1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/IR/Instructions.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/DerivedTypes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "gtest/gtest.h"
24 #include <memory>
25 
26 namespace llvm {
27 namespace {
28 
TEST(InstructionsTest,ReturnInst)29 TEST(InstructionsTest, ReturnInst) {
30   LLVMContext &C(getGlobalContext());
31 
32   // test for PR6589
33   const ReturnInst* r0 = ReturnInst::Create(C);
34   EXPECT_EQ(r0->getNumOperands(), 0U);
35   EXPECT_EQ(r0->op_begin(), r0->op_end());
36 
37   IntegerType* Int1 = IntegerType::get(C, 1);
38   Constant* One = ConstantInt::get(Int1, 1, true);
39   const ReturnInst* r1 = ReturnInst::Create(C, One);
40   EXPECT_EQ(1U, r1->getNumOperands());
41   User::const_op_iterator b(r1->op_begin());
42   EXPECT_NE(r1->op_end(), b);
43   EXPECT_EQ(One, *b);
44   EXPECT_EQ(One, r1->getOperand(0));
45   ++b;
46   EXPECT_EQ(r1->op_end(), b);
47 
48   // clean up
49   delete r0;
50   delete r1;
51 }
52 
53 // Test fixture that provides a module and a single function within it. Useful
54 // for tests that need to refer to the function in some way.
55 class ModuleWithFunctionTest : public testing::Test {
56 protected:
ModuleWithFunctionTest()57   ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
58     FArgTypes.push_back(Type::getInt8Ty(Ctx));
59     FArgTypes.push_back(Type::getInt32Ty(Ctx));
60     FArgTypes.push_back(Type::getInt64Ty(Ctx));
61     FunctionType *FTy =
62         FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
63     F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
64   }
65 
66   LLVMContext Ctx;
67   std::unique_ptr<Module> M;
68   SmallVector<Type *, 3> FArgTypes;
69   Function *F;
70 };
71 
TEST_F(ModuleWithFunctionTest,CallInst)72 TEST_F(ModuleWithFunctionTest, CallInst) {
73   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
74                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
75                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
76   std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
77 
78   // Make sure iteration over a call's arguments works as expected.
79   unsigned Idx = 0;
80   for (Value *Arg : Call->arg_operands()) {
81     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
82     EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
83     Idx++;
84   }
85 }
86 
TEST_F(ModuleWithFunctionTest,InvokeInst)87 TEST_F(ModuleWithFunctionTest, InvokeInst) {
88   BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
89   BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
90 
91   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
92                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
93                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
94   std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
95 
96   // Make sure iteration over invoke's arguments works as expected.
97   unsigned Idx = 0;
98   for (Value *Arg : Invoke->arg_operands()) {
99     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
100     EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
101     Idx++;
102   }
103 }
104 
TEST(InstructionsTest,BranchInst)105 TEST(InstructionsTest, BranchInst) {
106   LLVMContext &C(getGlobalContext());
107 
108   // Make a BasicBlocks
109   BasicBlock* bb0 = BasicBlock::Create(C);
110   BasicBlock* bb1 = BasicBlock::Create(C);
111 
112   // Mandatory BranchInst
113   const BranchInst* b0 = BranchInst::Create(bb0);
114 
115   EXPECT_TRUE(b0->isUnconditional());
116   EXPECT_FALSE(b0->isConditional());
117   EXPECT_EQ(1U, b0->getNumSuccessors());
118 
119   // check num operands
120   EXPECT_EQ(1U, b0->getNumOperands());
121 
122   EXPECT_NE(b0->op_begin(), b0->op_end());
123   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
124 
125   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
126 
127   IntegerType* Int1 = IntegerType::get(C, 1);
128   Constant* One = ConstantInt::get(Int1, 1, true);
129 
130   // Conditional BranchInst
131   BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
132 
133   EXPECT_FALSE(b1->isUnconditional());
134   EXPECT_TRUE(b1->isConditional());
135   EXPECT_EQ(2U, b1->getNumSuccessors());
136 
137   // check num operands
138   EXPECT_EQ(3U, b1->getNumOperands());
139 
140   User::const_op_iterator b(b1->op_begin());
141 
142   // check COND
143   EXPECT_NE(b, b1->op_end());
144   EXPECT_EQ(One, *b);
145   EXPECT_EQ(One, b1->getOperand(0));
146   EXPECT_EQ(One, b1->getCondition());
147   ++b;
148 
149   // check ELSE
150   EXPECT_EQ(bb1, *b);
151   EXPECT_EQ(bb1, b1->getOperand(1));
152   EXPECT_EQ(bb1, b1->getSuccessor(1));
153   ++b;
154 
155   // check THEN
156   EXPECT_EQ(bb0, *b);
157   EXPECT_EQ(bb0, b1->getOperand(2));
158   EXPECT_EQ(bb0, b1->getSuccessor(0));
159   ++b;
160 
161   EXPECT_EQ(b1->op_end(), b);
162 
163   // clean up
164   delete b0;
165   delete b1;
166 
167   delete bb0;
168   delete bb1;
169 }
170 
TEST(InstructionsTest,CastInst)171 TEST(InstructionsTest, CastInst) {
172   LLVMContext &C(getGlobalContext());
173 
174   Type *Int8Ty = Type::getInt8Ty(C);
175   Type *Int16Ty = Type::getInt16Ty(C);
176   Type *Int32Ty = Type::getInt32Ty(C);
177   Type *Int64Ty = Type::getInt64Ty(C);
178   Type *V8x8Ty = VectorType::get(Int8Ty, 8);
179   Type *V8x64Ty = VectorType::get(Int64Ty, 8);
180   Type *X86MMXTy = Type::getX86_MMXTy(C);
181 
182   Type *HalfTy = Type::getHalfTy(C);
183   Type *FloatTy = Type::getFloatTy(C);
184   Type *DoubleTy = Type::getDoubleTy(C);
185 
186   Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
