1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
12 //
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "Interpreter.h"
23 #include "llvm/Config/config.h" // Detect libffi
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/Mutex.h"
31 #include "llvm/Support/UniqueLock.h"
32 #include <cmath>
33 #include <csignal>
34 #include <cstdio>
35 #include <cstring>
36 #include <map>
37
38 #ifdef HAVE_FFI_CALL
39 #ifdef HAVE_FFI_H
40 #include <ffi.h>
41 #define USE_LIBFFI
42 #elif HAVE_FFI_FFI_H
43 #include <ffi/ffi.h>
44 #define USE_LIBFFI
45 #endif
46 #endif
47
48 using namespace llvm;
49
50 static ManagedStatic<sys::Mutex> FunctionsLock;
51
52 typedef GenericValue (*ExFunc)(FunctionType *,
53 const std::vector<GenericValue> &);
54 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
55 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
56
57 #ifdef USE_LIBFFI
58 typedef void (*RawFunc)();
59 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
60 #endif
61
62 static Interpreter *TheInterpreter;
63
getTypeID(Type * Ty)64 static char getTypeID(Type *Ty) {
65 switch (Ty->getTypeID()) {
66 case Type::VoidTyID: return 'V';
67 case Type::IntegerTyID:
68 switch (cast<IntegerType>(Ty)->getBitWidth()) {
69 case 1: return 'o';
70 case 8: return 'B';
71 case 16: return 'S';
72 case 32: return 'I';
73 case 64: return 'L';
74 default: return 'N';
75 }
76 case Type::FloatTyID: return 'F';
77 case Type::DoubleTyID: return 'D';
78 case Type::PointerTyID: return 'P';
79 case Type::FunctionTyID:return 'M';
80 case Type::StructTyID: return 'T';
81 case Type::ArrayTyID: return 'A';
82 default: return 'U';
83 }
84 }
85
86 // Try to find address of external function given a Function object.
87 // Please note, that interpreter doesn't know how to assemble a
88 // real call in general case (this is JIT job), that's why it assumes,
89 // that all external functions has the same (and pretty "general") signature.
90 // The typical example of such functions are "lle_X_" ones.
lookupFunction(const Function * F)91 static ExFunc lookupFunction(const Function *F) {
92 // Function not found, look it up... start by figuring out what the
93 // composite function name should be.
94 std::string ExtName = "lle_";
95 FunctionType *FT = F->getFunctionType();
96 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
97 ExtName += getTypeID(FT->getContainedType(i));
98 ExtName += ("_" + F->getName()).str();
99
100 sys::ScopedLock Writer(*FunctionsLock);
101 ExFunc FnPtr = (*FuncNames)[ExtName];
102 if (!FnPtr)
103 FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
104 if (!FnPtr) // Try calling a generic function... if it exists...
105 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
106 ("lle_X_" + F->getName()).str());
107 if (FnPtr)
108 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
109 return FnPtr;
110 }
111
112 #ifdef USE_LIBFFI
ffiTypeFor(Type * Ty)113 static ffi_type *ffiTypeFor(Type *Ty) {
114 switch (Ty->getTypeID()) {
115 case Type::VoidTyID: return &ffi_type_void;
116 case Type::IntegerTyID:
117 switch (cast<IntegerType>(Ty)->getBitWidth()) {
118 case 8: return &ffi_type_sint8;
119 case 16: return &ffi_type_sint16;
120 case 32: return &ffi_type_sint32;
121 case 64: return &ffi_type_sint64;
122 }
123 case Type::FloatTyID: return &ffi_type_float;
124 case Type::DoubleTyID: return &ffi_type_double;
125 case Type::PointerTyID: return &ffi_type_pointer;
126 default: break;
127 }
128 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
129 report_fatal_error("Type could not be mapped for use with libffi.");
130 return NULL;
131 }
132
ffiValueFor(Type * Ty,const GenericValue & AV,void * ArgDataPtr)133 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
134 void *ArgDataPtr) {
135 switch (Ty->getTypeID()) {
136 case Type::IntegerTyID:
137 switch (cast<IntegerType>(Ty)->getBitWidth()) {
138 case 8: {
139 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
140 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
