1 //===---------------------------- StackMaps.cpp ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/CodeGen/StackMaps.h"
11 #include "llvm/CodeGen/AsmPrinter.h"
12 #include "llvm/CodeGen/MachineFrameInfo.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCObjectFileInfo.h"
19 #include "llvm/MC/MCSectionMachO.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetOpcodes.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 #include <iterator>
27
28 using namespace llvm;
29
30 #define DEBUG_TYPE "stackmaps"
31
32 static cl::opt<int> StackMapVersion("stackmap-version", cl::init(1),
33 cl::desc("Specify the stackmap encoding version (default = 1)"));
34
35 const char *StackMaps::WSMP = "Stack Maps: ";
36
PatchPointOpers(const MachineInstr * MI)37 PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
38 : MI(MI),
39 HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
40 !MI->getOperand(0).isImplicit()),
41 IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() == CallingConv::AnyReg)
42 {
43 #ifndef NDEBUG
44 unsigned CheckStartIdx = 0, e = MI->getNumOperands();
45 while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
46 MI->getOperand(CheckStartIdx).isDef() &&
47 !MI->getOperand(CheckStartIdx).isImplicit())
48 ++CheckStartIdx;
49
50 assert(getMetaIdx() == CheckStartIdx &&
51 "Unexpected additional definition in Patchpoint intrinsic.");
52 #endif
53 }
54
getNextScratchIdx(unsigned StartIdx) const55 unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
56 if (!StartIdx)
57 StartIdx = getVarIdx();
58
59 // Find the next scratch register (implicit def and early clobber)
60 unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
61 while (ScratchIdx < e &&
62 !(MI->getOperand(ScratchIdx).isReg() &&
63 MI->getOperand(ScratchIdx).isDef() &&
64 MI->getOperand(ScratchIdx).isImplicit() &&
65 MI->getOperand(ScratchIdx).isEarlyClobber()))
66 ++ScratchIdx;
67
68 assert(ScratchIdx != e && "No scratch register available");
69 return ScratchIdx;
70 }
71
StackMaps(AsmPrinter & AP)72 StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) {
73 if (StackMapVersion != 1)
74 llvm_unreachable("Unsupported stackmap version!");
75 }
76
77 /// Go up the super-register chain until we hit a valid dwarf register number.
getDwarfRegNum(unsigned Reg,const TargetRegisterInfo * TRI)78 static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) {
79 int RegNo = TRI->getDwarfRegNum(Reg, false);
80 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNo < 0; ++SR)
81 RegNo = TRI->getDwarfRegNum(*SR, false);
82
83 assert(RegNo >= 0 && "Invalid Dwarf register number.");
84 return (unsigned) RegNo;
85 }
86
87 MachineInstr::const_mop_iterator
parseOperand(MachineInstr::const_mop_iterator MOI,MachineInstr::const_mop_iterator MOE,LocationVec & Locs,LiveOutVec & LiveOuts) const88 StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
89 MachineInstr::const_mop_iterator MOE,
90 LocationVec &Locs, LiveOutVec &LiveOuts) const {
91 const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
92 if (MOI->isImm()) {
93 switch (MOI->getImm()) {
94 default: llvm_unreachable("Unrecognized operand type.");
95 case StackMaps::DirectMemRefOp: {
96 unsigned Size = AP.TM.getDataLayout()->getPointerSizeInBits();
97 assert((Size % 8) == 0 && "Need pointer size in bytes.");
98 Size /= 8;
99 unsigned Reg = (++MOI)->getReg();
100 int64_t Imm = (++MOI)->getImm();
101 Locs.push_back(Location(StackMaps::Location::Direct, Size,
102 getDwarfRegNum(Reg, TRI), Imm));
103 break;
104 }
105 case StackMaps::IndirectMemRefOp: {
106 int64_t Size = (++MOI)->getImm();
107 assert(Size > 0 && "Need a valid size for indirect memory locations.");
108 unsigned Reg = (++MOI)->getReg();
109 int64_t Imm = (++MOI)->getImm();
110 Locs.push_back(Location(StackMaps::Location::Indirect, Size,
111 getDwarfRegNum(Reg, TRI), Imm));
112 break;
113 }
114 case StackMaps::ConstantOp: {
115 ++MOI;
116 assert(MOI->isImm() && "Expected constant operand.");
117 int64_t Imm = MOI->getImm();
118 Locs.push_back(Location(Location::Constant, sizeof(int64_t), 0, Imm));
119 break;
120 }
121 }
122 return ++MOI;
123 }
124
125 // The physical register number will ultimately be encoded as a DWARF regno.
