• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/MC/MCFixedLenDisassembler.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <map>
30 #include <string>
31 #include <vector>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "decoder-emitter"
36 
37 namespace {
38 struct EncodingField {
39   unsigned Base, Width, Offset;
EncodingField__anonf641aa1c0111::EncodingField40   EncodingField(unsigned B, unsigned W, unsigned O)
41     : Base(B), Width(W), Offset(O) { }
42 };
43 
44 struct OperandInfo {
45   std::vector<EncodingField> Fields;
46   std::string Decoder;
47 
OperandInfo__anonf641aa1c0111::OperandInfo48   OperandInfo(std::string D)
49     : Decoder(D) { }
50 
addField__anonf641aa1c0111::OperandInfo51   void addField(unsigned Base, unsigned Width, unsigned Offset) {
52     Fields.push_back(EncodingField(Base, Width, Offset));
53   }
54 
numFields__anonf641aa1c0111::OperandInfo55   unsigned numFields() const { return Fields.size(); }
56 
57   typedef std::vector<EncodingField>::const_iterator const_iterator;
58 
begin__anonf641aa1c0111::OperandInfo59   const_iterator begin() const { return Fields.begin(); }
end__anonf641aa1c0111::OperandInfo60   const_iterator end() const   { return Fields.end();   }
61 };
62 
63 typedef std::vector<uint8_t> DecoderTable;
64 typedef uint32_t DecoderFixup;
65 typedef std::vector<DecoderFixup> FixupList;
66 typedef std::vector<FixupList> FixupScopeList;
67 typedef SetVector<std::string> PredicateSet;
68 typedef SetVector<std::string> DecoderSet;
69 struct DecoderTableInfo {
70   DecoderTable Table;
71   FixupScopeList FixupStack;
72   PredicateSet Predicates;
73   DecoderSet Decoders;
74 };
75 
76 } // End anonymous namespace
77 
78 namespace {
79 class FixedLenDecoderEmitter {
80   const std::vector<const CodeGenInstruction*> *NumberedInstructions;
81 public:
82 
83   // Defaults preserved here for documentation, even though they aren't
84   // strictly necessary given the way that this is currently being called.
FixedLenDecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)"" return MCDisassembler::Fail;",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")85   FixedLenDecoderEmitter(RecordKeeper &R,
86                          std::string PredicateNamespace,
87                          std::string GPrefix  = "if (",
88                          std::string GPostfix = " == MCDisassembler::Fail)"
89                          " return MCDisassembler::Fail;",
90                          std::string ROK      = "MCDisassembler::Success",
91                          std::string RFail    = "MCDisassembler::Fail",
92                          std::string L        = "") :
93     Target(R),
94     PredicateNamespace(PredicateNamespace),
95     GuardPrefix(GPrefix), GuardPostfix(GPostfix),
96     ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
97 
98   // Emit the decoder state machine table.
99   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
100                  unsigned Indentation, unsigned BitWidth,
101                  StringRef Namespace) const;
102   void emitPredicateFunction(formatted_raw_ostream &OS,
103                              PredicateSet &Predicates,
104                              unsigned Indentation) const;
105   void emitDecoderFunction(formatted_raw_ostream &OS,
106                            DecoderSet &Decoders,
107                            unsigned Indentation) const;
108 
109   // run - Output the code emitter
110   void run(raw_ostream &o);
111 
112 private:
113   CodeGenTarget Target;
114 public:
115   std::string PredicateNamespace;
116   std::string GuardPrefix, GuardPostfix;
117   std::string ReturnOK, ReturnFail;
118   std::string Locals;
119 };
120 } // End anonymous namespace
121 
122 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
123 // for a bit value.
124 //
125 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
126 // only for filter processings.
127 typedef enum {
128   BIT_TRUE,      // '1'
129   BIT_FALSE,     // '0'
130   BIT_UNSET,     // '?'
131   BIT_UNFILTERED // unfiltered
132 } bit_value_t;
133 
ValueSet(bit_value_t V)134 static bool ValueSet(bit_value_t V) {
135   return (V == BIT_TRUE || V == BIT_FALSE);
136 }
ValueNotSet(bit_value_t V)137 static bool ValueNotSet(bit_value_t V) {
138   return (V == BIT_UNSET);
139 }
Value(bit_value_t V)140 static int Value(bit_value_t V) {
141   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
142 }
bitFromBits(const BitsInit & bits,unsigned index)143 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
144   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
145     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
146 
147   // The bit is uninitialized.
148   return BIT_UNSET;
149 }
150 // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)151 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
152   for (unsigned index = bits.getNumBits(); index > 0; --index) {
153     switch (bitFromBits(bits, index - 1)) {
154     case BIT_TRUE:
155       o << "1";
156       break;
157     case BIT_FALSE:
158       o << "0";
159       break;
160     case BIT_UNSET:
161       o << "_";
162       break;
163     default:
164       llvm_unreachable("unexpected return value from bitFromBits");
165     }
166   }
167 }
168 
getBitsField(const Record & def,const char * str)169 static BitsInit &getBitsField(const Record &def, const char *str) {
170   BitsInit *bits = def.getValueAsBitsInit(str);
171   return *bits;
172 }
173 
174 // Forward declaration.
175 namespace {
176 class FilterChooser;
177 } // End anonymous namespace
178 
179 // Representation of the instruction to work on.
180 typedef std::vector<bit_value_t> insn_t;
181 
182 /// Filter - Filter works with FilterChooser to produce the decoding tree for
183 /// the ISA.
184 ///
185 /// It is useful to think of a Filter as governing the switch stmts of the
186 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
187 /// FilterChooser to decide what further decoding logic to employ, or in another
188 /// words, what other remaining bits to look at.  The FilterChooser eventually
189 /// chooses a best Filter to do its job.
190 ///
191 /// This recursive scheme ends when the number of Opcodes assigned to the
192 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
193 /// the Filter/FilterChooser combo does not know how to distinguish among the
194 /// Opcodes assigned.
195 ///
196 /// An example of a conflict is
197 ///
198 /// Conflict:
199 ///                     111101000.00........00010000....
200 ///                     111101000.00........0001........
201 ///                     1111010...00........0001........
202 ///                     1111010...00....................
203 ///                     1111010.........................
204 ///                     1111............................
205 ///                     ................................
206 ///     VST4q8a         111101000_00________00010000____
207 ///     VST4q8b         111101000_00________00010000____
208 ///
209 /// The Debug output shows the path that the decoding tree follows to reach the
210 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
211 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
212 ///
213 /// The encoding info in the .td files does not specify this meta information,
214 /// which could have been used by the decoder to resolve the conflict.  The
215 /// decoder could try to decode the even/odd register numbering and assign to
216 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
217 /// version and return the Opcode since the two have the same Asm format string.
218 namespace {
219 class Filter {
220 protected:
221   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
222   unsigned StartBit; // the starting bit position
223   unsigned NumBits; // number of bits to filter
224   bool Mixed; // a mixed region contains both set and unset bits
225 
226   // Map of well-known segment value to the set of uid's with that value.
227   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
228 
229   // Set of uid's with non-constant segment values.
230   std::vector<unsigned> VariableInstructions;
231 
232   // Map of well-known segment value to its delegate.
233   std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
234 
235   // Number of instructions which fall under FilteredInstructions category.
236   unsigned NumFiltered;
237 
238   // Keeps track of the last opcode in the filtered bucket.
239   unsigned LastOpcFiltered;
240 
241 public:
getNumFiltered() const242   unsigned getNumFiltered() const { return NumFiltered; }
getSingletonOpc() const243   unsigned getSingletonOpc() const {
244     assert(NumFiltered == 1);
245     return LastOpcFiltered;
246   }
247   // Return the filter chooser for the group of instructions without constant
248   // segment values.
getVariableFC() const249   const FilterChooser &getVariableFC() const {
250     assert(NumFiltered == 1);
251     assert(FilterChooserMap.size() == 1);
252     return *(FilterChooserMap.find((unsigned)-1)->second);
253   }
254 
255   Filter(Filter &&f);
256   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
257 
258   ~Filter();
259 
260   // Divides the decoding task into sub tasks and delegates them to the
261   // inferior FilterChooser's.
262   //
263   // A special case arises when there's only one entry in the filtered
264   // instructions.  In order to unambiguously decode the singleton, we need to
265   // match the remaining undecoded encoding bits against the singleton.
266   void recurse();
267 
268   // Emit table entries to decode instructions given a segment or segments of
269   // bits.
