1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/DependenceAnalysis.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/ScalarEvolution.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/LoopUtils.h"
67 using namespace llvm;
68
69 #define DEBUG_TYPE "loop-simplify"
70
71 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
72 STATISTIC(NumNested , "Number of nested loops split out");
73
74 // If the block isn't already, move the new block to right after some 'outside
75 // block' block. This prevents the preheader from being placed inside the loop
76 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)77 static void placeSplitBlockCarefully(BasicBlock *NewBB,
78 SmallVectorImpl<BasicBlock *> &SplitPreds,
79 Loop *L) {
80 // Check to see if NewBB is already well placed.
81 Function::iterator BBI = NewBB; --BBI;
82 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
83 if (&*BBI == SplitPreds[i])
84 return;
85 }
86
87 // If it isn't already after an outside block, move it after one. This is
88 // always good as it makes the uncond branch from the outside block into a
89 // fall-through.
90
91 // Figure out *which* outside block to put this after. Prefer an outside
92 // block that neighbors a BB actually in the loop.
93 BasicBlock *FoundBB = nullptr;
94 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
95 Function::iterator BBI = SplitPreds[i];
96 if (++BBI != NewBB->getParent()->end() &&
97 L->contains(BBI)) {
98 FoundBB = SplitPreds[i];
99 break;
100 }
101 }
102
103 // If our heuristic for a *good* bb to place this after doesn't find
104 // anything, just pick something. It's likely better than leaving it within
105 // the loop.
106 if (!FoundBB)
107 FoundBB = SplitPreds[0];
108 NewBB->moveAfter(FoundBB);
109 }
110
111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
112 /// preheader, this method is called to insert one. This method has two phases:
113 /// preheader insertion and analysis updating.
114 ///
InsertPreheaderForLoop(Loop * L,Pass * PP)115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
116 BasicBlock *Header = L->getHeader();
117
118 // Get analyses that we try to update.
119 auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>();
120 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
121 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
122 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
123 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
124 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
125
126 // Compute the set of predecessors of the loop that are not in the loop.
127 SmallVector<BasicBlock*, 8> OutsideBlocks;
128 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
129 PI != PE; ++PI) {
130 BasicBlock *P = *PI;
131 if (!L->contains(P)) { // Coming in from outside the loop?
132 // If the loop is branched to from an indirect branch, we won't
133 // be able to fully transform the loop, because it prohibits
134 // edge splitting.
135 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
136
137 // Keep track of it.
138 OutsideBlocks.push_back(P);
139 }
140 }
141
142 // Split out the loop pre-header.
143 BasicBlock *PreheaderBB;
144 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
145 AA, DT, LI, PreserveLCSSA);
146
147 PreheaderBB->getTerminator()->setDebugLoc(
148 Header->getFirstNonPHI()->getDebugLoc());
149 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
150 << PreheaderBB->getName() << "\n");
151
152 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
153 // code layout too horribly.
154 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
155
156 return PreheaderBB;
157 }
158
159 /// \brief Ensure that the loop preheader dominates all exit blocks.
160 ///
161 /// This method is used to split exit blocks that have predecessors outside of
162 /// the loop.
rewriteLoopExitBlock(Loop * L,BasicBlock * Exit,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,Pass * PP)163 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
164 AliasAnalysis *AA, DominatorTree *DT,
165 LoopInfo *LI, Pass *PP) {
166 SmallVector<BasicBlock*, 8> LoopBlocks;
167 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
168 BasicBlock *P = *I;
169 if (L->contains(P)) {
170 // Don't do this if the loop is exited via an indirect branch.
171 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
172
173 LoopBlocks.push_back(P);
174 }
175 }
176
177 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
178 BasicBlock *NewExitBB = nullptr;
179
180 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
181
182 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT,
183 LI, PreserveLCSSA);
184
185 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
186 << NewExitBB->getName() << "\n");
187 return NewExitBB;
188 }
189
190 /// Add the specified block, and all of its predecessors, to the specified set,
191 /// if it's not already in there. Stop predecessor traversal when we reach
192 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
194 std::set<BasicBlock*> &Blocks) {
195 SmallVector<BasicBlock *, 8> Worklist;
196 Worklist.push_back(InputBB);
197 do {
198 BasicBlock *BB = Worklist.pop_back_val();
199 if (Blocks.insert(BB).second && BB != StopBlock)
200 // If BB is not already processed and it is not a stop block then
201 // insert its predecessor in the work list
202 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
203 BasicBlock *WBB = *I;
204 Worklist.push_back(WBB);
205 }
206 } while (!Worklist.empty());
207 }
208
209 /// \brief The first part of loop-nestification is to find a PHI node that tells
210 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,AliasAnalysis * AA,DominatorTree * DT,AssumptionCache * AC)211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
212 DominatorTree *DT,
213 AssumptionCache *AC) {
214 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
215 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
216 PHINode *PN = cast<PHINode>(I);
217 ++I;
218 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
219 // This is a degenerate PHI already, don't modify it!
