OM);
131     for (const BasicBlock &BB : F)
132       for (const Instruction &I : BB)
133         orderValue(&I, OM);
134   }
135   return OM;
136 }
137 
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)138 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
139                                          unsigned ID, const OrderMap &OM,
140                                          UseListOrderStack &Stack) {
141   // Predict use-list order for this one.
142   typedef std::pair<const Use *, unsigned> Entry;
143   SmallVector<Entry, 64> List;
144   for (const Use &U : V->uses())
145     // Check if this user will be serialized.
146     if (OM.lookup(U.getUser()).first)
147       List.push_back(std::make_pair(&U, List.size()));
148 
149   if (List.size() < 2)
150     // We may have lost some users.
151     return;
152 
153   bool IsGlobalValue = OM.isGlobalValue(ID);
154   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
155     const Use *LU = L.first;
156     const Use *RU = R.first;
157     if (LU == RU)
158       return false;
159 
160     auto LID = OM.lookup(LU->getUser()).first;
161     auto RID = OM.lookup(RU->getUser()).first;
162 
163     // Global values are processed in reverse order.
164     //
165     // Moreover, initializers of GlobalValues are set *after* all the globals
166     // have been read (despite having earlier IDs).  Rather than awkwardly
167     // modeling this behaviour here, orderModule() has assigned IDs to
168     // initializers of GlobalValues before GlobalValues themselves.
169     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
170       return LID < RID;
171 
172     // If ID is 4, then expect: 7 6 5 1 2 3.
173     if (LID < RID) {
174       if (RID <= ID)
175         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
176           return true;
177       return false;
178     }
179     if (RID < LID) {
180       if (LID <= ID)
181         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
182           return false;
183       return true;
184     }
185 
186     // LID and RID are equal, so we have different operands of the same user.
187     // Assume operands are added in order for all instructions.
188     if (LID <= ID)
189       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
190         return LU->getOperandNo() < RU->getOperandNo();
191     return LU->getOperandNo() > RU->getOperandNo();
192   });
193 
194   if (std::is_sorted(
195           List.begin(), List.end(),
196           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
197     // Order is already correct.
198     return;
199 
200   // Store the shuffle.
201   Stack.emplace_back(V, F, List.size());
202   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
203   for (size_t I = 0, E = List.size(); I != E; ++I)
204     Stack.back().Shuffle[I] = List[I].second;
205 }
206 
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)207 static void predictValueUseListOrder(const Value *V, const Function *F,
208                                      OrderMap &OM, UseListOrderStack &Stack) {
209   auto &IDPair = OM[V];
210   assert(IDPair.first && "Unmapped value");
211   if (IDPair.second)
212     // Already predicted.
213     return;
214 
215   // Do the actual prediction.
216   IDPair.second = true;
217   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
218     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
219 
220   // Recursive descent into constants.
221   if (const Constant *C = dyn_cast<Constant>(V))
222     if (C->getNumOperands()) // Visit GlobalValues.
223       for (const Value *Op : C->operands())
224         if (isa<Constant>(Op)) // Visit GlobalValues.
225           predictValueUseListOrder(Op, F, OM, Stack);
226 }
227 
predictUseListOrder(const Module & M)228 static UseListOrderStack predictUseListOrder(const Module &M) {
229   OrderMap OM = orderModule(M);
230 
231   // Use-list orders need to be serialized after all the users have been added
232   // to a value, or else the shuffles will be incomplete.  Store them per
233   // function in a stack.
234   //
235   // Aside from function order, the order of values doesn't matter much here.
236   UseListOrderStack Stack;
237 
238   // We want to visit the functions backward now so we can list function-local
239   // constants in the last Function they're used in.  Module-level constants
240   // have already been visited above.
241   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
242     const Function &F = *I;
243     if (F.isDeclaration())
244       continue;
245     for (const BasicBlock &BB : F)
246       predictValueUseListOrder(&BB, &F, OM, Stack);
247     for (const Argument &A : F.args())
248       predictValueUseListOrder(&A, &F, OM, Stack);
249     for (const BasicBlock &BB : F)
250       for (const Instruction &I : BB)
251         for (const Value *Op : I.operands())
252           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
253             predictValueUseListOrder(Op, &F, OM, Stack);
254     for (const BasicBlock &BB : F)
255       for (const Instruction &I : BB)
256         predictValueUseListOrder(&I, &F, OM, Stack);
257   }
258 
259   // Visit globals last, since the module-level use-list block will be seen
260   // before the function bodies are processed.
