1 //===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief The COFF component of yaml2obj.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "yaml2obj.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Object/COFFYAML.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/SourceMgr.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <vector>
28
29 using namespace llvm;
30
31 /// This parses a yaml stream that represents a COFF object file.
32 /// See docs/yaml2obj for the yaml scheema.
33 struct COFFParser {
COFFParserCOFFParser34 COFFParser(COFFYAML::Object &Obj)
35 : Obj(Obj), SectionTableStart(0), SectionTableSize(0) {
36 // A COFF string table always starts with a 4 byte size field. Offsets into
37 // it include this size, so allocate it now.
38 StringTable.append(4, char(0));
39 }
40
useBigObjCOFFParser41 bool useBigObj() const {
42 return static_cast<int32_t>(Obj.Sections.size()) >
43 COFF::MaxNumberOfSections16;
44 }
45
isPECOFFParser46 bool isPE() const { return Obj.OptionalHeader.hasValue(); }
is64BitCOFFParser47 bool is64Bit() const {
48 return Obj.Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64;
49 }
50
getFileAlignmentCOFFParser51 uint32_t getFileAlignment() const {
52 return Obj.OptionalHeader->Header.FileAlignment;
53 }
54
getHeaderSizeCOFFParser55 unsigned getHeaderSize() const {
56 return useBigObj() ? COFF::Header32Size : COFF::Header16Size;
57 }
58
getSymbolSizeCOFFParser59 unsigned getSymbolSize() const {
60 return useBigObj() ? COFF::Symbol32Size : COFF::Symbol16Size;
61 }
62
parseSectionsCOFFParser63 bool parseSections() {
64 for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
65 e = Obj.Sections.end(); i != e; ++i) {
66 COFFYAML::Section &Sec = *i;
67
68 // If the name is less than 8 bytes, store it in place, otherwise
69 // store it in the string table.
70 StringRef Name = Sec.Name;
71
72 if (Name.size() <= COFF::NameSize) {
73 std::copy(Name.begin(), Name.end(), Sec.Header.Name);
74 } else {
75 // Add string to the string table and format the index for output.
76 unsigned Index = getStringIndex(Name);
77 std::string str = utostr(Index);
78 if (str.size() > 7) {
79 errs() << "String table got too large";
80 return false;
81 }
82 Sec.Header.Name[0] = '/';
83 std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
84 }
85
86 Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
87 }
88 return true;
89 }
90
parseSymbolsCOFFParser91 bool parseSymbols() {
92 for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
93 e = Obj.Symbols.end(); i != e; ++i) {
94 COFFYAML::Symbol &Sym = *i;
95
96 // If the name is less than 8 bytes, store it in place, otherwise
97 // store it in the string table.
98 StringRef Name = Sym.Name;
99 if (Name.size() <= COFF::NameSize) {
100 std::copy(Name.begin(), Name.end(), Sym.Header.Name);
101 } else {
102 // Add string to the string table and format the index for output.
103 unsigned Index = getStringIndex(Name);
104 *reinterpret_cast<support::aligned_ulittle32_t*>(
105 Sym.Header.Name + 4) = Index;
106 }
107
108 Sym.Header.Type = Sym.SimpleType;
109 Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
110 }
111 return true;
112 }
113
parseCOFFParser114 bool parse() {
115 if (!parseSections())
116 return false;
117 if (!parseSymbols())
118 return false;
119 return true;
120 }
121
getStringIndexCOFFParser122 unsigned getStringIndex(StringRef Str) {
123 StringMap<unsigned>::iterator i = StringTableMap.find(Str);
124 if (i == StringTableMap.end()) {
125 unsigned Index = StringTable.size();
126 StringTable.append(Str.begin(), Str.end());
127 StringTable.push_back(0);
128 StringTableMap[Str] = Index;
129 return Index;
130 }
131 return i->second;
132 }
133
134 COFFYAML::Object &Obj;
135
136 StringMap<unsigned> StringTableMap;
137 std::string StringTable;
138 uint32_t SectionTableStart;
139 uint32_t SectionTableSize;
140 };
141
142 // Take a CP and assign addresses and sizes to everything. Returns false if the
143 // layout is not valid to do.