220 PN->replaceAllUsesWith(V);
221 if (AA) AA->deleteValue(PN);
222 PN->eraseFromParent();
223 continue;
224 }
225
226 // Scan this PHI node looking for a use of the PHI node by itself.
227 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
228 if (PN->getIncomingValue(i) == PN &&
229 L->contains(PN->getIncomingBlock(i)))
230 // We found something tasty to remove.
231 return PN;
232 }
233 return nullptr;
234 }
235
236 /// \brief If this loop has multiple backedges, try to pull one of them out into
237 /// a nested loop.
238 ///
239 /// This is important for code that looks like
240 /// this:
241 ///
242 /// Loop:
243 /// ...
244 /// br cond, Loop, Next
245 /// ...
246 /// br cond2, Loop, Out
247 ///
248 /// To identify this common case, we look at the PHI nodes in the header of the
249 /// loop. PHI nodes with unchanging values on one backedge correspond to values
250 /// that change in the "outer" loop, but not in the "inner" loop.
251 ///
252 /// If we are able to separate out a loop, return the new outer loop that was
253 /// created.
254 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,Pass * PP,AssumptionCache * AC)255 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
256 AliasAnalysis *AA, DominatorTree *DT,
257 LoopInfo *LI, ScalarEvolution *SE, Pass *PP,
258 AssumptionCache *AC) {
259 // Don't try to separate loops without a preheader.
260 if (!Preheader)
261 return nullptr;
262
263 // The header is not a landing pad; preheader insertion should ensure this.
264 assert(!L->getHeader()->isLandingPad() &&
265 "Can't insert backedge to landing pad");
266
267 PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC);
268 if (!PN) return nullptr; // No known way to partition.
269
270 // Pull out all predecessors that have varying values in the loop. This
271 // handles the case when a PHI node has multiple instances of itself as
272 // arguments.
273 SmallVector<BasicBlock*, 8> OuterLoopPreds;
274 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
275 if (PN->getIncomingValue(i) != PN ||
276 !L->contains(PN->getIncomingBlock(i))) {
277 // We can't split indirectbr edges.
278 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
279 return nullptr;
280 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
281 }
282 }
283 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
284
285 // If ScalarEvolution is around and knows anything about values in
286 // this loop, tell it to forget them, because we're about to
287 // substantially change it.
288 if (SE)
289 SE->forgetLoop(L);
290
291 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
292
293 BasicBlock *Header = L->getHeader();
294 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
295 AA, DT, LI, PreserveLCSSA);
296
297 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
298 // code layout too horribly.
299 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
300
301 // Create the new outer loop.
302 Loop *NewOuter = new Loop();
303
304 // Change the parent loop to use the outer loop as its child now.
305 if (Loop *Parent = L->getParentLoop())
306 Parent->replaceChildLoopWith(L, NewOuter);
307 else
308 LI->changeTopLevelLoop(L, NewOuter);
309
310 // L is now a subloop of our outer loop.
311 NewOuter->addChildLoop(L);
312
313 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
314 I != E; ++I)
315 NewOuter->addBlockEntry(*I);
316
317 // Now reset the header in L, which had been moved by
318 // SplitBlockPredecessors for the outer loop.
319 L->moveToHeader(Header);
320
321 // Determine which blocks should stay in L and which should be moved out to
322 // the Outer loop now.
323 std::set<BasicBlock*> BlocksInL;
324 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
325 BasicBlock *P = *PI;
326 if (DT->dominates(Header, P))
327 addBlockAndPredsToSet(P, Header, BlocksInL);
328 }
329
330 // Scan all of the loop children of L, moving them to OuterLoop if they are
331 // not part of the inner loop.
332 const std::vector<Loop*> &SubLoops = L->getSubLoops();
333 for (size_t I = 0; I != SubLoops.size(); )
334 if (BlocksInL.count(SubLoops[I]->getHeader()))
335 ++I; // Loop remains in L
336 else
337 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
338
339 // Now that we know which blocks are in L and which need to be moved to
340 // OuterLoop, move any blocks that need it.