126 // The stack map also records the size of a spill slot that can hold the
127 // register content. (The runtime can track the actual size of the data type
128 // if it needs to.)
129 if (MOI->isReg()) {
130 // Skip implicit registers (this includes our scratch registers)
131 if (MOI->isImplicit())
132 return ++MOI;
133
134 assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) &&
135 "Virtreg operands should have been rewritten before now.");
136 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MOI->getReg());
137 assert(!MOI->getSubReg() && "Physical subreg still around.");
138
139 unsigned Offset = 0;
140 unsigned RegNo = getDwarfRegNum(MOI->getReg(), TRI);
141 unsigned LLVMRegNo = TRI->getLLVMRegNum(RegNo, false);
142 unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNo, MOI->getReg());
143 if (SubRegIdx)
144 Offset = TRI->getSubRegIdxOffset(SubRegIdx);
145
146 Locs.push_back(
147 Location(Location::Register, RC->getSize(), RegNo, Offset));
148 return ++MOI;
149 }
150
151 if (MOI->isRegLiveOut())
152 LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut());
153
154 return ++MOI;
155 }
156
print(raw_ostream & OS)157 void StackMaps::print(raw_ostream &OS) {
158 const TargetRegisterInfo *TRI =
159 AP.MF ? AP.MF->getSubtarget().getRegisterInfo() : nullptr;
160 OS << WSMP << "callsites:\n";
161 for (const auto &CSI : CSInfos) {
162 const LocationVec &CSLocs = CSI.Locations;
163 const LiveOutVec &LiveOuts = CSI.LiveOuts;
164
165 OS << WSMP << "callsite " << CSI.ID << "\n";
166 OS << WSMP << " has " << CSLocs.size() << " locations\n";
167
168 unsigned OperIdx = 0;
169 for (const auto &Loc : CSLocs) {
170 OS << WSMP << " Loc " << OperIdx << ": ";
171 switch (Loc.LocType) {
172 case Location::Unprocessed:
173 OS << "<Unprocessed operand>";
174 break;
175 case Location::Register:
176 OS << "Register ";
177 if (TRI)
178 OS << TRI->getName(Loc.Reg);
179 else
180 OS << Loc.Reg;
181 break;
182 case Location::Direct:
183 OS << "Direct ";
184 if (TRI)
185 OS << TRI->getName(Loc.Reg);
186 else
187 OS << Loc.Reg;
188 if (Loc.Offset)
189 OS << " + " << Loc.Offset;
190 break;
191 case Location::Indirect:
192 OS << "Indirect ";
193 if (TRI)
194 OS << TRI->getName(Loc.Reg);
195 else
196 OS << Loc.Reg;
197 OS << "+" << Loc.Offset;
198 break;
199 case Location::Constant:
200 OS << "Constant " << Loc.Offset;
201 break;
202 case Location::ConstantIndex:
203 OS << "Constant Index " << Loc.Offset;
204 break;
205 }
206 OS << " [encoding: .byte " << Loc.LocType << ", .byte " << Loc.Size
207 << ", .short " << Loc.Reg << ", .int " << Loc.Offset << "]\n";
208 OperIdx++;
209 }
210
211 OS << WSMP << " has " << LiveOuts.size() << " live-out registers\n";
212
213 OperIdx = 0;
214 for (const auto &LO : LiveOuts) {
215 OS << WSMP << " LO " << OperIdx << ": ";
216 if (TRI)
217 OS << TRI->getName(LO.Reg);
218 else
219 OS << LO.Reg;
220 OS << " [encoding: .short " << LO.RegNo << ", .byte 0, .byte "
221 << LO.Size << "]\n";
222 OperIdx++;
223 }
224 }
225 }
226
227 /// Create a live-out register record for the given register Reg.
228 StackMaps::LiveOutReg
createLiveOutReg(unsigned Reg,const TargetRegisterInfo * TRI) const229 StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
230 unsigned RegNo = getDwarfRegNum(Reg, TRI);
231 unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
232 return LiveOutReg(Reg, RegNo, Size);
233 }
234
235 /// Parse the register live-out mask and return a vector of live-out registers
236 /// that need to be recorded in the stackmap.
237 StackMaps::LiveOutVec
parseRegisterLiveOutMask(const uint32_t * Mask) const238 StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
239 assert(Mask && "No register mask specified");
240 const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
241 LiveOutVec LiveOuts;
242
243 // Create a LiveOutReg for each bit that is set in the register mask.