141 return ArgDataPtr;
142 }
143 case 16: {
144 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
145 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
146 return ArgDataPtr;
147 }
148 case 32: {
149 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
150 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
151 return ArgDataPtr;
152 }
153 case 64: {
154 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
155 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
156 return ArgDataPtr;
157 }
158 }
159 case Type::FloatTyID: {
160 float *FloatPtr = (float *) ArgDataPtr;
161 *FloatPtr = AV.FloatVal;
162 return ArgDataPtr;
163 }
164 case Type::DoubleTyID: {
165 double *DoublePtr = (double *) ArgDataPtr;
166 *DoublePtr = AV.DoubleVal;
167 return ArgDataPtr;
168 }
169 case Type::PointerTyID: {
170 void **PtrPtr = (void **) ArgDataPtr;
171 *PtrPtr = GVTOP(AV);
172 return ArgDataPtr;
173 }
174 default: break;
175 }
176 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
177 report_fatal_error("Type value could not be mapped for use with libffi.");
178 return NULL;
179 }
180
ffiInvoke(RawFunc Fn,Function * F,const std::vector<GenericValue> & ArgVals,const DataLayout * TD,GenericValue & Result)181 static bool ffiInvoke(RawFunc Fn, Function *F,
182 const std::vector<GenericValue> &ArgVals,
183 const DataLayout *TD, GenericValue &Result) {
184 ffi_cif cif;
185 FunctionType *FTy = F->getFunctionType();
186 const unsigned NumArgs = F->arg_size();
187
188 // TODO: We don't have type information about the remaining arguments, because
189 // this information is never passed into ExecutionEngine::runFunction().
190 if (ArgVals.size() > NumArgs && F->isVarArg()) {
191 report_fatal_error("Calling external var arg function '" + F->getName()
192 + "' is not supported by the Interpreter.");
193 }
194
195 unsigned ArgBytes = 0;
196
197 std::vector<ffi_type*> args(NumArgs);
198 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
199 A != E; ++A) {
200 const unsigned ArgNo = A->getArgNo();
201 Type *ArgTy = FTy->getParamType(ArgNo);
202 args[ArgNo] = ffiTypeFor(ArgTy);
203 ArgBytes += TD->getTypeStoreSize(ArgTy);
204 }
205
206 SmallVector<uint8_t, 128> ArgData;
207 ArgData.resize(ArgBytes);
208 uint8_t *ArgDataPtr = ArgData.data();
209 SmallVector<void*, 16> values(NumArgs);
210 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
211 A != E; ++A) {
212 const unsigned ArgNo = A->getArgNo();
213 Type *ArgTy = FTy->getParamType(ArgNo);
214 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
215 ArgDataPtr += TD->getTypeStoreSize(ArgTy);
216 }
217
218 Type *RetTy = FTy->getReturnType();
219 ffi_type *rtype = ffiTypeFor(RetTy);
220
221 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
222 SmallVector<uint8_t, 128> ret;
223 if (RetTy->getTypeID() != Type::VoidTyID)
224 ret.resize(TD->getTypeStoreSize(RetTy));
225 ffi_call(&cif, Fn, ret.data(), values.data());
226 switch (RetTy->getTypeID()) {
227 case Type::IntegerTyID:
228 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
229 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
230 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
231 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
232 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
233 }
234 break;
235 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
236 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
237 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
238 default: break;
239 }
240 return true;
241 }
242
243 return false;
244 }
245 #endif // USE_LIBFFI
246
callExternalFunction(Function * F,const std::vector<GenericValue> & ArgVals)247 GenericValue Interpreter::callExternalFunction(Function *F,
248 const std::vector<GenericValue> &ArgVals) {
249 TheInterpreter = this;
250
251 unique_lock<sys::Mutex> Guard(*FunctionsLock);
252
253 // Do a lookup to see if the function is in our cache... this should just be a
254 // deferred annotation!