layoutOptionalHeader(COFFParser & CP)144 static bool layoutOptionalHeader(COFFParser &CP) {
145 if (!CP.isPE())
146 return true;
147 unsigned PEHeaderSize = CP.is64Bit() ? sizeof(object::pe32plus_header)
148 : sizeof(object::pe32_header);
149 CP.Obj.Header.SizeOfOptionalHeader =
150 PEHeaderSize +
151 sizeof(object::data_directory) * (COFF::NUM_DATA_DIRECTORIES + 1);
152 return true;
153 }
154
155 namespace {
156 enum { DOSStubSize = 128 };
157 }
158
159 // Take a CP and assign addresses and sizes to everything. Returns false if the
160 // layout is not valid to do.
layoutCOFF(COFFParser & CP)161 static bool layoutCOFF(COFFParser &CP) {
162 // The section table starts immediately after the header, including the
163 // optional header.
164 CP.SectionTableStart =
165 CP.getHeaderSize() + CP.Obj.Header.SizeOfOptionalHeader;
166 if (CP.isPE())
167 CP.SectionTableStart += DOSStubSize + sizeof(COFF::PEMagic);
168 CP.SectionTableSize = COFF::SectionSize * CP.Obj.Sections.size();
169
170 uint32_t CurrentSectionDataOffset =
171 CP.SectionTableStart + CP.SectionTableSize;
172
173 // Assign each section data address consecutively.
174 for (COFFYAML::Section &S : CP.Obj.Sections) {
175 if (S.SectionData.binary_size() > 0) {
176 CurrentSectionDataOffset = RoundUpToAlignment(
177 CurrentSectionDataOffset, CP.isPE() ? CP.getFileAlignment() : 4);
178 S.Header.SizeOfRawData = S.SectionData.binary_size();
179 if (CP.isPE())
180 S.Header.SizeOfRawData =
181 RoundUpToAlignment(S.Header.SizeOfRawData, CP.getFileAlignment());
182 S.Header.PointerToRawData = CurrentSectionDataOffset;
183 CurrentSectionDataOffset += S.Header.SizeOfRawData;
184 if (!S.Relocations.empty()) {
185 S.Header.PointerToRelocations = CurrentSectionDataOffset;
186 S.Header.NumberOfRelocations = S.Relocations.size();
187 CurrentSectionDataOffset +=
188 S.Header.NumberOfRelocations * COFF::RelocationSize;
189 }
190 } else {
191 S.Header.SizeOfRawData = 0;
192 S.Header.PointerToRawData = 0;
193 }
194 }
195
196 uint32_t SymbolTableStart = CurrentSectionDataOffset;
197
198 // Calculate number of symbols.
199 uint32_t NumberOfSymbols = 0;
200 for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
201 e = CP.Obj.Symbols.end();
202 i != e; ++i) {
203 uint32_t NumberOfAuxSymbols = 0;
204 if (i->FunctionDefinition)
205 NumberOfAuxSymbols += 1;
206 if (i->bfAndefSymbol)
207 NumberOfAuxSymbols += 1;
208 if (i->WeakExternal)
209 NumberOfAuxSymbols += 1;
210 if (!i->File.empty())
211 NumberOfAuxSymbols +=
212 (i->File.size() + CP.getSymbolSize() - 1) / CP.getSymbolSize();
213 if (i->SectionDefinition)
214 NumberOfAuxSymbols += 1;
215 if (i->CLRToken)
216 NumberOfAuxSymbols += 1;
217 i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols;
218 NumberOfSymbols += 1 + NumberOfAuxSymbols;
219 }
220
221 // Store all the allocated start addresses in the header.