270   void emitTableEntry(DecoderTableInfo &TableInfo) const;
271 
272   // Returns the number of fanout produced by the filter.  More fanout implies
273   // the filter distinguishes more categories of instructions.
274   unsigned usefulness() const;
275 }; // End of class Filter
276 } // End anonymous namespace
277 
278 // These are states of our finite state machines used in FilterChooser's
279 // filterProcessor() which produces the filter candidates to use.
280 typedef enum {
281   ATTR_NONE,
282   ATTR_FILTERED,
283   ATTR_ALL_SET,
284   ATTR_ALL_UNSET,
285   ATTR_MIXED
286 } bitAttr_t;
287 
288 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
289 /// in order to perform the decoding of instructions at the current level.
290 ///
291 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
292 /// of instructions available, FilterChooser builds up the possible Filters that
293 /// can further the task of decoding by distinguishing among the remaining
294 /// candidate instructions.
295 ///
296 /// Once a filter has been chosen, it is called upon to divide the decoding task
297 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
298 /// processings.
299 ///
300 /// It is useful to think of a Filter as governing the switch stmts of the
301 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
302 /// decide what further remaining bits to look at.
303 namespace {
304 class FilterChooser {
305 protected:
306   friend class Filter;
307 
308   // Vector of codegen instructions to choose our filter.
309   const std::vector<const CodeGenInstruction*> &AllInstructions;
310 
311   // Vector of uid's for this filter chooser to work on.
312   const std::vector<unsigned> &Opcodes;
313 
314   // Lookup table for the operand decoding of instructions.
315   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
316 
317   // Vector of candidate filters.
318   std::vector<Filter> Filters;
319 
320   // Array of bit values passed down from our parent.
321   // Set to all BIT_UNFILTERED's for Parent == NULL.
322   std::vector<bit_value_t> FilterBitValues;
323 
324   // Links to the FilterChooser above us in the decoding tree.
325   const FilterChooser *Parent;
326 
327   // Index of the best filter from Filters.
328   int BestIndex;
329 
330   // Width of instructions
331   unsigned BitWidth;
332 
333   // Parent emitter
334   const FixedLenDecoderEmitter *Emitter;
335 
336   FilterChooser(const FilterChooser &) = delete;
337   void operator=(const FilterChooser &) = delete;
338 public:
339 
FilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const FixedLenDecoderEmitter * E)340   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
341                 const std::vector<unsigned> &IDs,
342                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
343                 unsigned BW,
344                 const FixedLenDecoderEmitter *E)
345     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
346       FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
347       BitWidth(BW), Emitter(E) {
348     doFilter();
349   }
350 
FilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)351   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
352                 const std::vector<unsigned> &IDs,
353                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
354                 const std::vector<bit_value_t> &ParentFilterBitValues,
355                 const FilterChooser &parent)
356     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
357       Filters(), FilterBitValues(ParentFilterBitValues),
358       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
359       Emitter(parent.Emitter) {
360     doFilter();
361   }
362 
getBitWidth() const363   unsigned getBitWidth() const { return BitWidth; }
364 
365 protected:
366   // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const367   void insnWithID(insn_t &Insn, unsigned Opcode) const {
368     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
369 
370     // We may have a SoftFail bitmask, which specifies a mask where an encoding
371     // may differ from the value in "Inst" and yet still be valid, but the
372     // disassembler should return SoftFail instead of Success.
373     //
374     // This is used for marking UNPREDICTABLE instructions in the ARM world.
375     BitsInit *SFBits =
376       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
377 
378     for (unsigned i = 0; i < BitWidth; ++i) {
379       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
380         Insn.push_back(BIT_UNSET);
381       else
382         Insn.push_back(bitFromBits(Bits, i));
383     }
384   }
385 
386   // Returns the record name.
nameWithID(unsigned Opcode) const387   const std::string &nameWithID(unsigned Opcode) const {
388     return AllInstructions[Opcode]->TheDef->getName();
389   }
390 
391   // Populates the field of the insn given the start position and the number of
392   // consecutive bits to scan for.
393   //
394   // Returns false if there exists any uninitialized bit value in the range.
395   // Returns true, otherwise.
396   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
397                      unsigned NumBits) const;
398 
399   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
400   /// filter array as a series of chars.
401   void dumpFilterArray(raw_ostream &o,
402                        const std::vector<bit_value_t> & filter) const;
403 
404   /// dumpStack - dumpStack traverses the filter chooser chain and calls
405   /// dumpFilterArray on each filter chooser up to the top level one.
406   void dumpStack(raw_ostream &o, const char *prefix) const;
407 
bestFilter()408   Filter &bestFilter() {
409     assert(BestIndex != -1 && "BestIndex not set");
410     return Filters[BestIndex];
411   }
412 
413   // Called from Filter::recurse() when singleton exists.  For debug purpose.
414   void SingletonExists(unsigned Opc) const;
415 
PositionFiltered(unsigned i) const416   bool PositionFiltered(unsigned i) const {
417     return ValueSet(FilterBitValues[i]);
418   }
419 
420   // Calculates the island(s) needed to decode the instruction.
421   // This returns a lit of undecoded bits of an instructions, for example,
422   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
423   // decoded bits in order to verify that the instruction matches the Opcode.
424   unsigned getIslands(std::vector<unsigned> &StartBits,
425                       std::vector<unsigned> &EndBits,
426                       std::vector<uint64_t> &FieldVals,
427                       const insn_t &Insn) const;
428 
429   // Emits code to check the Predicates member of an instruction are true.
430   // Returns true if predicate matches were emitted, false otherwise.
431   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
432                           unsigned Opc) const;
433 
434   bool doesOpcodeNeedPredicate(unsigned Opc) const;
435   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
436   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
437                                unsigned Opc) const;
438 
439   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
440                               unsigned Opc) const;
441 
442   // Emits table entries to decode the singleton.
443   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
444                                unsigned Opc) const;
445 
446   // Emits code to decode the singleton, and then to decode the rest.
447   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
448                                const Filter &Best) const;
449 
450   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
451                         const OperandInfo &OpInfo) const;
452 
453   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
454   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
455 
456   // Assign a single filter and run with it.
457   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
458 
459   // reportRegion is a helper function for filterProcessor to mark a region as
460   // eligible for use as a filter region.
461   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
462                     bool AllowMixed);
463 
464   // FilterProcessor scans the well-known encoding bits of the instructions and
465   // builds up a list of candidate filters.  It chooses the best filter and
466   // recursively descends down the decoding tree.
467   bool filterProcessor(bool AllowMixed, bool Greedy = true);
468 
469   // Decides on the best configuration of filter(s) to use in order to decode
470   // the instructions.  A conflict of instructions may occur, in which case we
471   // dump the conflict set to the standard error.
472   void doFilter();
473 
474 public:
475   // emitTableEntries - Emit state machine entries to decode our share of
476   // instructions.
477   void emitTableEntries(DecoderTableInfo &TableInfo) const;
478 };
479 } // End anonymous namespace
480 
481 ///////////////////////////
482 //                       //
483 // Filter Implementation //
484 //                       //
485 ///////////////////////////
486 
Filter(Filter && f)487 Filter::Filter(Filter &&f)
488   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
489     FilteredInstructions(std::move(f.FilteredInstructions)),
490     VariableInstructions(std::move(f.VariableInstructions)),
491     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
492     LastOpcFiltered(f.LastOpcFiltered) {
493 }
494 
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)495 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
496                bool mixed)
497   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
498   assert(StartBit + NumBits - 1 < Owner->BitWidth);
499 
500   NumFiltered = 0;
501   LastOpcFiltered = 0;
502 
503   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
504     insn_t Insn;
505 
506     // Populates the insn given the uid.
507     Owner->insnWithID(Insn, Owner->Opcodes[i]);
508 
509     uint64_t Field;
510     // Scans the segment for possibly well-specified encoding bits.
511     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
512 
513     if (ok) {
514       // The encoding bits are well-known.  Lets add the uid of the
515       // instruction into the bucket keyed off the constant field value.
516       LastOpcFiltered = Owner->Opcodes[i];
517       FilteredInstructions[Field].push_back(LastOpcFiltered);
518       ++NumFiltered;
519     } else {
520       // Some of the encoding bit(s) are unspecified.  This contributes to
521       // one additional member of "Variable" instructions.
522       VariableInstructions.push_back(Owner->Opcodes[i]);
523     }
524   }
525 
526   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
527          && "Filter returns no instruction categories");
528 }
529 
~Filter()530 Filter::~Filter() {
531 }
532 
533 // Divides the decoding task into sub tasks and delegates them to the
534 // inferior FilterChooser's.