341 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
342 BasicBlock *BB = L->getBlocks()[i];
343 if (!BlocksInL.count(BB)) {
344 // Move this block to the parent, updating the exit blocks sets
345 L->removeBlockFromLoop(BB);
346 if ((*LI)[BB] == L)
347 LI->changeLoopFor(BB, NewOuter);
348 --i;
349 }
350 }
351
352 return NewOuter;
353 }
354
355 /// \brief This method is called when the specified loop has more than one
356 /// backedge in it.
357 ///
358 /// If this occurs, revector all of these backedges to target a new basic block
359 /// and have that block branch to the loop header. This ensures that loops
360 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI)361 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
362 AliasAnalysis *AA,
363 DominatorTree *DT, LoopInfo *LI) {
364 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
365
366 // Get information about the loop
367 BasicBlock *Header = L->getHeader();
368 Function *F = Header->getParent();
369
370 // Unique backedge insertion currently depends on having a preheader.
371 if (!Preheader)
372 return nullptr;
373
374 // The header is not a landing pad; preheader insertion should ensure this.
375 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
376
377 // Figure out which basic blocks contain back-edges to the loop header.
378 std::vector<BasicBlock*> BackedgeBlocks;
379 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
380 BasicBlock *P = *I;
381
382 // Indirectbr edges cannot be split, so we must fail if we find one.
383 if (isa<IndirectBrInst>(P->getTerminator()))
384 return nullptr;
385
386 if (P != Preheader) BackedgeBlocks.push_back(P);
387 }
388
389 // Create and insert the new backedge block...
390 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
391 Header->getName()+".backedge", F);
392 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
393
394 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
395 << BEBlock->getName() << "\n");
396
397 // Move the new backedge block to right after the last backedge block.
398 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
399 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
400
401 // Now that the block has been inserted into the function, create PHI nodes in
402 // the backedge block which correspond to any PHI nodes in the header block.
403 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
404 PHINode *PN = cast<PHINode>(I);
405 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
406 PN->getName()+".be", BETerminator);
407 if (AA) AA->copyValue(PN, NewPN);
408
409 // Loop over the PHI node, moving all entries except the one for the
410 // preheader over to the new PHI node.
411 unsigned PreheaderIdx = ~0U;
412 bool HasUniqueIncomingValue = true;
413 Value *UniqueValue = nullptr;
414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
415 BasicBlock *IBB = PN->getIncomingBlock(i);
416 Value *IV = PN->getIncomingValue(i);
417 if (IBB == Preheader) {
418 PreheaderIdx = i;
419 } else {
420 NewPN->addIncoming(IV, IBB);
421 if (HasUniqueIncomingValue) {
422 if (!UniqueValue)
423 UniqueValue = IV;
424 else if (UniqueValue != IV)
425 HasUniqueIncomingValue = false;
426 }
427 }
428 }
429
430 // Delete all of the incoming values from the old PN except the preheader's
431 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
432 if (PreheaderIdx != 0) {
433 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
434 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
435 }
436 // Nuke all entries except the zero'th.
437 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
438 PN->removeIncomingValue(e-i, false);
439
440 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
441 PN->addIncoming(NewPN, BEBlock);
442
443 // As an optimization, if all incoming values in the new PhiNode (which is a
444 // subset of the incoming values of the old PHI node) have the same value,
445 // eliminate the PHI Node.
446 if (HasUniqueIncomingValue) {
447 NewPN->replaceAllUsesWith(UniqueValue);
448 if (AA) AA->deleteValue(NewPN);
449 BEBlock->getInstList().erase(NewPN);
450 }
451 }
452
453 // Now that all of the PHI nodes have been inserted and adjusted, modify the
454 // backedge blocks to just to the BEBlock instead of the header.
455 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
456 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
457 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
458 if (TI->getSuccessor(Op) == Header)
459 TI->setSuccessor(Op, BEBlock);
460 }
461
462 //===--- Update all analyses which we must preserve now -----------------===//
463
464 // Update Loop Information - we know that this block is now in the current
465 // loop and all parent loops.
466 L->addBasicBlockToLoop(BEBlock, *LI);
467
468 // Update dominator information
469 DT->splitBlock(BEBlock);
470
471 return BEBlock;
472 }
473
474 /// \brief Simplify one loop and queue further loops for simplification.