255 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
256 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
257 : FI->second) {
258 Guard.unlock();
259 return Fn(F->getFunctionType(), ArgVals);
260 }
261
262 #ifdef USE_LIBFFI
263 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
264 RawFunc RawFn;
265 if (RF == RawFunctions->end()) {
266 RawFn = (RawFunc)(intptr_t)
267 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
268 if (!RawFn)
269 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
270 if (RawFn != 0)
271 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
272 } else {
273 RawFn = RF->second;
274 }
275
276 Guard.unlock();
277
278 GenericValue Result;
279 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
280 return Result;
281 #endif // USE_LIBFFI
282
283 if (F->getName() == "__main")
284 errs() << "Tried to execute an unknown external function: "
285 << *F->getType() << " __main\n";
286 else
287 report_fatal_error("Tried to execute an unknown external function: " +
288 F->getName());
289 #ifndef USE_LIBFFI
290 errs() << "Recompiling LLVM with --enable-libffi might help.\n";
291 #endif
292 return GenericValue();
293 }
294
295
296 //===----------------------------------------------------------------------===//
297 // Functions "exported" to the running application...
298 //
299
300 // void atexit(Function*)
301 static
lle_X_atexit(FunctionType * FT,const std::vector<GenericValue> & Args)302 GenericValue lle_X_atexit(FunctionType *FT,
303 const std::vector<GenericValue> &Args) {
304 assert(Args.size() == 1);
305 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
306 GenericValue GV;
307 GV.IntVal = 0;
308 return GV;
309 }
310
311 // void exit(int)
312 static
lle_X_exit(FunctionType * FT,const std::vector<GenericValue> & Args)313 GenericValue lle_X_exit(FunctionType *FT,
314 const std::vector<GenericValue> &Args) {
315 TheInterpreter->exitCalled(Args[0]);
316 return GenericValue();
317 }
318
319 // void abort(void)
320 static
lle_X_abort(FunctionType * FT,const std::vector<GenericValue> & Args)321 GenericValue lle_X_abort(FunctionType *FT,
322 const std::vector<GenericValue> &Args) {
323 //FIXME: should we report or raise here?
324 //report_fatal_error("Interpreted program raised SIGABRT");
325 raise (SIGABRT);
326 return GenericValue();
327 }
328
329 // int sprintf(char *, const char *, ...) - a very rough implementation to make
330 // output useful.
331 static
lle_X_sprintf(FunctionType * FT,const std::vector<GenericValue> & Args)332 GenericValue lle_X_sprintf(FunctionType *FT,
333 const std::vector<GenericValue> &Args) {
334 char *OutputBuffer = (char *)GVTOP(Args[0]);
335 const char *FmtStr = (const char *)GVTOP(Args[1]);
336 unsigned ArgNo = 2;
337
338 // printf should return # chars printed. This is completely incorrect, but
339 // close enough for now.
340 GenericValue GV;
341 GV.IntVal = APInt(32, strlen(FmtStr));
342 while (1) {
343 switch (*FmtStr) {
344 case 0: return GV; // Null terminator...
345 default: // Normal nonspecial character
346 sprintf(OutputBuffer++, "%c", *FmtStr++);
347 break;
348 case '\\': { // Handle escape codes
349 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
350 FmtStr += 2; OutputBuffer += 2;
351 break;
352 }
353 case '%': { // Handle format specifiers
354 char FmtBuf[100] = "", Buffer[1000] = "";
355 char *FB = FmtBuf;
356 *FB++ = *FmtStr++;
357 char Last = *FB++ = *FmtStr++;
358 unsigned HowLong = 0;
359 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
360 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
361 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
362 Last != 'p' && Last != 's' && Last != '%') {
363 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
364 Last = *FB++ = *FmtStr++;
365 }
366 *FB = 0;
367
368 switch (Last) {
369 case '%':
370 memcpy(Buffer, "%", 2); break;
371 case 'c':
372 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
373 break;
374 case 'd': case 'i':
375 case 'u': case 'o':
376 case 'x': case 'X':
377 if (HowLong >= 1) {
378 if (HowLong == 1 &&
379 TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
380 sizeof(long) < sizeof(int64_t)) {
381 // Make sure we use %lld with a 64 bit argument because we might be
382 // compiling LLI on a 32 bit compiler.
383 unsigned Size = strlen(FmtBuf);
384 FmtBuf[Size] = FmtBuf[Size-1];
385 FmtBuf[Size+1] = 0;
386 FmtBuf[Size-1] = 'l';
387 }
388 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
389 } else
390 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
391 break;
392 case 'e': case 'E': case 'g': case 'G': case 'f':
393 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
394 case 'p':
395 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
396 case 's':
397 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
398 default:
399 errs() << "<unknown printf code '" << *FmtStr << "'!>";
400 ArgNo++; break;
401 }
402 size_t Len = strlen(Buffer);
403 memcpy(OutputBuffer, Buffer, Len + 1);
404 OutputBuffer += Len;
405 }
406 break;
407 }
408 }
409 return GV;
410 }
411
412 // int printf(const char *, ...) - a very rough implementation to make output
413 // useful.