535 //
536 // A special case arises when there's only one entry in the filtered
537 // instructions.  In order to unambiguously decode the singleton, we need to
538 // match the remaining undecoded encoding bits against the singleton.
recurse()539 void Filter::recurse() {
540   // Starts by inheriting our parent filter chooser's filter bit values.
541   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
542 
543   if (!VariableInstructions.empty()) {
544     // Conservatively marks each segment position as BIT_UNSET.
545     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
546       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
547 
548     // Delegates to an inferior filter chooser for further processing on this
549     // group of instructions whose segment values are variable.
550     FilterChooserMap.insert(
551         std::make_pair(-1U, llvm::make_unique<FilterChooser>(
552                                 Owner->AllInstructions, VariableInstructions,
553                                 Owner->Operands, BitValueArray, *Owner)));
554   }
555 
556   // No need to recurse for a singleton filtered instruction.
557   // See also Filter::emit*().
558   if (getNumFiltered() == 1) {
559     //Owner->SingletonExists(LastOpcFiltered);
560     assert(FilterChooserMap.size() == 1);
561     return;
562   }
563 
564   // Otherwise, create sub choosers.
565   for (const auto &Inst : FilteredInstructions) {
566 
567     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
568     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
569       if (Inst.first & (1ULL << bitIndex))
570         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
571       else
572         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
573     }
574 
575     // Delegates to an inferior filter chooser for further processing on this
576     // category of instructions.
577     FilterChooserMap.insert(std::make_pair(
578         Inst.first, llvm::make_unique<FilterChooser>(
579                                 Owner->AllInstructions, Inst.second,
580                                 Owner->Operands, BitValueArray, *Owner)));
581   }
582 }
583 
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)584 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
585                                uint32_t DestIdx) {
586   // Any NumToSkip fixups in the current scope can resolve to the
587   // current location.
588   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
589                                          E = Fixups.rend();
590        I != E; ++I) {
591     // Calculate the distance from the byte following the fixup entry byte
592     // to the destination. The Target is calculated from after the 16-bit
593     // NumToSkip entry itself, so subtract two  from the displacement here
594     // to account for that.
595     uint32_t FixupIdx = *I;
596     uint32_t Delta = DestIdx - FixupIdx - 2;
597     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
598     // big.
599     assert(Delta < 65536U && "disassembler decoding table too large!");
600     Table[FixupIdx] = (uint8_t)Delta;
601     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
602   }
603 }
604 
605 // Emit table entries to decode instructions given a segment or segments
606 // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const607 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
608   TableInfo.Table.push_back(MCD::OPC_ExtractField);
609   TableInfo.Table.push_back(StartBit);
610   TableInfo.Table.push_back(NumBits);
611 
612   // A new filter entry begins a new scope for fixup resolution.
613   TableInfo.FixupStack.push_back(FixupList());
614 
615   DecoderTable &Table = TableInfo.Table;
616 
617   size_t PrevFilter = 0;
618   bool HasFallthrough = false;
619   for (auto &Filter : FilterChooserMap) {
620     // Field value -1 implies a non-empty set of variable instructions.
621     // See also recurse().
622     if (Filter.first == (unsigned)-1) {
623       HasFallthrough = true;
624 
625       // Each scope should always have at least one filter value to check
626       // for.
627       assert(PrevFilter != 0 && "empty filter set!");
628       FixupList &CurScope = TableInfo.FixupStack.back();
629       // Resolve any NumToSkip fixups in the current scope.
630       resolveTableFixups(Table, CurScope, Table.size());
631       CurScope.clear();
632       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
633     } else {
634       Table.push_back(MCD::OPC_FilterValue);
635       // Encode and emit the value to filter against.
636       uint8_t Buffer[8];
637       unsigned Len = encodeULEB128(Filter.first, Buffer);
638       Table.insert(Table.end(), Buffer, Buffer + Len);
639       // Reserve space for the NumToSkip entry. We'll backpatch the value
640       // later.
641       PrevFilter = Table.size();
642       Table.push_back(0);
643       Table.push_back(0);
644     }
645 
646     // We arrive at a category of instructions with the same segment value.
647     // Now delegate to the sub filter chooser for further decodings.
648     // The case may fallthrough, which happens if the remaining well-known
649     // encoding bits do not match exactly.
650     Filter.second->emitTableEntries(TableInfo);
651 
652     // Now that we've emitted the body of the handler, update the NumToSkip
653     // of the filter itself to be able to skip forward when false. Subtract
654     // two as to account for the width of the NumToSkip field itself.
655     if (PrevFilter) {
656       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
657       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
658       Table[PrevFilter] = (uint8_t)NumToSkip;
659       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
660     }
661   }
662 
663   // Any remaining unresolved fixups bubble up to the parent fixup scope.
664   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
665   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
666   FixupScopeList::iterator Dest = Source - 1;
667   Dest->insert(Dest->end(), Source->begin(), Source->end());
668   TableInfo.FixupStack.pop_back();
669 
670   // If there is no fallthrough, then the final filter should get fixed
671   // up according to the enclosing scope rather than the current position.
672   if (!HasFallthrough)
673     TableInfo.FixupStack.back().push_back(PrevFilter);
674 }
675 
676 // Returns the number of fanout produced by the filter.  More fanout implies
677 // the filter distinguishes more categories of instructions.
usefulness() const678 unsigned Filter::usefulness() const {
679   if (!VariableInstructions.empty())
680     return FilteredInstructions.size();
681   else
682     return FilteredInstructions.size() + 1;
683 }
684 
685 //////////////////////////////////
686 //                              //
687 // Filterchooser Implementation //
688 //                              //
689 //////////////////////////////////
690 
691 // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const692 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
693                                        DecoderTable &Table,
694                                        unsigned Indentation,
695                                        unsigned BitWidth,
696                                        StringRef Namespace) const {
697   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
698     << BitWidth << "[] = {\n";
699 
700   Indentation += 2;
701 
702   // FIXME: We may be able to use the NumToSkip values to recover
703   // appropriate indentation levels.
704   DecoderTable::const_iterator I = Table.begin();
705   DecoderTable::const_iterator E = Table.end();
706   while (I != E) {
707     assert (I < E && "incomplete decode table entry!");
708 
709     uint64_t Pos = I - Table.begin();
710     OS << "/* " << Pos << " */";
711     OS.PadToColumn(12);
712 
713     switch (*I) {
714     default:
715       PrintFatalError("invalid decode table opcode");
716     case MCD::OPC_ExtractField: {
717       ++I;
718       unsigned Start = *I++;
719       unsigned Len = *I++;
720       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
721         << Len << ",  // Inst{";
722       if (Len > 1)
723         OS << (Start + Len - 1) << "-";
724       OS << Start << "} ...\n";
725       break;
726     }
727     case MCD::OPC_FilterValue: {
728       ++I;
729       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
730       // The filter value is ULEB128 encoded.
731       while (*I >= 128)
732         OS << utostr(*I++) << ", ";
733       OS << utostr(*I++) << ", ";
734 
735       // 16-bit numtoskip value.
736       uint8_t Byte = *I++;
737       uint32_t NumToSkip = Byte;
738       OS << utostr(Byte) << ", ";
739       Byte = *I++;
740       OS << utostr(Byte) << ", ";
741       NumToSkip |= Byte << 8;
742       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
743       break;
744     }
745     case MCD::OPC_CheckField: {
746       ++I;
747       unsigned Start = *I++;
748       unsigned Len = *I++;
749       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
750         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
751       // ULEB128 encoded field value.
752       for (; *I >= 128; ++I)
753         OS << utostr(*I) << ", ";
754       OS << utostr(*I++) << ", ";
755       // 16-bit numtoskip value.
756       uint8_t Byte = *I++;
757       uint32_t NumToSkip = Byte;
758       OS << utostr(Byte) << ", ";
759       Byte = *I++;
760       OS << utostr(Byte) << ", ";
761       NumToSkip |= Byte << 8;
762       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
763       break;
764     }
765     case MCD::OPC_CheckPredicate: {
766       ++I;
767       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
768       for (; *I >= 128; ++I)
769         OS << utostr(*I) << ", ";
770       OS << utostr(*I++) << ", ";
771 
772       // 16-bit numtoskip value.
773       uint8_t Byte = *I++;
774       uint32_t NumToSkip = Byte;
775       OS << utostr(Byte) << ", ";
776       Byte = *I++;
777       OS << utostr(Byte) << ", ";
778       NumToSkip |= Byte << 8;
779       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
780       break;
781     }
782     case MCD::OPC_Decode: {
783       ++I;
784       // Extract the ULEB128 encoded Opcode to a buffer.