475 ///
476 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
477 /// Pass pointer. The Pass pointer is used by numerous utilities to update
478 /// specific analyses. Rather than a pass it would be much cleaner and more
479 /// explicit if they accepted the analysis directly and then updated it.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,Pass * PP,AssumptionCache * AC)480 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
481 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
482 ScalarEvolution *SE, Pass *PP,
483 AssumptionCache *AC) {
484 bool Changed = false;
485 ReprocessLoop:
486
487 // Check to see that no blocks (other than the header) in this loop have
488 // predecessors that are not in the loop. This is not valid for natural
489 // loops, but can occur if the blocks are unreachable. Since they are
490 // unreachable we can just shamelessly delete those CFG edges!
491 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
492 BB != E; ++BB) {
493 if (*BB == L->getHeader()) continue;
494
495 SmallPtrSet<BasicBlock*, 4> BadPreds;
496 for (pred_iterator PI = pred_begin(*BB),
497 PE = pred_end(*BB); PI != PE; ++PI) {
498 BasicBlock *P = *PI;
499 if (!L->contains(P))
500 BadPreds.insert(P);
501 }
502
503 // Delete each unique out-of-loop (and thus dead) predecessor.
504 for (BasicBlock *P : BadPreds) {
505
506 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
507 << P->getName() << "\n");
508
509 // Inform each successor of each dead pred.
510 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
511 (*SI)->removePredecessor(P);
512 // Zap the dead pred's terminator and replace it with unreachable.
513 TerminatorInst *TI = P->getTerminator();
514 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
515 P->getTerminator()->eraseFromParent();
516 new UnreachableInst(P->getContext(), P);
517 Changed = true;
518 }
519 }
520
521 // If there are exiting blocks with branches on undef, resolve the undef in
522 // the direction which will exit the loop. This will help simplify loop
523 // trip count computations.
524 SmallVector<BasicBlock*, 8> ExitingBlocks;
525 L->getExitingBlocks(ExitingBlocks);
526 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
527 E = ExitingBlocks.end(); I != E; ++I)
528 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
529 if (BI->isConditional()) {
530 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
531
532 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
533 << (*I)->getName() << "\n");
534
535 BI->setCondition(ConstantInt::get(Cond->getType(),
536 !L->contains(BI->getSuccessor(0))));
537
538 // This may make the loop analyzable, force SCEV recomputation.
539 if (SE)
540 SE->forgetLoop(L);
541
542 Changed = true;
543 }
544 }
545
546 // Does the loop already have a preheader? If so, don't insert one.
547 BasicBlock *Preheader = L->getLoopPreheader();
548 if (!Preheader) {
549 Preheader = InsertPreheaderForLoop(L, PP);
550 if (Preheader) {
551 ++NumInserted;
552 Changed = true;
553 }
554 }
555
556 // Next, check to make sure that all exit nodes of the loop only have
557 // predecessors that are inside of the loop. This check guarantees that the
558 // loop preheader/header will dominate the exit blocks. If the exit block has
559 // predecessors from outside of the loop, split the edge now.
560 SmallVector<BasicBlock*, 8> ExitBlocks;
561 L->getExitBlocks(ExitBlocks);
562
563 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
564 ExitBlocks.end());
565 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
566 E = ExitBlockSet.end(); I != E; ++I) {
567 BasicBlock *ExitBlock = *I;
568 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
569 PI != PE; ++PI)
570 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
571 // allowed.
572 if (!L->contains(*PI)) {
573 if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) {
574 ++NumInserted;
575 Changed = true;
576 }
577 break;
578 }
579 }
580
581 // If the header has more than two predecessors at this point (from the
582 // preheader and from multiple backedges), we must adjust the loop.
583 BasicBlock *LoopLatch = L->getLoopLatch();
584 if (!LoopLatch) {
585 // If this is really a nested loop, rip it out into a child loop. Don't do
586 // this for loops with a giant number of backedges, just factor them into a
587 // common backedge instead.
588 if (L->getNumBackEdges() < 8) {
589 if (Loop *OuterL =
590 separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) {
591 ++NumNested;
592 // Enqueue the outer loop as it should be processed next in our
593 // depth-first nest walk.
594 Worklist.push_back(OuterL);
595
596 // This is a big restructuring change, reprocess the whole loop.
597 Changed = true;
598 // GCC doesn't tail recursion eliminate this.