414 static
lle_X_printf(FunctionType * FT,const std::vector<GenericValue> & Args)415 GenericValue lle_X_printf(FunctionType *FT,
416 const std::vector<GenericValue> &Args) {
417 char Buffer[10000];
418 std::vector<GenericValue> NewArgs;
419 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
420 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
421 GenericValue GV = lle_X_sprintf(FT, NewArgs);
422 outs() << Buffer;
423 return GV;
424 }
425
426 // int sscanf(const char *format, ...);
427 static
lle_X_sscanf(FunctionType * FT,const std::vector<GenericValue> & args)428 GenericValue lle_X_sscanf(FunctionType *FT,
429 const std::vector<GenericValue> &args) {
430 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
431
432 char *Args[10];
433 for (unsigned i = 0; i < args.size(); ++i)
434 Args[i] = (char*)GVTOP(args[i]);
435
436 GenericValue GV;
437 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438 Args[5], Args[6], Args[7], Args[8], Args[9]));
439 return GV;
440 }
441
442 // int scanf(const char *format, ...);
443 static
lle_X_scanf(FunctionType * FT,const std::vector<GenericValue> & args)444 GenericValue lle_X_scanf(FunctionType *FT,
445 const std::vector<GenericValue> &args) {
446 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
447
448 char *Args[10];
449 for (unsigned i = 0; i < args.size(); ++i)
450 Args[i] = (char*)GVTOP(args[i]);
451
452 GenericValue GV;
453 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
454 Args[5], Args[6], Args[7], Args[8], Args[9]));
455 return GV;
456 }
457
458 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
459 // output useful.
460 static
lle_X_fprintf(FunctionType * FT,const std::vector<GenericValue> & Args)461 GenericValue lle_X_fprintf(FunctionType *FT,
462 const std::vector<GenericValue> &Args) {
463 assert(Args.size() >= 2);
464 char Buffer[10000];
465 std::vector<GenericValue> NewArgs;
466 NewArgs.push_back(PTOGV(Buffer));
467 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
468 GenericValue GV = lle_X_sprintf(FT, NewArgs);
469
470 fputs(Buffer, (FILE *) GVTOP(Args[0]));
471 return GV;
472 }
473
lle_X_memset(FunctionType * FT,const std::vector<GenericValue> & Args)474 static GenericValue lle_X_memset(FunctionType *FT,
475 const std::vector<GenericValue> &Args) {
476 int val = (int)Args[1].IntVal.getSExtValue();
477 size_t len = (size_t)Args[2].IntVal.getZExtValue();
478 memset((void *)GVTOP(Args[0]), val, len);
479 // llvm.memset.* returns void, lle_X_* returns GenericValue,
480 // so here we return GenericValue with IntVal set to zero
481 GenericValue GV;
482 GV.IntVal = 0;
483 return GV;
484 }
485
lle_X_memcpy(FunctionType * FT,const std::vector<GenericValue> & Args)486 static GenericValue lle_X_memcpy(FunctionType *FT,
487 const std::vector<GenericValue> &Args) {
488 memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
489 (size_t)(Args[2].IntVal.getLimitedValue()));
490
491 // llvm.memcpy* returns void, lle_X_* returns GenericValue,
492 // so here we return GenericValue with IntVal set to zero
493 GenericValue GV;
494 GV.IntVal = 0;
495 return GV;
496 }
497
initializeExternalFunctions()498 void Interpreter::initializeExternalFunctions() {
499 sys::ScopedLock Writer(*FunctionsLock);
500 (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
501 (*FuncNames)["lle_X_exit"] = lle_X_exit;
502 (*FuncNames)["lle_X_abort"] = lle_X_abort;
503
504 (*FuncNames)["lle_X_printf"] = lle_X_printf;
505 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
506 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
507 (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
508 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
509 (*FuncNames)["lle_X_memset"] = lle_X_memset;
510 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
511 }
512