785       uint8_t Buffer[8], *p = Buffer;
786       while ((*p++ = *I++) >= 128)
787         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
788                && "ULEB128 value too large!");
789       // Decode the Opcode value.
790       unsigned Opc = decodeULEB128(Buffer);
791       OS.indent(Indentation) << "MCD::OPC_Decode, ";
792       for (p = Buffer; *p >= 128; ++p)
793         OS << utostr(*p) << ", ";
794       OS << utostr(*p) << ", ";
795 
796       // Decoder index.
797       for (; *I >= 128; ++I)
798         OS << utostr(*I) << ", ";
799       OS << utostr(*I++) << ", ";
800 
801       OS << "// Opcode: "
802          << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
803       break;
804     }
805     case MCD::OPC_SoftFail: {
806       ++I;
807       OS.indent(Indentation) << "MCD::OPC_SoftFail";
808       // Positive mask
809       uint64_t Value = 0;
810       unsigned Shift = 0;
811       do {
812         OS << ", " << utostr(*I);
813         Value += (*I & 0x7f) << Shift;
814         Shift += 7;
815       } while (*I++ >= 128);
816       if (Value > 127)
817         OS << " /* 0x" << utohexstr(Value) << " */";
818       // Negative mask
819       Value = 0;
820       Shift = 0;
821       do {
822         OS << ", " << utostr(*I);
823         Value += (*I & 0x7f) << Shift;
824         Shift += 7;
825       } while (*I++ >= 128);
826       if (Value > 127)
827         OS << " /* 0x" << utohexstr(Value) << " */";
828       OS << ",\n";
829       break;
830     }
831     case MCD::OPC_Fail: {
832       ++I;
833       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
834       break;
835     }
836     }
837   }
838   OS.indent(Indentation) << "0\n";
839 
840   Indentation -= 2;
841 
842   OS.indent(Indentation) << "};\n\n";
843 }
844 
845 void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const846 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
847                       unsigned Indentation) const {
848   // The predicate function is just a big switch statement based on the
849   // input predicate index.
850   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
851     << "uint64_t Bits) {\n";
852   Indentation += 2;
853   if (!Predicates.empty()) {
854     OS.indent(Indentation) << "switch (Idx) {\n";
855     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
856     unsigned Index = 0;
857     for (const auto &Predicate : Predicates) {
858       OS.indent(Indentation) << "case " << Index++ << ":\n";
859       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
860     }
861     OS.indent(Indentation) << "}\n";
862   } else {
863     // No case statement to emit
864     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
865   }
866   Indentation -= 2;
867   OS.indent(Indentation) << "}\n\n";
868 }
869 
870 void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const871 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
872                     unsigned Indentation) const {
873   // The decoder function is just a big switch statement based on the
874   // input decoder index.
875   OS.indent(Indentation) << "template<typename InsnType>\n";
876   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
877     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
878   OS.indent(Indentation) << "                                   uint64_t "
879     << "Address, const void *Decoder) {\n";
880   Indentation += 2;
881   OS.indent(Indentation) << "InsnType tmp;\n";
882   OS.indent(Indentation) << "switch (Idx) {\n";
883   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
884   unsigned Index = 0;
885   for (const auto &Decoder : Decoders) {
886     OS.indent(Indentation) << "case " << Index++ << ":\n";
887     OS << Decoder;
888     OS.indent(Indentation+2) << "return S;\n";
889   }
890   OS.indent(Indentation) << "}\n";
891   Indentation -= 2;
892   OS.indent(Indentation) << "}\n\n";
893 }
894 
895 // Populates the field of the insn given the start position and the number of
896 // consecutive bits to scan for.
897 //
898 // Returns false if and on the first uninitialized bit value encountered.
899 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const900 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
901                                   unsigned StartBit, unsigned NumBits) const {
902   Field = 0;
903 
904   for (unsigned i = 0; i < NumBits; ++i) {
905     if (Insn[StartBit + i] == BIT_UNSET)
906       return false;
907 
908     if (Insn[StartBit + i] == BIT_TRUE)
909       Field = Field | (1ULL << i);
910   }
911 
912   return true;
913 }
914 
915 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
916 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const917 void FilterChooser::dumpFilterArray(raw_ostream &o,
918                                  const std::vector<bit_value_t> &filter) const {
919   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
920     switch (filter[bitIndex - 1]) {
921     case BIT_UNFILTERED:
922       o << ".";
923       break;
924     case BIT_UNSET:
925       o << "_";
926       break;
927     case BIT_TRUE:
928       o << "1";
929       break;
930     case BIT_FALSE:
931       o << "0";
932       break;
933     }
934   }
935 }
936 
937 /// dumpStack - dumpStack traverses the filter chooser chain and calls
938 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const939 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
940   const FilterChooser *current = this;
941 
942   while (current) {
943     o << prefix;
944     dumpFilterArray(o, current->FilterBitValues);
945     o << '\n';
946     current = current->Parent;
947   }
948 }
949 
950 // Called from Filter::recurse() when singleton exists.  For debug purpose.
SingletonExists(unsigned Opc) const951 void FilterChooser::SingletonExists(unsigned Opc) const {
952   insn_t Insn0;
953   insnWithID(Insn0, Opc);
954 
955   errs() << "Singleton exists: " << nameWithID(Opc)
956          << " with its decoding dominating ";
957   for (unsigned i = 0; i < Opcodes.size(); ++i) {
958     if (Opcodes[i] == Opc) continue;
959     errs() << nameWithID(Opcodes[i]) << ' ';
960   }
961   errs() << '\n';
962 
963   dumpStack(errs(), "\t\t");
964   for (unsigned i = 0; i < Opcodes.size(); ++i) {
965     const std::string &Name = nameWithID(Opcodes[i]);
966 
967     errs() << '\t' << Name << " ";
968     dumpBits(errs(),
969              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
970     errs() << '\n';
971   }
972 }
973 
974 // Calculates the island(s) needed to decode the instruction.
975 // This returns a list of undecoded bits of an instructions, for example,
976 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
977 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const978 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
979                                    std::vector<unsigned> &EndBits,
980                                    std::vector<uint64_t> &FieldVals,
981                                    const insn_t &Insn) const {
982   unsigned Num, BitNo;
983   Num = BitNo = 0;
984 
985   uint64_t FieldVal = 0;
986 
987   // 0: Init
988   // 1: Water (the bit value does not affect decoding)
989   // 2: Island (well-known bit value needed for decoding)
990   int State = 0;
991   int Val = -1;
992 
993   for (unsigned i = 0; i < BitWidth; ++i) {
994     Val = Value(Insn[i]);
995     bool Filtered = PositionFiltered(i);
996     switch (State) {
997     default: llvm_unreachable("Unreachable code!");
998     case 0:
999     case 1:
1000       if (Filtered || Val == -1)
1001         State = 1; // Still in Water
1002       else {
1003         State = 2; // Into the Island
1004         BitNo = 0;
1005         StartBits.push_back(i);
1006         FieldVal = Val;
1007       }
1008       break;
1009     case 2:
1010       if (Filtered || Val == -1) {
1011         State = 1; // Into the Water
1012         EndBits.push_back(i - 1);
1013         FieldVals.push_back(FieldVal);
1014         ++Num;
1015       } else {
1016         State = 2; // Still in Island
1017         ++BitNo;
1018         FieldVal = FieldVal | Val << BitNo;
1019       }
1020       break;
1021     }
1022   }
1023   // If we are still in Island after the loop, do some housekeeping.
1024   if (State == 2) {
1025     EndBits.push_back(BitWidth - 1);
1026     FieldVals.push_back(FieldVal);
1027     ++Num;
1028   }
1029 
1030   assert(StartBits.size() == Num && EndBits.size() == Num &&
1031          FieldVals.size() == Num);
1032   return Num;
1033 }
1034 
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo) const1035 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1036                                      const OperandInfo &OpInfo) const {
1037   const std::string &Decoder = OpInfo.Decoder;
1038 
1039   if (OpInfo.numFields() != 1)
1040     o.indent(Indentation) << "tmp = 0;\n";
1041 
1042   for (const EncodingField &EF : OpInfo) {
1043     o.indent(Indentation) << "tmp ";
1044     if (OpInfo.numFields() != 1) o << '|';
1045     o << "= fieldFromInstruction"
1046       << "(insn, " << EF.Base << ", " << EF.Width << ')';
1047     if (OpInfo.numFields() != 1 || EF.Offset != 0)
1048       o << " << " << EF.Offset;
1049     o << ";\n";
1050   }
1051 
1052   if (Decoder != "")
1053     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1054                           << "(MI, tmp, Address, Decoder)"
1055                           << Emitter->GuardPostfix << "\n";
1056   else
1057     o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
1058 
1059 }
1060 
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc) const1061 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1062                                 unsigned Opc) const {
1063   for (const auto &Op : Operands.find(Opc)->second) {
1064     // If a custom instruction decoder was specified, use that.