599 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
600 goto ReprocessLoop;
601 }
602 }
603
604 // If we either couldn't, or didn't want to, identify nesting of the loops,
605 // insert a new block that all backedges target, then make it jump to the
606 // loop header.
607 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
608 if (LoopLatch) {
609 ++NumInserted;
610 Changed = true;
611 }
612 }
613
614 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
615
616 // Scan over the PHI nodes in the loop header. Since they now have only two
617 // incoming values (the loop is canonicalized), we may have simplified the PHI
618 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
619 PHINode *PN;
620 for (BasicBlock::iterator I = L->getHeader()->begin();
621 (PN = dyn_cast<PHINode>(I++)); )
622 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
623 if (AA) AA->deleteValue(PN);
624 if (SE) SE->forgetValue(PN);
625 PN->replaceAllUsesWith(V);
626 PN->eraseFromParent();
627 }
628
629 // If this loop has multiple exits and the exits all go to the same
630 // block, attempt to merge the exits. This helps several passes, such
631 // as LoopRotation, which do not support loops with multiple exits.
632 // SimplifyCFG also does this (and this code uses the same utility
633 // function), however this code is loop-aware, where SimplifyCFG is
634 // not. That gives it the advantage of being able to hoist
635 // loop-invariant instructions out of the way to open up more
636 // opportunities, and the disadvantage of having the responsibility
637 // to preserve dominator information.
638 bool UniqueExit = true;
639 if (!ExitBlocks.empty())
640 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
641 if (ExitBlocks[i] != ExitBlocks[0]) {
642 UniqueExit = false;
643 break;
644 }
645 if (UniqueExit) {
646 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
647 BasicBlock *ExitingBlock = ExitingBlocks[i];
648 if (!ExitingBlock->getSinglePredecessor()) continue;
649 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
650 if (!BI || !BI->isConditional()) continue;
651 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
652 if (!CI || CI->getParent() != ExitingBlock) continue;
653
654 // Attempt to hoist out all instructions except for the
655 // comparison and the branch.
656 bool AllInvariant = true;
657 bool AnyInvariant = false;
658 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
659 Instruction *Inst = I++;
660 // Skip debug info intrinsics.
661 if (isa<DbgInfoIntrinsic>(Inst))
662 continue;
663 if (Inst == CI)
664 continue;
665 if (!L->makeLoopInvariant(Inst, AnyInvariant,
666 Preheader ? Preheader->getTerminator()
667 : nullptr)) {
668 AllInvariant = false;
669 break;
670 }
671 }
672 if (AnyInvariant) {
673 Changed = true;
674 // The loop disposition of all SCEV expressions that depend on any
675 // hoisted values have also changed.
676 if (SE)
677 SE->forgetLoopDispositions(L);
678 }
679 if (!AllInvariant) continue;
680
681 // The block has now been cleared of all instructions except for
682 // a comparison and a conditional branch. SimplifyCFG may be able
683 // to fold it now.
684 if (!FoldBranchToCommonDest(BI))
685 continue;
686
687 // Success. The block is now dead, so remove it from the loop,
688 // update the dominator tree and delete it.
689 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
690 << ExitingBlock->getName() << "\n");
691
692 // Notify ScalarEvolution before deleting this block. Currently assume the
693 // parent loop doesn't change (spliting edges doesn't count). If blocks,
694 // CFG edges, or other values in the parent loop change, then we need call
695 // to forgetLoop() for the parent instead.
696 if (SE)
697 SE->forgetLoop(L);
698
699 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
700 Changed = true;
701 LI->removeBlock(ExitingBlock);
702
703 DomTreeNode *Node = DT->getNode(ExitingBlock);
704 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
705 Node->getChildren();
706 while (!Children.empty()) {
707 DomTreeNode *Child = Children.front();
708 DT->changeImmediateDominator(Child, Node->getIDom());
709 }
710 DT->eraseNode(ExitingBlock);
711
712 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
713 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
714 ExitingBlock->eraseFromParent();
715 }
716 }
717
718 return Changed;
719 }
720
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,Pass * PP,AliasAnalysis * AA,ScalarEvolution * SE,AssumptionCache * AC)721 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
722 AliasAnalysis *AA, ScalarEvolution *SE,
723 AssumptionCache *AC) {
724 bool Changed = false;
725
726 // Worklist maintains our depth-first queue of loops in this nest to process.