261   for (const GlobalVariable &G : M.globals())
262     predictValueUseListOrder(&G, nullptr, OM, Stack);
263   for (const Function &F : M)
264     predictValueUseListOrder(&F, nullptr, OM, Stack);
265   for (const GlobalAlias &A : M.aliases())
266     predictValueUseListOrder(&A, nullptr, OM, Stack);
267   for (const GlobalVariable &G : M.globals())
268     if (G.hasInitializer())
269       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
270   for (const GlobalAlias &A : M.aliases())
271     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
272   for (const Function &F : M) {
273     if (F.hasPrefixData())
274       predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
275     if (F.hasPrologueData())
276       predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack);
277   }
278 
279   return Stack;
280 }
281 
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)282 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
283   return V.first->getType()->isIntOrIntVectorTy();
284 }
285 
ValueEnumerator(const Module & M,bool ShouldPreserveUseListOrder)286 ValueEnumerator::ValueEnumerator(const Module &M,
287                                  bool ShouldPreserveUseListOrder)
288     : HasMDString(false), HasMDLocation(false), HasGenericDebugNode(false),
289       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
290   if (ShouldPreserveUseListOrder)
291     UseListOrders = predictUseListOrder(M);
292 
293   // Enumerate the global variables.
294   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
295        I != E; ++I)
296     EnumerateValue(I);
297 
298   // Enumerate the functions.
299   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
300     EnumerateValue(I);
301     EnumerateAttributes(cast<Function>(I)->getAttributes());
302   }
303 
304   // Enumerate the aliases.
305   for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
306        I != E; ++I)
307     EnumerateValue(I);
308 
309   // Remember what is the cutoff between globalvalue's and other constants.
310   unsigned FirstConstant = Values.size();
311 
312   // Enumerate the global variable initializers.
313   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
314        I != E; ++I)
315     if (I->hasInitializer())
316       EnumerateValue(I->getInitializer());
317 
318   // Enumerate the aliasees.
319   for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
320        I != E; ++I)
321     EnumerateValue(I->getAliasee());
322 
323   // Enumerate the prefix data constants.
324   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
325     if (I->hasPrefixData())
326       EnumerateValue(I->getPrefixData());
327 
328   // Enumerate the prologue data constants.
329   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
330     if (I->hasPrologueData())
331       EnumerateValue(I->getPrologueData());
332 
333   // Enumerate the metadata type.
334   //
335   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
336   // only encodes the metadata type when it's used as a value.
337   EnumerateType(Type::getMetadataTy(M.getContext()));
338 
339   // Insert constants and metadata that are named at module level into the slot
340   // pool so that the module symbol table can refer to them...
341   EnumerateValueSymbolTable(M.getValueSymbolTable());
342   EnumerateNamedMetadata(M);
343 
344   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
345 
346   // Enumerate types used by function bodies and argument lists.
347   for (const Function &F : M) {
348     for (const Argument &A : F.args())
349       EnumerateType(A.getType());
350 
351     for (const BasicBlock &BB : F)
352       for (const Instruction &I : BB) {
353         for (const Use &Op : I.operands()) {
354           auto *MD = dyn_cast<MetadataAsValue>(&Op);
355           if (!MD) {
356             EnumerateOperandType(Op);
357             continue;
358           }
359 
360           // Local metadata is enumerated during function-incorporation.
361           if (isa<LocalAsMetadata>(MD->getMetadata()))
362             continue;
363 
364           EnumerateMetadata(MD->getMetadata());
365         }
366         EnumerateType(I.getType());
367         if (const CallInst *CI = dyn_cast<CallInst>(&I))
368           EnumerateAttributes(CI->getAttributes());
369         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
370           EnumerateAttributes(II->getAttributes());
371 
372         // Enumerate metadata attached with this instruction.
373         MDs.clear();
374         I.getAllMetadataOtherThanDebugLoc(MDs);
375         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
376           EnumerateMetadata(MDs[i].second);
377 
378         // Don't enumerate the location directly -- it has a special record
379         // type -- but enumerate its operands.
380         if (MDLocation *L = I.getDebugLoc())
381           EnumerateMDNodeOperands(L);
382       }
383   }
384 
385   // Optimize constant ordering.