1065     if (Op.numFields() == 0 && Op.Decoder.size()) {
1066       OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1067         << "(MI, insn, Address, Decoder)"
1068         << Emitter->GuardPostfix << "\n";
1069       break;
1070     }
1071 
1072     emitBinaryParser(OS, Indentation, Op);
1073   }
1074 }
1075 
getDecoderIndex(DecoderSet & Decoders,unsigned Opc) const1076 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1077                                         unsigned Opc) const {
1078   // Build up the predicate string.
1079   SmallString<256> Decoder;
1080   // FIXME: emitDecoder() function can take a buffer directly rather than
1081   // a stream.
1082   raw_svector_ostream S(Decoder);
1083   unsigned I = 4;
1084   emitDecoder(S, I, Opc);
1085   S.flush();
1086 
1087   // Using the full decoder string as the key value here is a bit
1088   // heavyweight, but is effective. If the string comparisons become a
1089   // performance concern, we can implement a mangling of the predicate
1090   // data easilly enough with a map back to the actual string. That's
1091   // overkill for now, though.
1092 
1093   // Make sure the predicate is in the table.
1094   Decoders.insert(StringRef(Decoder));
1095   // Now figure out the index for when we write out the table.
1096   DecoderSet::const_iterator P = std::find(Decoders.begin(),
1097                                            Decoders.end(),
1098                                            Decoder.str());
1099   return (unsigned)(P - Decoders.begin());
1100 }
1101 
emitSinglePredicateMatch(raw_ostream & o,StringRef str,const std::string & PredicateNamespace)1102 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1103                                      const std::string &PredicateNamespace) {
1104   if (str[0] == '!')
1105     o << "!(Bits & " << PredicateNamespace << "::"
1106       << str.slice(1,str.size()) << ")";
1107   else
1108     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
1109 }
1110 
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1111 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1112                                        unsigned Opc) const {
1113   ListInit *Predicates =
1114     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1115   bool IsFirstEmission = true;
1116   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1117     Record *Pred = Predicates->getElementAsRecord(i);
1118     if (!Pred->getValue("AssemblerMatcherPredicate"))
1119       continue;
1120 
1121     std::string P = Pred->getValueAsString("AssemblerCondString");
1122 
1123     if (!P.length())
1124       continue;
1125 
1126     if (!IsFirstEmission)
1127       o << " && ";
1128 
1129     StringRef SR(P);
1130     std::pair<StringRef, StringRef> pairs = SR.split(',');
1131     while (pairs.second.size()) {
1132       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1133       o << " && ";
1134       pairs = pairs.second.split(',');
1135     }
1136     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1137     IsFirstEmission = false;
1138   }
1139   return Predicates->getSize() > 0;
1140 }
1141 
doesOpcodeNeedPredicate(unsigned Opc) const1142 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1143   ListInit *Predicates =
1144     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1145   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1146     Record *Pred = Predicates->getElementAsRecord(i);
1147     if (!Pred->getValue("AssemblerMatcherPredicate"))
1148       continue;
1149 
1150     std::string P = Pred->getValueAsString("AssemblerCondString");
1151 
1152     if (!P.length())
1153       continue;
1154 
1155     return true;
1156   }
1157   return false;
1158 }
1159 
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1160 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1161                                           StringRef Predicate) const {
1162   // Using the full predicate string as the key value here is a bit
1163   // heavyweight, but is effective. If the string comparisons become a
1164   // performance concern, we can implement a mangling of the predicate
1165   // data easilly enough with a map back to the actual string. That's
1166   // overkill for now, though.
1167 
1168   // Make sure the predicate is in the table.
1169   TableInfo.Predicates.insert(Predicate.str());
1170   // Now figure out the index for when we write out the table.
1171   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
1172                                              TableInfo.Predicates.end(),
1173                                              Predicate.str());
1174   return (unsigned)(P - TableInfo.Predicates.begin());
1175 }
1176 
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1177 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1178                                             unsigned Opc) const {
1179   if (!doesOpcodeNeedPredicate(Opc))
1180     return;
1181 
1182   // Build up the predicate string.
1183   SmallString<256> Predicate;
1184   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1185   // than a stream.
1186   raw_svector_ostream PS(Predicate);
1187   unsigned I = 0;
1188   emitPredicateMatch(PS, I, Opc);
1189 
1190   // Figure out the index into the predicate table for the predicate just
1191   // computed.
1192   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1193   SmallString<16> PBytes;
1194   raw_svector_ostream S(PBytes);
1195   encodeULEB128(PIdx, S);
1196   S.flush();
1197 
1198   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1199   // Predicate index
1200   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1201     TableInfo.Table.push_back(PBytes[i]);
1202   // Push location for NumToSkip backpatching.
1203   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1204   TableInfo.Table.push_back(0);
1205   TableInfo.Table.push_back(0);
1206 }
1207 
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1208 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1209                                            unsigned Opc) const {
1210   BitsInit *SFBits =
1211     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
1212   if (!SFBits) return;
1213   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
1214 
1215   APInt PositiveMask(BitWidth, 0ULL);
1216   APInt NegativeMask(BitWidth, 0ULL);
1217   for (unsigned i = 0; i < BitWidth; ++i) {
1218     bit_value_t B = bitFromBits(*SFBits, i);
1219     bit_value_t IB = bitFromBits(*InstBits, i);
1220 
1221     if (B != BIT_TRUE) continue;
1222 
1223     switch (IB) {
1224     case BIT_FALSE:
1225       // The bit is meant to be false, so emit a check to see if it is true.
1226       PositiveMask.setBit(i);
1227       break;
1228     case BIT_TRUE:
1229       // The bit is meant to be true, so emit a check to see if it is false.
1230       NegativeMask.setBit(i);
1231       break;
1232     default:
1233       // The bit is not set; this must be an error!
1234       StringRef Name = AllInstructions[Opc]->TheDef->getName();
1235       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
1236              << " is set but Inst{" << i << "} is unset!\n"
1237              << "  - You can only mark a bit as SoftFail if it is fully defined"
1238              << " (1/0 - not '?') in Inst\n";
1239       return;
1240     }
1241   }
1242 
1243   bool NeedPositiveMask = PositiveMask.getBoolValue();
1244   bool NeedNegativeMask = NegativeMask.getBoolValue();
1245 
1246   if (!NeedPositiveMask && !NeedNegativeMask)
1247     return;
1248 
1249   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1250 
1251   SmallString<16> MaskBytes;
1252   raw_svector_ostream S(MaskBytes);
1253   if (NeedPositiveMask) {
1254     encodeULEB128(PositiveMask.getZExtValue(), S);
1255     S.flush();
1256     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1257       TableInfo.Table.push_back(MaskBytes[i]);
1258   } else
1259     TableInfo.Table.push_back(0);
1260   if (NeedNegativeMask) {
1261     MaskBytes.clear();
1262     S.resync();
1263     encodeULEB128(NegativeMask.getZExtValue(), S);
1264     S.flush();
1265     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1266       TableInfo.Table.push_back(MaskBytes[i]);
1267   } else
1268     TableInfo.Table.push_back(0);
1269 }
1270 
1271 // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1272 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1273                                             unsigned Opc) const {
1274   std::vector<unsigned> StartBits;
1275   std::vector<unsigned> EndBits;
1276   std::vector<uint64_t> FieldVals;
1277   insn_t Insn;
1278   insnWithID(Insn, Opc);
1279 
1280   // Look for islands of undecoded bits of the singleton.
1281   getIslands(StartBits, EndBits, FieldVals, Insn);
1282 
1283   unsigned Size = StartBits.size();
1284 
1285   // Emit the predicate table entry if one is needed.
1286   emitPredicateTableEntry(TableInfo, Opc);
1287 
1288   // Check any additional encoding fields needed.