222 CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
223 CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
224 if (NumberOfSymbols > 0 || CP.StringTable.size() > 4)
225 CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
226 else
227 CP.Obj.Header.PointerToSymbolTable = 0;
228
229 *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
230 = CP.StringTable.size();
231
232 return true;
233 }
234
235 template <typename value_type>
236 struct binary_le_impl {
237 value_type Value;
binary_le_implbinary_le_impl238 binary_le_impl(value_type V) : Value(V) {}
239 };
240
241 template <typename value_type>
operator <<(raw_ostream & OS,const binary_le_impl<value_type> & BLE)242 raw_ostream &operator <<( raw_ostream &OS
243 , const binary_le_impl<value_type> &BLE) {
244 char Buffer[sizeof(BLE.Value)];
245 support::endian::write<value_type, support::little, support::unaligned>(
246 Buffer, BLE.Value);
247 OS.write(Buffer, sizeof(BLE.Value));
248 return OS;
249 }
250
251 template <typename value_type>
binary_le(value_type V)252 binary_le_impl<value_type> binary_le(value_type V) {
253 return binary_le_impl<value_type>(V);
254 }
255
256 template <size_t NumBytes> struct zeros_impl {};
257
258 template <size_t NumBytes>
operator <<(raw_ostream & OS,const zeros_impl<NumBytes> &)259 raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) {
260 char Buffer[NumBytes];
261 memset(Buffer, 0, sizeof(Buffer));
262 OS.write(Buffer, sizeof(Buffer));
263 return OS;
264 }
265
266 template <typename T>
zeros(const T &)267 zeros_impl<sizeof(T)> zeros(const T &) {
268 return zeros_impl<sizeof(T)>();
269 }
270
271 struct num_zeros_impl {
272 size_t N;
num_zeros_implnum_zeros_impl273 num_zeros_impl(size_t N) : N(N) {}
274 };
275
operator <<(raw_ostream & OS,const num_zeros_impl & NZI)276 raw_ostream &operator<<(raw_ostream &OS, const num_zeros_impl &NZI) {
277 for (size_t I = 0; I != NZI.N; ++I)
278 OS.write(0);
279 return OS;
280 }
281
num_zeros(size_t N)282 static num_zeros_impl num_zeros(size_t N) {
283 num_zeros_impl NZI(N);
284 return NZI;
285 }
286
287 template <typename T>
initializeOptionalHeader(COFFParser & CP,uint16_t Magic,T Header)288 static uint32_t initializeOptionalHeader(COFFParser &CP, uint16_t Magic, T Header) {
289 memset(Header, 0, sizeof(*Header));
290 Header->Magic = Magic;
291 Header->SectionAlignment = CP.Obj.OptionalHeader->Header.SectionAlignment;
292 Header->FileAlignment = CP.Obj.OptionalHeader->Header.FileAlignment;
293 uint32_t SizeOfCode = 0, SizeOfInitializedData = 0,
294 SizeOfUninitializedData = 0;
295 uint32_t SizeOfHeaders = RoundUpToAlignment(
296 CP.SectionTableStart + CP.SectionTableSize, Header->FileAlignment);
297 uint32_t SizeOfImage =
298 RoundUpToAlignment(SizeOfHeaders, Header->SectionAlignment);
299 uint32_t BaseOfData = 0;
300 for (const COFFYAML::Section &S : CP.Obj.Sections) {
301 if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_CODE)
302 SizeOfCode += S.Header.SizeOfRawData;