386   OptimizeConstants(FirstConstant, Values.size());
387 }
388 
getInstructionID(const Instruction * Inst) const389 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
390   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
391   assert(I != InstructionMap.end() && "Instruction is not mapped!");
392   return I->second;
393 }
394 
getComdatID(const Comdat * C) const395 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
396   unsigned ComdatID = Comdats.idFor(C);
397   assert(ComdatID && "Comdat not found!");
398   return ComdatID;
399 }
400 
setInstructionID(const Instruction * I)401 void ValueEnumerator::setInstructionID(const Instruction *I) {
402   InstructionMap[I] = InstructionCount++;
403 }
404 
getValueID(const Value * V) const405 unsigned ValueEnumerator::getValueID(const Value *V) const {
406   if (auto *MD = dyn_cast<MetadataAsValue>(V))
407     return getMetadataID(MD->getMetadata());
408 
409   ValueMapType::const_iterator I = ValueMap.find(V);
410   assert(I != ValueMap.end() && "Value not in slotcalculator!");
411   return I->second-1;
412 }
413 
dump() const414 void ValueEnumerator::dump() const {
415   print(dbgs(), ValueMap, "Default");
416   dbgs() << '\n';
417   print(dbgs(), MDValueMap, "MetaData");
418   dbgs() << '\n';
419 }
420 
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const421 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
422                             const char *Name) const {
423 
424   OS << "Map Name: " << Name << "\n";
425   OS << "Size: " << Map.size() << "\n";
426   for (ValueMapType::const_iterator I = Map.begin(),
427          E = Map.end(); I != E; ++I) {
428 
429     const Value *V = I->first;
430     if (V->hasName())
431       OS << "Value: " << V->getName();
432     else
433       OS << "Value: [null]\n";
434     V->dump();
435 
436     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
437     for (const Use &U : V->uses()) {
438       if (&U != &*V->use_begin())
439         OS << ",";
440       if(U->hasName())
441         OS << " " << U->getName();
442       else
443         OS << " [null]";
444 
445     }
446     OS <<  "\n\n";
447   }
448 }
449 
print(raw_ostream & OS,const MetadataMapType & Map,const char * Name) const450 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
451                             const char *Name) const {
452 
453   OS << "Map Name: " << Name << "\n";
454   OS << "Size: " << Map.size() << "\n";
455   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
456     const Metadata *MD = I->first;
457     OS << "Metadata: slot = " << I->second << "\n";
458     MD->print(OS);
459   }
460 }
461 
462 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)463 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
464   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
465 
466   if (ShouldPreserveUseListOrder)
467     // Optimizing constants makes the use-list order difficult to predict.
468     // Disable it for now when trying to preserve the order.
469     return;
470 
471   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
472                    [this](const std::pair<const Value *, unsigned> &LHS,
473                           const std::pair<const Value *, unsigned> &RHS) {
474     // Sort by plane.
475     if (LHS.first->getType() != RHS.first->getType())
476       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
477     // Then by frequency.
478     return LHS.second > RHS.second;
479   });
480 
481   // Ensure that integer and vector of integer constants are at the start of the
482   // constant pool.  This is important so that GEP structure indices come before
483   // gep constant exprs.
484   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
485                  isIntOrIntVectorValue);
486 
487   // Rebuild the modified portion of ValueMap.
488   for (; CstStart != CstEnd; ++CstStart)
489     ValueMap[Values[CstStart].first] = CstStart+1;
490 }
491 
492 
493 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
494 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)495 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
496   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
497        VI != VE; ++VI)
498     EnumerateValue(VI->getValue());
499 }
500 
501 /// Insert all of the values referenced by named metadata in the specified
502 /// module.
EnumerateNamedMetadata(const Module & M)503 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
504   for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
505                                              E = M.named_metadata_end();
506        I != E; ++I)
507     EnumerateNamedMDNode(I);
508 }
509 
EnumerateNamedMDNode(const NamedMDNode * MD)510 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
511   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
512     EnumerateMetadata(MD->getOperand(i));
513 }
514 
515 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
516 /// and types referenced by the given MDNode.
EnumerateMDNodeOperands(const MDNode * N)517 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
518   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
519     Metadata *MD = N->getOperand(i);
520     if (!MD)
521       continue;
522     assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local");
523     EnumerateMetadata(MD);
524   }
525 }
526 
EnumerateMetadata(const Metadata * MD)527 void ValueEnumerator::EnumerateMetadata(const Metadata *MD) {
528   assert(
529       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
530       "Invalid metadata kind");
531 
532   // Insert a dummy ID to block the co-recursive call to
533   // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph.
534   //
535   // Return early if there's already an ID.