1289   for (unsigned I = Size; I != 0; --I) {
1290     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1291     TableInfo.Table.push_back(MCD::OPC_CheckField);
1292     TableInfo.Table.push_back(StartBits[I-1]);
1293     TableInfo.Table.push_back(NumBits);
1294     uint8_t Buffer[8], *p;
1295     encodeULEB128(FieldVals[I-1], Buffer);
1296     for (p = Buffer; *p >= 128 ; ++p)
1297       TableInfo.Table.push_back(*p);
1298     TableInfo.Table.push_back(*p);
1299     // Push location for NumToSkip backpatching.
1300     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1301     // The fixup is always 16-bits, so go ahead and allocate the space
1302     // in the table so all our relative position calculations work OK even
1303     // before we fully resolve the real value here.
1304     TableInfo.Table.push_back(0);
1305     TableInfo.Table.push_back(0);
1306   }
1307 
1308   // Check for soft failure of the match.
1309   emitSoftFailTableEntry(TableInfo, Opc);
1310 
1311   TableInfo.Table.push_back(MCD::OPC_Decode);
1312   uint8_t Buffer[8], *p;
1313   encodeULEB128(Opc, Buffer);
1314   for (p = Buffer; *p >= 128 ; ++p)
1315     TableInfo.Table.push_back(*p);
1316   TableInfo.Table.push_back(*p);
1317 
1318   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
1319   SmallString<16> Bytes;
1320   raw_svector_ostream S(Bytes);
1321   encodeULEB128(DIdx, S);
1322   S.flush();
1323 
1324   // Decoder index
1325   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1326     TableInfo.Table.push_back(Bytes[i]);
1327 }
1328 
1329 // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1330 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1331                                             const Filter &Best) const {
1332   unsigned Opc = Best.getSingletonOpc();
1333 
1334   // complex singletons need predicate checks from the first singleton
1335   // to refer forward to the variable filterchooser that follows.
1336   TableInfo.FixupStack.push_back(FixupList());
1337 
1338   emitSingletonTableEntry(TableInfo, Opc);
1339 
1340   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1341                      TableInfo.Table.size());
1342   TableInfo.FixupStack.pop_back();
1343 
1344   Best.getVariableFC().emitTableEntries(TableInfo);
1345 }
1346 
1347 
1348 // Assign a single filter and run with it.  Top level API client can initialize
1349 // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1350 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1351                                     bool mixed) {
1352   Filters.clear();
1353   Filters.push_back(Filter(*this, startBit, numBit, true));
1354   BestIndex = 0; // Sole Filter instance to choose from.
1355   bestFilter().recurse();
1356 }
1357 
1358 // reportRegion is a helper function for filterProcessor to mark a region as
1359 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1360 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1361                                  unsigned BitIndex, bool AllowMixed) {
1362   if (RA == ATTR_MIXED && AllowMixed)
1363     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1364   else if (RA == ATTR_ALL_SET && !AllowMixed)
1365     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1366 }
1367 
1368 // FilterProcessor scans the well-known encoding bits of the instructions and
1369 // builds up a list of candidate filters.  It chooses the best filter and
1370 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1371 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1372   Filters.clear();
1373   BestIndex = -1;
1374   unsigned numInstructions = Opcodes.size();
1375 
1376   assert(numInstructions && "Filter created with no instructions");
1377 
1378   // No further filtering is necessary.
1379   if (numInstructions == 1)
1380     return true;
1381 
1382   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1383   // instructions is 3.
1384   if (AllowMixed && !Greedy) {
1385     assert(numInstructions == 3);
1386 
1387     for (unsigned i = 0; i < Opcodes.size(); ++i) {
1388       std::vector<unsigned> StartBits;
1389       std::vector<unsigned> EndBits;
1390       std::vector<uint64_t> FieldVals;
1391       insn_t Insn;
1392 
1393       insnWithID(Insn, Opcodes[i]);
1394 
1395       // Look for islands of undecoded bits of any instruction.
1396       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1397         // Found an instruction with island(s).  Now just assign a filter.
1398         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1399         return true;
1400       }
1401     }
1402   }
1403 
1404   unsigned BitIndex;
1405 
1406   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1407   // The automaton consumes the corresponding bit from each
1408   // instruction.
1409   //
1410   //   Input symbols: 0, 1, and _ (unset).
1411   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1412   //   Initial state: NONE.
1413   //
1414   // (NONE) ------- [01] -> (ALL_SET)
1415   // (NONE) ------- _ ----> (ALL_UNSET)
1416   // (ALL_SET) ---- [01] -> (ALL_SET)
1417   // (ALL_SET) ---- _ ----> (MIXED)
1418   // (ALL_UNSET) -- [01] -> (MIXED)
1419   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1420   // (MIXED) ------ . ----> (MIXED)
1421   // (FILTERED)---- . ----> (FILTERED)
1422 
1423   std::vector<bitAttr_t> bitAttrs;
1424 
1425   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1426   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1427   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1428     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1429         FilterBitValues[BitIndex] == BIT_FALSE)
1430       bitAttrs.push_back(ATTR_FILTERED);
1431     else
1432       bitAttrs.push_back(ATTR_NONE);
1433 
1434   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1435     insn_t insn;
1436 
1437     insnWithID(insn, Opcodes[InsnIndex]);
1438 
1439     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1440       switch (bitAttrs[BitIndex]) {
1441       case ATTR_NONE:
1442         if (insn[BitIndex] == BIT_UNSET)
1443           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1444         else
1445           bitAttrs[BitIndex] = ATTR_ALL_SET;
1446         break;
1447       case ATTR_ALL_SET:
1448         if (insn[BitIndex] == BIT_UNSET)
1449           bitAttrs[BitIndex] = ATTR_MIXED;
1450         break;
1451       case ATTR_ALL_UNSET:
1452         if (insn[BitIndex] != BIT_UNSET)
1453           bitAttrs[BitIndex] = ATTR_MIXED;
1454         break;
1455       case ATTR_MIXED:
1456       case ATTR_FILTERED:
1457         break;
1458       }
1459     }
1460   }
1461 
1462   // The regionAttr automaton consumes the bitAttrs automatons' state,
1463   // lowest-to-highest.
1464   //
1465   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1466   //   States:        NONE, ALL_SET, MIXED
1467   //   Initial state: NONE
1468   //
1469   // (NONE) ----- F --> (NONE)
1470   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1471   // (NONE) ----- U --> (NONE)
1472   // (NONE) ----- M --> (MIXED)       ; and set region start
1473   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1474   // (ALL_SET) -- S --> (ALL_SET)
1475   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1476   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1477   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1478   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1479   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1480   // (MIXED) ---- M --> (MIXED)
1481 
1482   bitAttr_t RA = ATTR_NONE;
1483   unsigned StartBit = 0;
1484 
1485   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1486     bitAttr_t bitAttr = bitAttrs[BitIndex];
1487 
1488     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1489 
1490     switch (RA) {
1491     case ATTR_NONE:
1492       switch (bitAttr) {
1493       case ATTR_FILTERED:
1494         break;
1495       case ATTR_ALL_SET:
1496         StartBit = BitIndex;
1497         RA = ATTR_ALL_SET;
1498         break;
1499       case ATTR_ALL_UNSET:
1500         break;
1501       case ATTR_MIXED:
1502         StartBit = BitIndex;
1503         RA = ATTR_MIXED;
1504         break;
1505       default:
1506         llvm_unreachable("Unexpected bitAttr!");
1507       }
1508       break;
1509     case ATTR_ALL_SET:
1510       switch (bitAttr) {
1511       case ATTR_FILTERED:
1512         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1513         RA = ATTR_NONE;
1514         break;
1515       case ATTR_ALL_SET:
1516         break;
1517       case ATTR_ALL_UNSET:
1518         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1519         RA = ATTR_NONE;
1520         break;
1521       case ATTR_MIXED:
1522         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1523         StartBit = BitIndex;
1524         RA = ATTR_MIXED;
1525         break;
1526       default:
1527         llvm_unreachable("Unexpected bitAttr!");
1528       }
1529       break;
1530     case ATTR_MIXED:
1531       switch (bitAttr) {
1532       case ATTR_FILTERED:
1533         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1534         StartBit = BitIndex;
1535         RA = ATTR_NONE;
1536         break;
1537       case ATTR_ALL_SET:
1538         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1539         StartBit = BitIndex;
1540         RA = ATTR_ALL_SET;
1541         break;
1542       case ATTR_ALL_UNSET:
1543         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1544         RA = ATTR_NONE;
1545         break;
1546       case ATTR_MIXED:
1547         break;
1548       default:
1549         llvm_unreachable("Unexpected bitAttr!");
1550       }
1551       break;
1552     case ATTR_ALL_UNSET:
1553       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1554     case ATTR_FILTERED:
1555       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1556     }
1557   }
1558 
1559   // At the end, if we're still in ALL_SET or MIXED states, report a region
1560   switch (RA) {
1561   case ATTR_NONE:
1562     break;
1563   case ATTR_FILTERED:
1564     break;
1565   case ATTR_ALL_SET:
1566     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1567     break;
1568   case ATTR_ALL_UNSET:
1569     break;
1570   case ATTR_MIXED:
1571     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1572     break;
1573   }
1574 
1575   // We have finished with the filter processings.  Now it's time to choose
1576   // the best performing filter.