187   Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
188   Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
189 
190   Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
191   Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
192 
193   Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
194   Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
195 
196   Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
197   Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
198   Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
199   Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
200 
201   Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
202   Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
203   Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
204 
205   const Constant* c8 = Constant::getNullValue(V8x8Ty);
206   const Constant* c64 = Constant::getNullValue(V8x64Ty);
207 
208   const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
209 
210   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
211   EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
212   EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
213   EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
214   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
215   EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
216   EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
217 
218   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
219   EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
220   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
221   EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
222   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
223 
224   // Check address space casts are rejected since we don't know the sizes here
225   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
226   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
227   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
228   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
229   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
230   EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
231   EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
232                                                              V2Int32PtrAS1Ty,
233                                                              true));
234 
235   // Test mismatched number of elements for pointers
236   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
237   EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
238   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
239   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
240   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
241 
242   EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
243   EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
244   EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
245   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
246   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
247   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
248   EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
249   EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
250   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
251 
252   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
253   EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
254   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
255 
256   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
257   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
258   EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
259   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
260   EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
261   EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
262 
263 
264   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
265                                      Constant::getNullValue(V4Int32PtrTy),
266                                      V2Int32PtrTy));
267   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
268                                      Constant::getNullValue(V2Int32PtrTy),
269                                      V4Int32PtrTy));
270 
271   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
272                                      Constant::getNullValue(V4Int32PtrAS1Ty),
273                                      V2Int32PtrTy));
274   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
275                                      Constant::getNullValue(V2Int32PtrTy),
276                                      V4Int32PtrAS1Ty));
277 
278 
279   // Check that assertion is not hit when creating a cast with a vector of
280   // pointers
281   // First form
282   BasicBlock *BB = BasicBlock::Create(C);
283   Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
284   CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
285 
286   // Second form
287   CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
288 }
289 
TEST(InstructionsTest,VectorGep)290 TEST(InstructionsTest, VectorGep) {
291   LLVMContext &C(getGlobalContext());
292 
293   // Type Definitions
294   Type *I8Ty = IntegerType::get(C, 8);
295   Type *I32Ty = IntegerType::get(C, 32);
296   PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
297   PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
298 
299   VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
300   VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
301 
302   // Test different aspects of the vector-of-pointers type
303   // and GEPs which use this type.