536   if (!MDValueMap.insert(std::make_pair(MD, 0)).second)
537     return;
538 
539   // Visit operands first to minimize RAUW.
540   if (auto *N = dyn_cast<MDNode>(MD))
541     EnumerateMDNodeOperands(N);
542   else if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
543     EnumerateValue(C->getValue());
544 
545   HasMDString |= isa<MDString>(MD);
546   HasMDLocation |= isa<MDLocation>(MD);
547   HasGenericDebugNode |= isa<GenericDebugNode>(MD);
548 
549   // Replace the dummy ID inserted above with the correct one.  MDValueMap may
550   // have changed by inserting operands, so we need a fresh lookup here.
551   MDs.push_back(MD);
552   MDValueMap[MD] = MDs.size();
553 }
554 
555 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
556 /// information reachable from the metadata.
EnumerateFunctionLocalMetadata(const LocalAsMetadata * Local)557 void ValueEnumerator::EnumerateFunctionLocalMetadata(
558     const LocalAsMetadata *Local) {
559   // Check to see if it's already in!
560   unsigned &MDValueID = MDValueMap[Local];
561   if (MDValueID)
562     return;
563 
564   MDs.push_back(Local);
565   MDValueID = MDs.size();
566 
567   EnumerateValue(Local->getValue());
568 
569   // Also, collect all function-local metadata for easy access.
570   FunctionLocalMDs.push_back(Local);
571 }
572 
EnumerateValue(const Value * V)573 void ValueEnumerator::EnumerateValue(const Value *V) {
574   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
575   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
576 
577   // Check to see if it's already in!
578   unsigned &ValueID = ValueMap[V];
579   if (ValueID) {
580     // Increment use count.
581     Values[ValueID-1].second++;
582     return;
583   }
584 
585   if (auto *GO = dyn_cast<GlobalObject>(V))
586     if (const Comdat *C = GO->getComdat())
587       Comdats.insert(C);
588 
589   // Enumerate the type of this value.
590   EnumerateType(V->getType());
591 
592   if (const Constant *C = dyn_cast<Constant>(V)) {
593     if (isa<GlobalValue>(C)) {
594       // Initializers for globals are handled explicitly elsewhere.
595     } else if (C->getNumOperands()) {
596       // If a constant has operands, enumerate them.  This makes sure that if a
597       // constant has uses (for example an array of const ints), that they are
598       // inserted also.
599 
600       // We prefer to enumerate them with values before we enumerate the user
601       // itself.  This makes it more likely that we can avoid forward references
602       // in the reader.  We know that there can be no cycles in the constants
603       // graph that don't go through a global variable.
604       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
605            I != E; ++I)
606         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
607           EnumerateValue(*I);
608 
609       // Finally, add the value.  Doing this could make the ValueID reference be
610       // dangling, don't reuse it.
611       Values.push_back(std::make_pair(V, 1U));
612       ValueMap[V] = Values.size();
613       return;
614     }
615   }
616 
617   // Add the value.
618   Values.push_back(std::make_pair(V, 1U));
619   ValueID = Values.size();
620 }
621 
622 
EnumerateType(Type * Ty)623 void ValueEnumerator::EnumerateType(Type *Ty) {
624   unsigned *TypeID = &TypeMap[Ty];
625 
626   // We've already seen this type.
627   if (*TypeID)
628     return;
629 
630   // If it is a non-anonymous struct, mark the type as being visited so that we
631   // don't recursively visit it.  This is safe because we allow forward
632   // references of these in the bitcode reader.
633   if (StructType *STy = dyn_cast<StructType>(Ty))
634     if (!STy->isLiteral())
635       *TypeID = ~0U;
636 
637   // Enumerate all of the subtypes before we enumerate this type.  This ensures
638   // that the type will be enumerated in an order that can be directly built.
639   for (Type *SubTy : Ty->subtypes())
640     EnumerateType(SubTy);
641 
642   // Refresh the TypeID pointer in case the table rehashed.
643   TypeID = &TypeMap[Ty];
644 
645   // Check to see if we got the pointer another way.  This can happen when
646   // enumerating recursive types that hit the base case deeper than they start.
647   //
648   // If this is actually a struct that we are treating as forward ref'able,
649   // then emit the definition now that all of its contents are available.
650   if (*TypeID && *TypeID != ~0U)
651     return;
652 
653   // Add this type now that its contents are all happily enumerated.