244 for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg)
245 if ((Mask[Reg / 32] >> Reg % 32) & 1)
246 LiveOuts.push_back(createLiveOutReg(Reg, TRI));
247
248 // We don't need to keep track of a register if its super-register is already
249 // in the list. Merge entries that refer to the same dwarf register and use
250 // the maximum size that needs to be spilled.
251 std::sort(LiveOuts.begin(), LiveOuts.end());
252 for (LiveOutVec::iterator I = LiveOuts.begin(), E = LiveOuts.end();
253 I != E; ++I) {
254 for (LiveOutVec::iterator II = std::next(I); II != E; ++II) {
255 if (I->RegNo != II->RegNo) {
256 // Skip all the now invalid entries.
257 I = --II;
258 break;
259 }
260 I->Size = std::max(I->Size, II->Size);
261 if (TRI->isSuperRegister(I->Reg, II->Reg))
262 I->Reg = II->Reg;
263 II->MarkInvalid();
264 }
265 }
266 LiveOuts.erase(std::remove_if(LiveOuts.begin(), LiveOuts.end(),
267 LiveOutReg::IsInvalid), LiveOuts.end());
268 return LiveOuts;
269 }
270
recordStackMapOpers(const MachineInstr & MI,uint64_t ID,MachineInstr::const_mop_iterator MOI,MachineInstr::const_mop_iterator MOE,bool recordResult)271 void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
272 MachineInstr::const_mop_iterator MOI,
273 MachineInstr::const_mop_iterator MOE,
274 bool recordResult) {
275
276 MCContext &OutContext = AP.OutStreamer.getContext();
277 MCSymbol *MILabel = OutContext.CreateTempSymbol();
278 AP.OutStreamer.EmitLabel(MILabel);
279
280 LocationVec Locations;
281 LiveOutVec LiveOuts;
282
283 if (recordResult) {
284 assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value.");
285 parseOperand(MI.operands_begin(), std::next(MI.operands_begin()),
286 Locations, LiveOuts);
287 }
288
289 // Parse operands.
290 while (MOI != MOE) {
291 MOI = parseOperand(MOI, MOE, Locations, LiveOuts);
292 }
293
294 // Move large constants into the constant pool.
295 for (LocationVec::iterator I = Locations.begin(), E = Locations.end();
296 I != E; ++I) {
297 // Constants are encoded as sign-extended integers.
298 // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
299 if (I->LocType == Location::Constant && !isInt<32>(I->Offset)) {
300 I->LocType = Location::ConstantIndex;
301 // ConstPool is intentionally a MapVector of 'uint64_t's (as
302 // opposed to 'int64_t's). We should never be in a situation
303 // where we have to insert either the tombstone or the empty
304 // keys into a map, and for a DenseMap<uint64_t, T> these are
305 // (uint64_t)0 and (uint64_t)-1. They can be and are
306 // represented using 32 bit integers.
307
308 assert((uint64_t)I->Offset != DenseMapInfo<uint64_t>::getEmptyKey() &&
309 (uint64_t)I->Offset != DenseMapInfo<uint64_t>::getTombstoneKey() &&
310 "empty and tombstone keys should fit in 32 bits!");
311 auto Result = ConstPool.insert(std::make_pair(I->Offset, I->Offset));
312 I->Offset = Result.first - ConstPool.begin();
313 }
314 }
315
316 // Create an expression to calculate the offset of the callsite from function
317 // entry.
318 const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub(
319 MCSymbolRefExpr::Create(MILabel, OutContext),
320 MCSymbolRefExpr::Create(AP.CurrentFnSymForSize, OutContext),
321 OutContext);
322
323 CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
324 std::move(LiveOuts));
325
326 // Record the stack size of the current function.