303 if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
304 SizeOfInitializedData += S.Header.SizeOfRawData;
305 if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
306 SizeOfUninitializedData += S.Header.SizeOfRawData;
307 if (S.Name.equals(".text"))
308 Header->BaseOfCode = S.Header.VirtualAddress; // RVA
309 else if (S.Name.equals(".data"))
310 BaseOfData = S.Header.VirtualAddress; // RVA
311 if (S.Header.VirtualAddress)
312 SizeOfImage +=
313 RoundUpToAlignment(S.Header.VirtualSize, Header->SectionAlignment);
314 }
315 Header->SizeOfCode = SizeOfCode;
316 Header->SizeOfInitializedData = SizeOfInitializedData;
317 Header->SizeOfUninitializedData = SizeOfUninitializedData;
318 Header->AddressOfEntryPoint =
319 CP.Obj.OptionalHeader->Header.AddressOfEntryPoint; // RVA
320 Header->ImageBase = CP.Obj.OptionalHeader->Header.ImageBase;
321 Header->MajorOperatingSystemVersion =
322 CP.Obj.OptionalHeader->Header.MajorOperatingSystemVersion;
323 Header->MinorOperatingSystemVersion =
324 CP.Obj.OptionalHeader->Header.MinorOperatingSystemVersion;
325 Header->MajorImageVersion =
326 CP.Obj.OptionalHeader->Header.MajorImageVersion;
327 Header->MinorImageVersion =
328 CP.Obj.OptionalHeader->Header.MinorImageVersion;
329 Header->MajorSubsystemVersion =
330 CP.Obj.OptionalHeader->Header.MajorSubsystemVersion;
331 Header->MinorSubsystemVersion =
332 CP.Obj.OptionalHeader->Header.MinorSubsystemVersion;
333 Header->SizeOfImage = SizeOfImage;
334 Header->SizeOfHeaders = SizeOfHeaders;
335 Header->Subsystem = CP.Obj.OptionalHeader->Header.Subsystem;
336 Header->DLLCharacteristics = CP.Obj.OptionalHeader->Header.DLLCharacteristics;
337 Header->SizeOfStackReserve = CP.Obj.OptionalHeader->Header.SizeOfStackReserve;
338 Header->SizeOfStackCommit = CP.Obj.OptionalHeader->Header.SizeOfStackCommit;
339 Header->SizeOfHeapReserve = CP.Obj.OptionalHeader->Header.SizeOfHeapReserve;
340 Header->SizeOfHeapCommit = CP.Obj.OptionalHeader->Header.SizeOfHeapCommit;
341 Header->NumberOfRvaAndSize = COFF::NUM_DATA_DIRECTORIES + 1;
342 return BaseOfData;
343 }
344
writeCOFF(COFFParser & CP,raw_ostream & OS)345 static bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
346 if (CP.isPE()) {
347 // PE files start with a DOS stub.
348 object::dos_header DH;
349 memset(&DH, 0, sizeof(DH));
350
351 // DOS EXEs start with "MZ" magic.
352 DH.Magic[0] = 'M';
353 DH.Magic[1] = 'Z';
354 // Initializing the AddressOfRelocationTable is strictly optional but
355 // mollifies certain tools which expect it to have a value greater than
356 // 0x40.
357 DH.AddressOfRelocationTable = sizeof(DH);
358 // This is the address of the PE signature.
359 DH.AddressOfNewExeHeader = DOSStubSize;
360
361 // Write out our DOS stub.
362 OS.write(reinterpret_cast<char *>(&DH), sizeof(DH));
363 // Write padding until we reach the position of where our PE signature
364 // should live.
365 OS << num_zeros(DOSStubSize - sizeof(DH));
366 // Write out the PE signature.