1577   BestIndex = 0;
1578   bool AllUseless = true;
1579   unsigned BestScore = 0;
1580 
1581   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1582     unsigned Usefulness = Filters[i].usefulness();
1583 
1584     if (Usefulness)
1585       AllUseless = false;
1586 
1587     if (Usefulness > BestScore) {
1588       BestIndex = i;
1589       BestScore = Usefulness;
1590     }
1591   }
1592 
1593   if (!AllUseless)
1594     bestFilter().recurse();
1595 
1596   return !AllUseless;
1597 } // end of FilterChooser::filterProcessor(bool)
1598 
1599 // Decides on the best configuration of filter(s) to use in order to decode
1600 // the instructions.  A conflict of instructions may occur, in which case we
1601 // dump the conflict set to the standard error.
doFilter()1602 void FilterChooser::doFilter() {
1603   unsigned Num = Opcodes.size();
1604   assert(Num && "FilterChooser created with no instructions");
1605 
1606   // Try regions of consecutive known bit values first.
1607   if (filterProcessor(false))
1608     return;
1609 
1610   // Then regions of mixed bits (both known and unitialized bit values allowed).
1611   if (filterProcessor(true))
1612     return;
1613 
1614   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1615   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1616   // well-known encoding pattern.  In such case, we backtrack and scan for the
1617   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1618   if (Num == 3 && filterProcessor(true, false))
1619     return;
1620 
1621   // If we come to here, the instruction decoding has failed.
1622   // Set the BestIndex to -1 to indicate so.
1623   BestIndex = -1;
1624 }
1625 
1626 // emitTableEntries - Emit state machine entries to decode our share of
1627 // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1628 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1629   if (Opcodes.size() == 1) {
1630     // There is only one instruction in the set, which is great!
1631     // Call emitSingletonDecoder() to see whether there are any remaining
1632     // encodings bits.
1633     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1634     return;
1635   }
1636 
1637   // Choose the best filter to do the decodings!
1638   if (BestIndex != -1) {
1639     const Filter &Best = Filters[BestIndex];
1640     if (Best.getNumFiltered() == 1)
1641       emitSingletonTableEntry(TableInfo, Best);
1642     else
1643       Best.emitTableEntry(TableInfo);
1644     return;
1645   }
1646 
1647   // We don't know how to decode these instructions!  Dump the
1648   // conflict set and bail.
1649 
1650   // Print out useful conflict information for postmortem analysis.
1651   errs() << "Decoding Conflict:\n";
1652 
1653   dumpStack(errs(), "\t\t");
1654 
1655   for (unsigned i = 0; i < Opcodes.size(); ++i) {
1656     const std::string &Name = nameWithID(Opcodes[i]);
1657 
1658     errs() << '\t' << Name << " ";
1659     dumpBits(errs(),
1660              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1661     errs() << '\n';
1662   }
1663 }
1664 
populateInstruction(CodeGenTarget & Target,const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands)1665 static bool populateInstruction(CodeGenTarget &Target,
1666                        const CodeGenInstruction &CGI, unsigned Opc,
1667                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
1668   const Record &Def = *CGI.TheDef;
1669   // If all the bit positions are not specified; do not decode this instruction.
1670   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1671   // of the instruction must be fully specified.
1672 
1673   BitsInit &Bits = getBitsField(Def, "Inst");
1674   if (Bits.allInComplete()) return false;
1675 
1676   std::vector<OperandInfo> InsnOperands;
1677 
1678   // If the instruction has specified a custom decoding hook, use that instead
1679   // of trying to auto-generate the decoder.
1680   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1681   if (InstDecoder != "") {
1682     InsnOperands.push_back(OperandInfo(InstDecoder));
1683     Operands[Opc] = InsnOperands;
1684     return true;
1685   }
1686 
1687   // Generate a description of the operand of the instruction that we know
1688   // how to decode automatically.
1689   // FIXME: We'll need to have a way to manually override this as needed.
1690 
1691   // Gather the outputs/inputs of the instruction, so we can find their
1692   // positions in the encoding.  This assumes for now that they appear in the
1693   // MCInst in the order that they're listed.
1694   std::vector<std::pair<Init*, std::string> > InOutOperands;
1695   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1696   DagInit *In  = Def.getValueAsDag("InOperandList");
1697   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1698     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1699   for (unsigned i = 0; i < In->getNumArgs(); ++i)
1700     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1701 
1702   // Search for tied operands, so that we can correctly instantiate
1703   // operands that are not explicitly represented in the encoding.
1704   std::map<std::string, std::string> TiedNames;
1705   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1706     int tiedTo = CGI.Operands[i].getTiedRegister();
1707     if (tiedTo != -1) {
1708       std::pair<unsigned, unsigned> SO =
1709         CGI.Operands.getSubOperandNumber(tiedTo);
1710       TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
1711       TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
1712     }
1713   }
1714 
1715   std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
1716   std::set<std::string> NumberedInsnOperandsNoTie;
1717   if (Target.getInstructionSet()->
1718         getValueAsBit("decodePositionallyEncodedOperands")) {
1719     const std::vector<RecordVal> &Vals = Def.getValues();
1720     unsigned NumberedOp = 0;
1721 
1722     std::set<unsigned> NamedOpIndices;
1723     if (Target.getInstructionSet()->
1724          getValueAsBit("noNamedPositionallyEncodedOperands"))
1725       // Collect the set of operand indices that might correspond to named
1726       // operand, and skip these when assigning operands based on position.
1727       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1728         unsigned OpIdx;
1729         if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1730           continue;
1731 
1732         NamedOpIndices.insert(OpIdx);
1733       }
1734 
1735     for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1736       // Ignore fixed fields in the record, we're looking for values like:
1737       //    bits<5> RST = { ?, ?, ?, ?, ? };
1738       if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
1739         continue;
1740 
1741       // Determine if Vals[i] actually contributes to the Inst encoding.
1742       unsigned bi = 0;
1743       for (; bi < Bits.getNumBits(); ++bi) {
1744         VarInit *Var = nullptr;
1745         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1746         if (BI)
1747           Var = dyn_cast<VarInit>(BI->getBitVar());
1748         else
1749           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1750 
1751         if (Var && Var->getName() == Vals[i].getName())
1752           break;
1753       }
1754 
1755       if (bi == Bits.getNumBits())
1756         continue;
1757 
1758       // Skip variables that correspond to explicitly-named operands.
1759       unsigned OpIdx;
1760       if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1761         continue;
1762 
1763       // Get the bit range for this operand:
1764       unsigned bitStart = bi++, bitWidth = 1;
1765       for (; bi < Bits.getNumBits(); ++bi) {
1766         VarInit *Var = nullptr;
1767         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1768         if (BI)
1769           Var = dyn_cast<VarInit>(BI->getBitVar());
1770         else
1771           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1772 
1773         if (!Var)
1774           break;
1775 
1776         if (Var->getName() != Vals[i].getName())
1777           break;
1778 
1779         ++bitWidth;
1780       }
1781 
1782       unsigned NumberOps = CGI.Operands.size();
1783       while (NumberedOp < NumberOps &&
1784              (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1785               (!NamedOpIndices.empty() && NamedOpIndices.count(
1786                 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1787         ++NumberedOp;
1788 
1789       OpIdx = NumberedOp++;
1790 
1791       // OpIdx now holds the ordered operand number of Vals[i].