727 SmallVector<Loop *, 4> Worklist;
728 Worklist.push_back(L);
729
730 // Walk the worklist from front to back, pushing newly found sub loops onto
731 // the back. This will let us process loops from back to front in depth-first
732 // order. We can use this simple process because loops form a tree.
733 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
734 Loop *L2 = Worklist[Idx];
735 Worklist.append(L2->begin(), L2->end());
736 }
737
738 while (!Worklist.empty())
739 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
740 SE, PP, AC);
741
742 return Changed;
743 }
744
745 namespace {
746 struct LoopSimplify : public FunctionPass {
747 static char ID; // Pass identification, replacement for typeid
LoopSimplify__anon439bab570111::LoopSimplify748 LoopSimplify() : FunctionPass(ID) {
749 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
750 }
751
752 // AA - If we have an alias analysis object to update, this is it, otherwise
753 // this is null.
754 AliasAnalysis *AA;
755 DominatorTree *DT;
756 LoopInfo *LI;
757 ScalarEvolution *SE;
758 AssumptionCache *AC;
759
760 bool runOnFunction(Function &F) override;
761
getAnalysisUsage__anon439bab570111::LoopSimplify762 void getAnalysisUsage(AnalysisUsage &AU) const override {
763 AU.addRequired<AssumptionCacheTracker>();
764
765 // We need loop information to identify the loops...
766 AU.addRequired<DominatorTreeWrapperPass>();
767 AU.addPreserved<DominatorTreeWrapperPass>();
768
769 AU.addRequired<LoopInfoWrapperPass>();
770 AU.addPreserved<LoopInfoWrapperPass>();
771
772 AU.addPreserved<AliasAnalysis>();
773 AU.addPreserved<ScalarEvolution>();
774 AU.addPreserved<DependenceAnalysis>();
775 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
776 }
777
778 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
779 void verifyAnalysis() const override;
780 };
781 }
782
783 char LoopSimplify::ID = 0;
784 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
785 "Canonicalize natural loops", false, false)
786 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
787 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
788 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
789 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
790 "Canonicalize natural loops", false, false)
791
792 // Publicly exposed interface to pass...
793 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()794 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
795
796 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
797 /// it in any convenient order) inserting preheaders...
798 ///
runOnFunction(Function & F)799 bool LoopSimplify::runOnFunction(Function &F) {
800 bool Changed = false;
801 AA = getAnalysisIfAvailable<AliasAnalysis>();
802 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
803 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
804 SE = getAnalysisIfAvailable<ScalarEvolution>();
805 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
806
807 // Simplify each loop nest in the function.
808 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
809 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
810
811 return Changed;
812 }
813
814 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
815 // below.
816 #if 0
817 static void verifyLoop(Loop *L) {
818 // Verify subloops.
819 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
820 verifyLoop(*I);
821
822 // It used to be possible to just assert L->isLoopSimplifyForm(), however
823 // with the introduction of indirectbr, there are now cases where it's
824 // not possible to transform a loop as necessary. We can at least check
825 // that there is an indirectbr near any time there's trouble.
826
827 // Indirectbr can interfere with preheader and unique backedge insertion.
828 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
829 bool HasIndBrPred = false;
830 for (pred_iterator PI = pred_begin(L->getHeader()),
831 PE = pred_end(L->getHeader()); PI != PE; ++PI)
832 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
833 HasIndBrPred = true;
834 break;
835 }
836 assert(HasIndBrPred &&
837 "LoopSimplify has no excuse for missing loop header info!");
838 (void)HasIndBrPred;
839 }
840
841 // Indirectbr can interfere with exit block canonicalization.
842 if (!L->hasDedicatedExits()) {
843 bool HasIndBrExiting = false;
844 SmallVector<BasicBlock*, 8> ExitingBlocks;
845 L->getExitingBlocks(ExitingBlocks);
846 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
847 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
848 HasIndBrExiting = true;
849 break;
850 }
851 }
852
853 assert(HasIndBrExiting &&
854 "LoopSimplify has no excuse for missing exit block info!");
855 (void)HasIndBrExiting;
856 }
857 }
858 #endif
859
verifyAnalysis() const860 void LoopSimplify::verifyAnalysis() const {
861 // FIXME: This routine is being called mid-way through the loop pass manager
862 // as loop passes destroy this analysis. That's actually fine, but we have no
863 // way of expressing that here. Once all of the passes that destroy this are
864 // hoisted out of the loop pass manager we can add back verification here.
865 #if 0
866 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
867 verifyLoop(*I);
868 #endif
869 }
870