367 OS.write(COFF::PEMagic, sizeof(COFF::PEMagic));
368 }
369 if (CP.useBigObj()) {
370 OS << binary_le(static_cast<uint16_t>(COFF::IMAGE_FILE_MACHINE_UNKNOWN))
371 << binary_le(static_cast<uint16_t>(0xffff))
372 << binary_le(static_cast<uint16_t>(COFF::BigObjHeader::MinBigObjectVersion))
373 << binary_le(CP.Obj.Header.Machine)
374 << binary_le(CP.Obj.Header.TimeDateStamp);
375 OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic));
376 OS << zeros(uint32_t(0))
377 << zeros(uint32_t(0))
378 << zeros(uint32_t(0))
379 << zeros(uint32_t(0))
380 << binary_le(CP.Obj.Header.NumberOfSections)
381 << binary_le(CP.Obj.Header.PointerToSymbolTable)
382 << binary_le(CP.Obj.Header.NumberOfSymbols);
383 } else {
384 OS << binary_le(CP.Obj.Header.Machine)
385 << binary_le(static_cast<int16_t>(CP.Obj.Header.NumberOfSections))
386 << binary_le(CP.Obj.Header.TimeDateStamp)
387 << binary_le(CP.Obj.Header.PointerToSymbolTable)
388 << binary_le(CP.Obj.Header.NumberOfSymbols)
389 << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
390 << binary_le(CP.Obj.Header.Characteristics);
391 }
392 if (CP.isPE()) {
393 if (CP.is64Bit()) {
394 object::pe32plus_header PEH;
395 initializeOptionalHeader(CP, COFF::PE32Header::PE32_PLUS, &PEH);
396 OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
397 } else {
398 object::pe32_header PEH;
399 uint32_t BaseOfData = initializeOptionalHeader(CP, COFF::PE32Header::PE32, &PEH);
400 PEH.BaseOfData = BaseOfData;
401 OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
402 }
403 for (const Optional<COFF::DataDirectory> &DD :
404 CP.Obj.OptionalHeader->DataDirectories) {
405 if (!DD.hasValue()) {
406 OS << zeros(uint32_t(0));
407 OS << zeros(uint32_t(0));
408 } else {
409 OS << binary_le(DD->RelativeVirtualAddress);
410 OS << binary_le(DD->Size);
411 }
412 }
413 OS << zeros(uint32_t(0));
414 OS << zeros(uint32_t(0));
415 }
416
417 assert(OS.tell() == CP.SectionTableStart);
418 // Output section table.
419 for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
420 e = CP.Obj.Sections.end();
421 i != e; ++i) {
422 OS.write(i->Header.Name, COFF::NameSize);
423 OS << binary_le(i->Header.VirtualSize)
424 << binary_le(i->Header.VirtualAddress)
425 << binary_le(i->Header.SizeOfRawData)
426 << binary_le(i->Header.PointerToRawData)
427 << binary_le(i->Header.PointerToRelocations)
428 << binary_le(i->Header.PointerToLineNumbers)
429 << binary_le(i->Header.NumberOfRelocations)
430 << binary_le(i->Header.NumberOfLineNumbers)
431 << binary_le(i->Header.Characteristics);
432 }
433 assert(OS.tell() == CP.SectionTableStart + CP.SectionTableSize);
434
435 unsigned CurSymbol = 0;
436 StringMap<unsigned> SymbolTableIndexMap;
437 for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
438 E = CP.Obj.Symbols.end();
439 I != E; ++I) {
440 SymbolTableIndexMap[I->Name] = CurSymbol;
441 CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
442 }
443
444 // Output section data.
445 for (const COFFYAML::Section &S : CP.Obj.Sections) {
446 if (!S.Header.SizeOfRawData)
447 continue;
448 assert(S.Header.PointerToRawData >= OS.tell());
449 OS << num_zeros(S.Header.PointerToRawData - OS.tell());
450 S.SectionData.writeAsBinary(OS);
451 assert(S.Header.SizeOfRawData >= S.SectionData.binary_size());
452 OS << num_zeros(S.Header.SizeOfRawData - S.SectionData.binary_size());
453 for (const COFFYAML::Relocation &R : S.Relocations) {
454 uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
455 OS << binary_le(R.VirtualAddress)
456 << binary_le(SymbolTableIndex)
457 << binary_le(R.Type);
458 }
459 }
460
461 // Output symbol table.
