• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

AsmParser/22-Nov-2023-905709

Disassembler/22-Nov-2023-367288

InstPrinter/22-Nov-2023-306223

MCTargetDesc/22-Nov-2023-956647

TargetInfo/22-Nov-2023-6537

CMakeLists.txtD22-Nov-20231.2 KiB4036

LLVMBuild.txtD22-Nov-20231 KiB3632

MakefileD22-Nov-2023836 2914

README.txtD22-Nov-20234.3 KiB175117

SystemZ.hD22-Nov-20234.6 KiB13076

SystemZ.tdD22-Nov-20232.2 KiB6347

SystemZAsmPrinter.cppD22-Nov-20238.6 KiB262205

SystemZAsmPrinter.hD22-Nov-20231.5 KiB4529

SystemZCallingConv.cppD22-Nov-2023680 229

SystemZCallingConv.hD22-Nov-2023702 2411

SystemZCallingConv.tdD22-Nov-20233.3 KiB7260

SystemZConstantPoolValue.cppD22-Nov-20232.1 KiB6848

SystemZConstantPoolValue.hD22-Nov-20231.8 KiB6033

SystemZElimCompare.cppD22-Nov-202315.6 KiB470338

SystemZFrameLowering.cppD22-Nov-202318.6 KiB516363

SystemZFrameLowering.hD22-Nov-20232.7 KiB6543

SystemZISelDAGToDAG.cppD22-Nov-202340.6 KiB1,165798

SystemZISelLowering.cppD22-Nov-2023154.1 KiB3,9352,853

SystemZISelLowering.hD22-Nov-202314.9 KiB376220

SystemZInstrBuilder.hD22-Nov-20231.7 KiB4928

SystemZInstrFP.tdD22-Nov-202317.4 KiB412335

SystemZInstrFormats.tdD22-Nov-202357.3 KiB1,6211,426

SystemZInstrInfo.cppD22-Nov-202343.7 KiB1,255940

SystemZInstrInfo.hD22-Nov-202310.1 KiB247153

SystemZInstrInfo.tdD22-Nov-202367.2 KiB1,5101,315

SystemZLDCleanup.cppD22-Nov-20234.8 KiB14487

SystemZLongBranch.cppD22-Nov-202315.7 KiB461294

SystemZMCInstLower.cppD22-Nov-20233.1 KiB10377

SystemZMCInstLower.hD22-Nov-20231.2 KiB4524

SystemZMachineFunctionInfo.cppD22-Nov-2023480 183

SystemZMachineFunctionInfo.hD22-Nov-20232.8 KiB7538

SystemZOperands.tdD22-Nov-202318.8 KiB506426

SystemZOperators.tdD22-Nov-202321.2 KiB406372

SystemZPatterns.tdD22-Nov-20237.4 KiB156141

SystemZProcessors.tdD22-Nov-20233 KiB8571

SystemZRegisterInfo.cppD22-Nov-20235.1 KiB141100

SystemZRegisterInfo.hD22-Nov-20231.9 KiB5938

SystemZRegisterInfo.tdD22-Nov-20237.2 KiB191160

SystemZSelectionDAGInfo.cppD22-Nov-202313.3 KiB290204

SystemZSelectionDAGInfo.hD22-Nov-20233.2 KiB7850

SystemZShortenInst.cppD22-Nov-20235.3 KiB161114

SystemZSubtarget.cppD22-Nov-20232.6 KiB7342

SystemZSubtarget.hD22-Nov-20234.1 KiB12373

SystemZTargetMachine.cppD22-Nov-20234.6 KiB11865

SystemZTargetMachine.hD22-Nov-20231.6 KiB5127

SystemZTargetTransformInfo.cppD22-Nov-20237.9 KiB241171

SystemZTargetTransformInfo.hD22-Nov-20232.2 KiB7143

README.txt

1//===---------------------------------------------------------------------===//
2// Random notes about and ideas for the SystemZ backend.
3//===---------------------------------------------------------------------===//
4
5The initial backend is deliberately restricted to z10.  We should add support
6for later architectures at some point.
7
8--
9
10SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
11inline asm memory constraints; it doesn't get to see the original constraint.
12This means that it must conservatively treat all inline asm constraints
13as the most restricted type, "R".
14
15--
16
17If an inline asm ties an i32 "r" result to an i64 input, the input
18will be treated as an i32, leaving the upper bits uninitialised.
19For example:
20
21define void @f4(i32 *%dst) {
22  %val = call i32 asm "blah $0", "=r,0" (i64 103)
23  store i32 %val, i32 *%dst
24  ret void
25}
26
27from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
28to load 103.  This seems to be a general target-independent problem.
29
30--
31
32The tuning of the choice between LOAD ADDRESS (LA) and addition in
33SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
34performance measurements.
35
36--
37
38There is no scheduling support.
39
40--
41
42We don't use the BRANCH ON INDEX instructions.
43
44--
45
46We might want to use BRANCH ON CONDITION for conditional indirect calls
47and conditional returns.
48
49--
50
51We don't use the TEST DATA CLASS instructions.
52
53--
54
55We could use the generic floating-point forms of LOAD COMPLEMENT,
56LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
57condition codes.  For example, we could use LCDFR instead of LCDBR.
58
59--
60
61We only use MVC, XC and CLC for constant-length block operations.
62We could extend them to variable-length operations too,
63using EXECUTE RELATIVE LONG.
64
65MVCIN, MVCLE and CLCLE may be worthwhile too.
66
67--
68
69We don't use CUSE or the TRANSLATE family of instructions for string
70operations.  The TRANSLATE ones are probably more difficult to exploit.
71
72--
73
74We don't take full advantage of builtins like fabsl because the calling
75conventions require f128s to be returned by invisible reference.
76
77--
78
79ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
80produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
81need to produce a borrow.  (Note that there are no memory forms of
82ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
83part of 128-bit memory operations would probably need to be done
84via a register.)
85
86--
87
88We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
89(LRVH and STRVH).
90
91--
92
93We don't use ICM or STCM.
94
95--
96
97DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:
98
99    unsigned long f (unsigned long x, unsigned short *y)
100    {
101      return (x << 32) | *y;
102    }
103
104therefore end up as:
105
106        sllg    %r2, %r2, 32
107        llgh    %r0, 0(%r3)
108        lr      %r2, %r0
109        br      %r14
110
111but truncating the load would give:
112
113        sllg    %r2, %r2, 32
114        lh      %r2, 0(%r3)
115        br      %r14
116
117--
118
119Functions like:
120
121define i64 @f1(i64 %a) {
122  %and = and i64 %a, 1
123  ret i64 %and
124}
125
126ought to be implemented as:
127
128        lhi     %r0, 1
129        ngr     %r2, %r0
130        br      %r14
131
132but two-address optimisations reverse the order of the AND and force:
133
134        lhi     %r0, 1
135        ngr     %r0, %r2
136        lgr     %r2, %r0
137        br      %r14
138
139CodeGen/SystemZ/and-04.ll has several examples of this.
140
141--
142
143Out-of-range displacements are usually handled by loading the full
144address into a register.  In many cases it would be better to create
145an anchor point instead.  E.g. for:
146
147define void @f4a(i128 *%aptr, i64 %base) {
148  %addr = add i64 %base, 524288
149  %bptr = inttoptr i64 %addr to i128 *
150  %a = load volatile i128 *%aptr
151  %b = load i128 *%bptr
152  %add = add i128 %a, %b
153  store i128 %add, i128 *%aptr
154  ret void
155}
156
157(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
158into separate registers, rather than using %base+524288 as a base for both.
159
160--
161
162Dynamic stack allocations round the size to 8 bytes and then allocate
163that rounded amount.  It would be simpler to subtract the unrounded
164size from the copy of the stack pointer and then align the result.
165See CodeGen/SystemZ/alloca-01.ll for an example.
166
167--
168
169If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.
170
171--
172
173We might want to model all access registers and use them to spill
17432-bit values.
175