304   ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
305   ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
306   std::vector<Constant*> ConstVa(2, Ci32a);
307   std::vector<Constant*> ConstVb(2, Ci32b);
308   Constant *C2xi32a = ConstantVector::get(ConstVa);
309   Constant *C2xi32b = ConstantVector::get(ConstVb);
310 
311   CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
312   CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
313 
314   ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
315   ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
316   EXPECT_NE(ICmp0, ICmp1); // suppress warning.
317 
318   BasicBlock* BB0 = BasicBlock::Create(C);
319   // Test InsertAtEnd ICmpInst constructor.
320   ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
321   EXPECT_NE(ICmp0, ICmp2); // suppress warning.
322 
323   GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
324   GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
325   GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
326   GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
327 
328   CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
329   CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
330   CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
331   CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
332 
333   Value *S0 = BTC0->stripPointerCasts();
334   Value *S1 = BTC1->stripPointerCasts();
335   Value *S2 = BTC2->stripPointerCasts();
336   Value *S3 = BTC3->stripPointerCasts();
337 
338   EXPECT_NE(S0, Gep0);
339   EXPECT_NE(S1, Gep1);
340   EXPECT_NE(S2, Gep2);
341   EXPECT_NE(S3, Gep3);
342 
343   int64_t Offset;
344   DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
345                 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
346                 ":128:128-n8:16:32:64-S128");
347   // Make sure we don't crash
348   GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
349   GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
350   GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
351   GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
352 
353   // Gep of Geps
354   GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
355   GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
356   GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
357   GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
358 
359   EXPECT_EQ(GepII0->getNumIndices(), 1u);
360   EXPECT_EQ(GepII1->getNumIndices(), 1u);
361   EXPECT_EQ(GepII2->getNumIndices(), 1u);
362   EXPECT_EQ(GepII3->getNumIndices(), 1u);
363 
364   EXPECT_FALSE(GepII0->hasAllZeroIndices());
365   EXPECT_FALSE(GepII1->hasAllZeroIndices());
366   EXPECT_FALSE(GepII2->hasAllZeroIndices());
367   EXPECT_FALSE(GepII3->hasAllZeroIndices());
368 
369   delete GepII0;
370   delete GepII1;
371   delete GepII2;
372   delete GepII3;
373 
374   delete BTC0;
375   delete BTC1;
376   delete BTC2;
377   delete BTC3;
378 
379   delete Gep0;
380   delete Gep1;
381   delete Gep2;
382   delete Gep3;
383 
384   ICmp2->eraseFromParent();
385   delete BB0;
386 
387   delete ICmp0;
388   delete ICmp1;
389   delete PtrVecA;
390   delete PtrVecB;
391 }
392 
TEST(InstructionsTest,FPMathOperator)393 TEST(InstructionsTest, FPMathOperator) {
394   LLVMContext &Context = getGlobalContext();
395   IRBuilder<> Builder(Context);
396   MDBuilder MDHelper(Context);
397   Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
398   MDNode *MD1 = MDHelper.createFPMath(1.0);
399   Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
400   EXPECT_TRUE(isa<FPMathOperator>(V1));
401   FPMathOperator *O1 = cast<FPMathOperator>(V1);
402   EXPECT_EQ(O1->getFPAccuracy(), 1.0);
403   delete V1;
404   delete I;
405 }
406 
407 
TEST(InstructionsTest,isEliminableCastPair)408 TEST(InstructionsTest, isEliminableCastPair) {
409   LLVMContext &C(getGlobalContext());
410 
411   Type* Int16Ty = Type::getInt16Ty(C);
412   Type* Int32Ty = Type::getInt32Ty(C);
413   Type* Int64Ty = Type::getInt64Ty(C);
414   Type* Int64PtrTy = Type::getInt64PtrTy(C);
415 
416   // Source and destination pointers have same size -> bitcast.