654   Types.push_back(Ty);
655 
656   *TypeID = Types.size();
657 }
658 
659 // Enumerate the types for the specified value.  If the value is a constant,
660 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)661 void ValueEnumerator::EnumerateOperandType(const Value *V) {
662   EnumerateType(V->getType());
663 
664   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
665     assert(!isa<LocalAsMetadata>(MD->getMetadata()) &&
666            "Function-local metadata should be left for later");
667 
668     EnumerateMetadata(MD->getMetadata());
669     return;
670   }
671 
672   const Constant *C = dyn_cast<Constant>(V);
673   if (!C)
674     return;
675 
676   // If this constant is already enumerated, ignore it, we know its type must
677   // be enumerated.
678   if (ValueMap.count(C))
679     return;
680 
681   // This constant may have operands, make sure to enumerate the types in
682   // them.
683   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
684     const Value *Op = C->getOperand(i);
685 
686     // Don't enumerate basic blocks here, this happens as operands to
687     // blockaddress.
688     if (isa<BasicBlock>(Op))
689       continue;
690 
691     EnumerateOperandType(Op);
692   }
693 }
694 
EnumerateAttributes(AttributeSet PAL)695 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
696   if (PAL.isEmpty()) return;  // null is always 0.
697 
698   // Do a lookup.
699   unsigned &Entry = AttributeMap[PAL];
700   if (Entry == 0) {
701     // Never saw this before, add it.
702     Attribute.push_back(PAL);
703     Entry = Attribute.size();
704   }
705 
706   // Do lookups for all attribute groups.
707   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
708     AttributeSet AS = PAL.getSlotAttributes(i);
709     unsigned &Entry = AttributeGroupMap[AS];
710     if (Entry == 0) {
711       AttributeGroups.push_back(AS);
712       Entry = AttributeGroups.size();
713     }
714   }
715 }
716 
incorporateFunction(const Function & F)717 void ValueEnumerator::incorporateFunction(const Function &F) {
718   InstructionCount = 0;
719   NumModuleValues = Values.size();
720   NumModuleMDs = MDs.size();
721 
722   // Adding function arguments to the value table.
723   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
724        I != E; ++I)
725     EnumerateValue(I);
726 
727   FirstFuncConstantID = Values.size();
728 
729   // Add all function-level constants to the value table.
730   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
731     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
732       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
733            OI != E; ++OI) {
734         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
735             isa<InlineAsm>(*OI))
736           EnumerateValue(*OI);
737       }
738     BasicBlocks.push_back(BB);
739     ValueMap[BB] = BasicBlocks.size();
740   }
741 
742   // Optimize the constant layout.
743   OptimizeConstants(FirstFuncConstantID, Values.size());
744 
745   // Add the function's parameter attributes so they are available for use in
746   // the function's instruction.
747   EnumerateAttributes(F.getAttributes());
748 
749   FirstInstID = Values.size();
750 
751   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
752   // Add all of the instructions.
753   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
754     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
755       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
756            OI != E; ++OI) {
757         if (auto *MD = dyn_cast<MetadataAsValue>(&*OI))
758           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
759             // Enumerate metadata after the instructions they might refer to.
760             FnLocalMDVector.push_back(Local);
761       }
762 
763       if (!I->getType()->isVoidTy())
764         EnumerateValue(I);
765     }
766   }
767 
768   // Add all of the function-local metadata.
769   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
770     EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
771 }
772 
purgeFunction()773 void ValueEnumerator::purgeFunction() {
774   /// Remove purged values from the ValueMap.
775   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
776     ValueMap.erase(Values[i].first);
777   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
778     MDValueMap.erase(MDs[i]);
779   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
780     ValueMap.erase(BasicBlocks[i]);
781 
782   Values.resize(NumModuleValues);
783   MDs.resize(NumModuleMDs);
784   BasicBlocks.clear();
785   FunctionLocalMDs.clear();
786 }
787 
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)788 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
789                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
790   unsigned Counter = 0;
791   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
792     IDMap[BB] = ++Counter;
793 }
794 
795 /// getGlobalBasicBlockID - This returns the function-specific ID for the
796 /// specified basic block.  This is relatively expensive information, so it
797 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const798 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
799   unsigned &Idx = GlobalBasicBlockIDs[BB];
800   if (Idx != 0)
801     return Idx-1;
802 
803   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
804   return getGlobalBasicBlockID(BB);
805 }
806 
computeBitsRequiredForTypeIndicies() const807 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
808   return Log2_32_Ceil(getTypes().size() + 1);
809 }
810