327 const MachineFrameInfo *MFI = AP.MF->getFrameInfo();
328 const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
329 const bool DynamicFrameSize = MFI->hasVarSizedObjects() ||
330 RegInfo->needsStackRealignment(*(AP.MF));
331 FnStackSize[AP.CurrentFnSym] =
332 DynamicFrameSize ? UINT64_MAX : MFI->getStackSize();
333 }
334
recordStackMap(const MachineInstr & MI)335 void StackMaps::recordStackMap(const MachineInstr &MI) {
336 assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");
337
338 int64_t ID = MI.getOperand(0).getImm();
339 recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), 2),
340 MI.operands_end());
341 }
342
recordPatchPoint(const MachineInstr & MI)343 void StackMaps::recordPatchPoint(const MachineInstr &MI) {
344 assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");
345
346 PatchPointOpers opers(&MI);
347 int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm();
348
349 MachineInstr::const_mop_iterator MOI =
350 std::next(MI.operands_begin(), opers.getStackMapStartIdx());
351 recordStackMapOpers(MI, ID, MOI, MI.operands_end(),
352 opers.isAnyReg() && opers.hasDef());
353
354 #ifndef NDEBUG
355 // verify anyregcc
356 LocationVec &Locations = CSInfos.back().Locations;
357 if (opers.isAnyReg()) {
358 unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm();
359 for (unsigned i = 0, e = (opers.hasDef() ? NArgs+1 : NArgs); i != e; ++i)
360 assert(Locations[i].LocType == Location::Register &&
361 "anyreg arg must be in reg.");
362 }
363 #endif
364 }
recordStatepoint(const MachineInstr & MI)365 void StackMaps::recordStatepoint(const MachineInstr &MI) {
366 assert(MI.getOpcode() == TargetOpcode::STATEPOINT &&
367 "expected statepoint");
368
369 StatepointOpers opers(&MI);
370 // Record all the deopt and gc operands (they're contiguous and run from the
371 // initial index to the end of the operand list)
372 const unsigned StartIdx = opers.getVarIdx();
373 recordStackMapOpers(MI, 0xABCDEF00,
374 MI.operands_begin() + StartIdx, MI.operands_end(),
375 false);
376 }
377
378 /// Emit the stackmap header.
379 ///
380 /// Header {
381 /// uint8 : Stack Map Version (currently 1)
382 /// uint8 : Reserved (expected to be 0)
383 /// uint16 : Reserved (expected to be 0)
384 /// }
385 /// uint32 : NumFunctions
386 /// uint32 : NumConstants
387 /// uint32 : NumRecords
emitStackmapHeader(MCStreamer & OS)388 void StackMaps::emitStackmapHeader(MCStreamer &OS) {
389 // Header.
390 OS.EmitIntValue(StackMapVersion, 1); // Version.
391 OS.EmitIntValue(0, 1); // Reserved.
392 OS.EmitIntValue(0, 2); // Reserved.
393
394 // Num functions.
395 DEBUG(dbgs() << WSMP << "#functions = " << FnStackSize.size() << '\n');
396 OS.EmitIntValue(FnStackSize.size(), 4);
397 // Num constants.
398 DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n');
399 OS.EmitIntValue(ConstPool.size(), 4);
400 // Num callsites.
401 DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n');
402 OS.EmitIntValue(CSInfos.size(), 4);
403 }
404
405 /// Emit the function frame record for each function.
406 ///
407 /// StkSizeRecord[NumFunctions] {
408 /// uint64 : Function Address
409 /// uint64 : Stack Size
410 /// }
emitFunctionFrameRecords(MCStreamer & OS)411 void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) {
412 // Function Frame records.
413 DEBUG(dbgs() << WSMP << "functions:\n");
414 for (auto const &FR : FnStackSize) {
415 DEBUG(dbgs() << WSMP << "function addr: " << FR.first
416 << " frame size: " << FR.second);
417 OS.EmitSymbolValue(FR.first, 8);
418 OS.EmitIntValue(FR.second, 8);
419 }
420 }
421
422 /// Emit the constant pool.
423 ///
424 /// int64 : Constants[NumConstants]
emitConstantPoolEntries(MCStreamer & OS)425 void StackMaps::emitConstantPoolEntries(MCStreamer &OS) {
426 // Constant pool entries.
427 DEBUG(dbgs() << WSMP << "constants:\n");
428 for (auto ConstEntry : ConstPool) {
429 DEBUG(dbgs() << WSMP << ConstEntry.second << '\n');
430 OS.EmitIntValue(ConstEntry.second, 8);
431 }
432 }
433
434 /// Emit the callsite info for each callsite.