417   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
418                                            CastInst::IntToPtr,
419                                            Int64PtrTy, Int64Ty, Int64PtrTy,
420                                            Int32Ty, nullptr, Int32Ty),
421             CastInst::BitCast);
422 
423   // Source and destination have unknown sizes, but the same address space and
424   // the intermediate int is the maximum pointer size -> bitcast
425   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
426                                            CastInst::IntToPtr,
427                                            Int64PtrTy, Int64Ty, Int64PtrTy,
428                                            nullptr, nullptr, nullptr),
429             CastInst::BitCast);
430 
431   // Source and destination have unknown sizes, but the same address space and
432   // the intermediate int is not the maximum pointer size -> nothing
433   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
434                                            CastInst::IntToPtr,
435                                            Int64PtrTy, Int32Ty, Int64PtrTy,
436                                            nullptr, nullptr, nullptr),
437             0U);
438 
439   // Middle pointer big enough -> bitcast.
440   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
441                                            CastInst::PtrToInt,
442                                            Int64Ty, Int64PtrTy, Int64Ty,
443                                            nullptr, Int64Ty, nullptr),
444             CastInst::BitCast);
445 
446   // Middle pointer too small -> fail.
447   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
448                                            CastInst::PtrToInt,
449                                            Int64Ty, Int64PtrTy, Int64Ty,
450                                            nullptr, Int32Ty, nullptr),
451             0U);
452 
453   // Test that we don't eliminate bitcasts between different address spaces,
454   // or if we don't have available pointer size information.
455   DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
456                 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
457                 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
458 
459   Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
460   Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
461 
462   IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
463   IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
464 
465   // Cannot simplify inttoptr, addrspacecast
466   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
467                                            CastInst::AddrSpaceCast,
468                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
469                                            nullptr, Int16SizePtr, Int64SizePtr),
470             0U);
471 
472   // Cannot simplify addrspacecast, ptrtoint
473   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
474                                            CastInst::PtrToInt,
475                                            Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
476                                            Int64SizePtr, Int16SizePtr, nullptr),
477             0U);
478 
479   // Pass since the bitcast address spaces are the same
480   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
481                                            CastInst::BitCast,
482                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
483                                            nullptr, nullptr, nullptr),
484             CastInst::IntToPtr);
485 
486 }
487 
TEST(InstructionsTest,CloneCall)488 TEST(InstructionsTest, CloneCall) {
489   LLVMContext &C(getGlobalContext());
490   Type *Int32Ty = Type::getInt32Ty(C);
491   Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
492   Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
493   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
494   Value *Args[] = {
495     ConstantInt::get(Int32Ty, 1),
496     ConstantInt::get(Int32Ty, 2),
497     ConstantInt::get(Int32Ty, 3)
498   };
499   std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result"));
500 
501   // Test cloning the tail call kind.
502   CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
503                                     CallInst::TCK_MustTail};
504   for (CallInst::TailCallKind TCK : Kinds) {
505     Call->setTailCallKind(TCK);
506     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
507     EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
508   }
509   Call->setTailCallKind(CallInst::TCK_None);
510 
511   // Test cloning an attribute.
512   {
513     AttrBuilder AB;
514     AB.addAttribute(Attribute::ReadOnly);
515     Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB));
516     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
517     EXPECT_TRUE(Clone->onlyReadsMemory());
518   }
519 }
520 
521 }  // end anonymous namespace
522 }  // end namespace llvm
523 
524 
525