462
463 for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
464 e = CP.Obj.Symbols.end();
465 i != e; ++i) {
466 OS.write(i->Header.Name, COFF::NameSize);
467 OS << binary_le(i->Header.Value);
468 if (CP.useBigObj())
469 OS << binary_le(i->Header.SectionNumber);
470 else
471 OS << binary_le(static_cast<int16_t>(i->Header.SectionNumber));
472 OS << binary_le(i->Header.Type)
473 << binary_le(i->Header.StorageClass)
474 << binary_le(i->Header.NumberOfAuxSymbols);
475
476 if (i->FunctionDefinition)
477 OS << binary_le(i->FunctionDefinition->TagIndex)
478 << binary_le(i->FunctionDefinition->TotalSize)
479 << binary_le(i->FunctionDefinition->PointerToLinenumber)
480 << binary_le(i->FunctionDefinition->PointerToNextFunction)
481 << zeros(i->FunctionDefinition->unused)
482 << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
483 if (i->bfAndefSymbol)
484 OS << zeros(i->bfAndefSymbol->unused1)
485 << binary_le(i->bfAndefSymbol->Linenumber)
486 << zeros(i->bfAndefSymbol->unused2)
487 << binary_le(i->bfAndefSymbol->PointerToNextFunction)
488 << zeros(i->bfAndefSymbol->unused3)
489 << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
490 if (i->WeakExternal)
491 OS << binary_le(i->WeakExternal->TagIndex)
492 << binary_le(i->WeakExternal->Characteristics)
493 << zeros(i->WeakExternal->unused)
494 << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
495 if (!i->File.empty()) {
496 unsigned SymbolSize = CP.getSymbolSize();
497 uint32_t NumberOfAuxRecords =
498 (i->File.size() + SymbolSize - 1) / SymbolSize;
499 uint32_t NumberOfAuxBytes = NumberOfAuxRecords * SymbolSize;
500 uint32_t NumZeros = NumberOfAuxBytes - i->File.size();
501 OS.write(i->File.data(), i->File.size());
502 OS << num_zeros(NumZeros);
503 }
504 if (i->SectionDefinition)
505 OS << binary_le(i->SectionDefinition->Length)
506 << binary_le(i->SectionDefinition->NumberOfRelocations)
507 << binary_le(i->SectionDefinition->NumberOfLinenumbers)
508 << binary_le(i->SectionDefinition->CheckSum)
509 << binary_le(static_cast<int16_t>(i->SectionDefinition->Number))
510 << binary_le(i->SectionDefinition->Selection)
511 << zeros(i->SectionDefinition->unused)
512 << binary_le(static_cast<int16_t>(i->SectionDefinition->Number >> 16))
513 << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
514 if (i->CLRToken)
515 OS << binary_le(i->CLRToken->AuxType)
516 << zeros(i->CLRToken->unused1)
517 << binary_le(i->CLRToken->SymbolTableIndex)
518 << zeros(i->CLRToken->unused2)
519 << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
520 }
521
522 // Output string table.
523 if (CP.Obj.Header.PointerToSymbolTable)
524 OS.write(&CP.StringTable[0], CP.StringTable.size());
525 return true;
526 }
527
yaml2coff(yaml::Input & YIn,raw_ostream & Out)528 int yaml2coff(yaml::Input &YIn, raw_ostream &Out) {
529 COFFYAML::Object Doc;
530 YIn >> Doc;
531 if (YIn.error()) {
532 errs() << "yaml2obj: Failed to parse YAML file!\n";
533 return 1;
534 }
535
536 COFFParser CP(Doc);
537 if (!CP.parse()) {
538 errs() << "yaml2obj: Failed to parse YAML file!\n";
539 return 1;
540 }
541
542 if (!layoutOptionalHeader(CP)) {
543 errs() << "yaml2obj: Failed to layout optional header for COFF file!\n";
544 return 1;
545 }
546 if (!layoutCOFF(CP)) {
547 errs() << "yaml2obj: Failed to layout COFF file!\n";
548 return 1;
549 }
550 if (!writeCOFF(CP, Out)) {
551 errs() << "yaml2obj: Failed to write COFF file!\n";
552 return 1;
553 }
554 return 0;
555 }
556