435 ///
436 /// StkMapRecord[NumRecords] {
437 /// uint64 : PatchPoint ID
438 /// uint32 : Instruction Offset
439 /// uint16 : Reserved (record flags)
440 /// uint16 : NumLocations
441 /// Location[NumLocations] {
442 /// uint8 : Register | Direct | Indirect | Constant | ConstantIndex
443 /// uint8 : Size in Bytes
444 /// uint16 : Dwarf RegNum
445 /// int32 : Offset
446 /// }
447 /// uint16 : Padding
448 /// uint16 : NumLiveOuts
449 /// LiveOuts[NumLiveOuts] {
450 /// uint16 : Dwarf RegNum
451 /// uint8 : Reserved
452 /// uint8 : Size in Bytes
453 /// }
454 /// uint32 : Padding (only if required to align to 8 byte)
455 /// }
456 ///
457 /// Location Encoding, Type, Value:
458 /// 0x1, Register, Reg (value in register)
459 /// 0x2, Direct, Reg + Offset (frame index)
460 /// 0x3, Indirect, [Reg + Offset] (spilled value)
461 /// 0x4, Constant, Offset (small constant)
462 /// 0x5, ConstIndex, Constants[Offset] (large constant)
emitCallsiteEntries(MCStreamer & OS)463 void StackMaps::emitCallsiteEntries(MCStreamer &OS) {
464 DEBUG(print(dbgs()));
465 // Callsite entries.
466 for (const auto &CSI : CSInfos) {
467 const LocationVec &CSLocs = CSI.Locations;
468 const LiveOutVec &LiveOuts = CSI.LiveOuts;
469
470 // Verify stack map entry. It's better to communicate a problem to the
471 // runtime than crash in case of in-process compilation. Currently, we do
472 // simple overflow checks, but we may eventually communicate other
473 // compilation errors this way.
474 if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) {
475 OS.EmitIntValue(UINT64_MAX, 8); // Invalid ID.
476 OS.EmitValue(CSI.CSOffsetExpr, 4);
477 OS.EmitIntValue(0, 2); // Reserved.
478 OS.EmitIntValue(0, 2); // 0 locations.
479 OS.EmitIntValue(0, 2); // padding.
480 OS.EmitIntValue(0, 2); // 0 live-out registers.
481 OS.EmitIntValue(0, 4); // padding.
482 continue;
483 }
484
485 OS.EmitIntValue(CSI.ID, 8);
486 OS.EmitValue(CSI.CSOffsetExpr, 4);
487
488 // Reserved for flags.
489 OS.EmitIntValue(0, 2);
490 OS.EmitIntValue(CSLocs.size(), 2);
491
492 for (const auto &Loc : CSLocs) {
493 OS.EmitIntValue(Loc.LocType, 1);
494 OS.EmitIntValue(Loc.Size, 1);
495 OS.EmitIntValue(Loc.Reg, 2);
496 OS.EmitIntValue(Loc.Offset, 4);
497 }
498
499 // Num live-out registers and padding to align to 4 byte.
500 OS.EmitIntValue(0, 2);
501 OS.EmitIntValue(LiveOuts.size(), 2);
502
503 for (const auto &LO : LiveOuts) {
504 OS.EmitIntValue(LO.RegNo, 2);
505 OS.EmitIntValue(0, 1);
506 OS.EmitIntValue(LO.Size, 1);
507 }
508 // Emit alignment to 8 byte.
509 OS.EmitValueToAlignment(8);
510 }
511 }
512
513 /// Serialize the stackmap data.
serializeToStackMapSection()514 void StackMaps::serializeToStackMapSection() {
515 (void) WSMP;
516 // Bail out if there's no stack map data.
517 assert((!CSInfos.empty() || (CSInfos.empty() && ConstPool.empty())) &&
518 "Expected empty constant pool too!");
519 assert((!CSInfos.empty() || (CSInfos.empty() && FnStackSize.empty())) &&
520 "Expected empty function record too!");
521 if (CSInfos.empty())
522 return;
523
524 MCContext &OutContext = AP.OutStreamer.getContext();
525 MCStreamer &OS = AP.OutStreamer;
526
527 // Create the section.
528 const MCSection *StackMapSection =
529 OutContext.getObjectFileInfo()->getStackMapSection();
530 OS.SwitchSection(StackMapSection);
531
532 // Emit a dummy symbol to force section inclusion.
533 OS.EmitLabel(OutContext.GetOrCreateSymbol(Twine("__LLVM_StackMaps")));
534
535 // Serialize data.
536 DEBUG(dbgs() << "********** Stack Map Output **********\n");
537 emitStackmapHeader(OS);
538 emitFunctionFrameRecords(OS);
539 emitConstantPoolEntries(OS);
540 emitCallsiteEntries(OS);
541 OS.AddBlankLine();
542
543 // Clean up.
544 CSInfos.clear();
545 ConstPool.clear();
546 }
547