1792       std::pair<unsigned, unsigned> SO =
1793         CGI.Operands.getSubOperandNumber(OpIdx);
1794       const std::string &Name = CGI.Operands[SO.first].Name;
1795 
1796       DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
1797                       Name << "(" << SO.first << ", " << SO.second << ") => " <<
1798                       Vals[i].getName() << "\n");
1799 
1800       std::string Decoder = "";
1801       Record *TypeRecord = CGI.Operands[SO.first].Rec;
1802 
1803       RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1804       StringInit *String = DecoderString ?
1805         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1806       if (String && String->getValue() != "")
1807         Decoder = String->getValue();
1808 
1809       if (Decoder == "" &&
1810           CGI.Operands[SO.first].MIOperandInfo &&
1811           CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1812         Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1813                       getArg(SO.second);
1814         if (TypedInit *TI = cast<TypedInit>(Arg)) {
1815           RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1816           TypeRecord = Type->getRecord();
1817         }
1818       }
1819 
1820       bool isReg = false;
1821       if (TypeRecord->isSubClassOf("RegisterOperand"))
1822         TypeRecord = TypeRecord->getValueAsDef("RegClass");
1823       if (TypeRecord->isSubClassOf("RegisterClass")) {
1824         Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1825         isReg = true;
1826       } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1827         Decoder = "DecodePointerLikeRegClass" +
1828                   utostr(TypeRecord->getValueAsInt("RegClassKind"));
1829         isReg = true;
1830       }
1831 
1832       DecoderString = TypeRecord->getValue("DecoderMethod");
1833       String = DecoderString ?
1834         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1835       if (!isReg && String && String->getValue() != "")
1836         Decoder = String->getValue();
1837 
1838       OperandInfo OpInfo(Decoder);
1839       OpInfo.addField(bitStart, bitWidth, 0);
1840 
1841       NumberedInsnOperands[Name].push_back(OpInfo);
1842 
1843       // FIXME: For complex operands with custom decoders we can't handle tied
1844       // sub-operands automatically. Skip those here and assume that this is
1845       // fixed up elsewhere.
1846       if (CGI.Operands[SO.first].MIOperandInfo &&
1847           CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
1848           String && String->getValue() != "")
1849         NumberedInsnOperandsNoTie.insert(Name);
1850     }
1851   }
1852 
1853   // For each operand, see if we can figure out where it is encoded.
1854   for (const auto &Op : InOutOperands) {
1855     if (!NumberedInsnOperands[Op.second].empty()) {
1856       InsnOperands.insert(InsnOperands.end(),
1857                           NumberedInsnOperands[Op.second].begin(),
1858                           NumberedInsnOperands[Op.second].end());
1859       continue;
1860     }
1861     if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
1862       if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
1863         // Figure out to which (sub)operand we're tied.
1864         unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
1865         int tiedTo = CGI.Operands[i].getTiedRegister();
1866         if (tiedTo == -1) {
1867           i = CGI.Operands.getOperandNamed(Op.second);
1868           tiedTo = CGI.Operands[i].getTiedRegister();
1869         }
1870 
1871         if (tiedTo != -1) {
1872           std::pair<unsigned, unsigned> SO =
1873             CGI.Operands.getSubOperandNumber(tiedTo);
1874 
1875           InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
1876                                    [SO.second]);
1877         }
1878       }
1879       continue;
1880     }
1881 
1882     std::string Decoder = "";
1883 
1884     // At this point, we can locate the field, but we need to know how to
1885     // interpret it.  As a first step, require the target to provide callbacks
1886     // for decoding register classes.
1887     // FIXME: This need to be extended to handle instructions with custom
1888     // decoder methods, and operands with (simple) MIOperandInfo's.
1889     TypedInit *TI = cast<TypedInit>(Op.first);
1890     RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1891     Record *TypeRecord = Type->getRecord();
1892     bool isReg = false;
1893     if (TypeRecord->isSubClassOf("RegisterOperand"))
1894       TypeRecord = TypeRecord->getValueAsDef("RegClass");
1895     if (TypeRecord->isSubClassOf("RegisterClass")) {
1896       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1897       isReg = true;
1898     } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1899       Decoder = "DecodePointerLikeRegClass" +
1900                 utostr(TypeRecord->getValueAsInt("RegClassKind"));
1901       isReg = true;
1902     }
1903 
1904     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1905     StringInit *String = DecoderString ?
1906       dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1907     if (!isReg && String && String->getValue() != "")
1908       Decoder = String->getValue();
1909 
1910     OperandInfo OpInfo(Decoder);
1911     unsigned Base = ~0U;
1912     unsigned Width = 0;
1913     unsigned Offset = 0;
1914 
1915     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1916       VarInit *Var = nullptr;
1917       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1918       if (BI)
1919         Var = dyn_cast<VarInit>(BI->getBitVar());
1920       else
1921         Var = dyn_cast<VarInit>(Bits.getBit(bi));
1922 
1923       if (!Var) {
1924         if (Base != ~0U) {
1925           OpInfo.addField(Base, Width, Offset);
1926           Base = ~0U;
1927           Width = 0;
1928           Offset = 0;
1929         }
1930         continue;
1931       }
1932 
1933       if (Var->getName() != Op.second &&
1934           Var->getName() != TiedNames[Op.second]) {
1935         if (Base != ~0U) {
1936           OpInfo.addField(Base, Width, Offset);
1937           Base = ~0U;
1938           Width = 0;
1939           Offset = 0;
1940         }
1941         continue;
1942       }
1943 
1944       if (Base == ~0U) {
1945         Base = bi;
1946         Width = 1;
1947         Offset = BI ? BI->getBitNum() : 0;
1948       } else if (BI && BI->getBitNum() != Offset + Width) {
1949         OpInfo.addField(Base, Width, Offset);
1950         Base = bi;
1951         Width = 1;
1952         Offset = BI->getBitNum();
1953       } else {
1954         ++Width;
1955       }
1956     }
1957 
1958     if (Base != ~0U)
1959       OpInfo.addField(Base, Width, Offset);
1960 
1961     if (OpInfo.numFields() > 0)
1962       InsnOperands.push_back(OpInfo);
1963   }
1964 
1965   Operands[Opc] = InsnOperands;
1966 
1967 
1968 #if 0
1969   DEBUG({
1970       // Dumps the instruction encoding bits.
1971       dumpBits(errs(), Bits);
1972 
1973       errs() << '\n';
1974 
1975       // Dumps the list of operand info.
1976       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1977         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1978         const std::string &OperandName = Info.Name;
1979         const Record &OperandDef = *Info.Rec;
1980 
1981         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1982       }
1983     });
1984 #endif
1985 
1986   return true;
1987 }
1988 
1989 // emitFieldFromInstruction - Emit the templated helper function
1990 // fieldFromInstruction().
emitFieldFromInstruction(formatted_raw_ostream & OS)1991 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
1992   OS << "// Helper function for extracting fields from encoded instructions.\n"
1993      << "template<typename InsnType>\n"
1994    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
1995      << "                                     unsigned numBits) {\n"
1996      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
1997      << "           \"Instruction field out of bounds!\");\n"
1998      << "    InsnType fieldMask;\n"
1999      << "    if (numBits == sizeof(InsnType)*8)\n"
2000      << "      fieldMask = (InsnType)(-1LL);\n"
2001      << "    else\n"
2002      << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2003      << "    return (insn & fieldMask) >> startBit;\n"
2004      << "}\n\n";
2005 }
2006 
2007 // emitDecodeInstruction - Emit the templated helper function
2008 // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS)2009 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2010   OS << "template<typename InsnType>\n"
2011      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
2012      << "                                      InsnType insn, uint64_t Address,\n"
2013      << "                                      const void *DisAsm,\n"
2014      << "                                      const MCSubtargetInfo &STI) {\n"
2015      << "  uint64_t Bits = STI.getFeatureBits();\n"
2016      << "\n"
2017      << "  const uint8_t *Ptr = DecodeTable;\n"
2018      << "  uint32_t CurFieldValue = 0;\n"
2019      << "  DecodeStatus S = MCDisassembler::Success;\n"
2020      << "  for (;;) {\n"
2021      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2022      << "    switch (*Ptr) {\n"
2023      << "    default:\n"
2024      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2025      << "      return MCDisassembler::Fail;\n"
2026      << "    case MCD::OPC_ExtractField: {\n"
2027      << "      unsigned Start = *++Ptr;\n"
2028      << "      unsigned Len = *++Ptr;\n"
2029      << "      ++Ptr;\n"
2030      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2031      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
2032      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2033      << "      break;\n"
2034      << "    }\n"
2035      << "    case MCD::OPC_FilterValue: {\n"
2036      << "      // Decode the field value.\n"
2037      << "      unsigned Len;\n"
2038      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2039      << "      Ptr += Len;\n"
2040      << "      // NumToSkip is a plain 16-bit integer.\n"
2041      << "      unsigned NumToSkip = *Ptr++;\n"
2042      << "      NumToSkip |= (*Ptr++) << 8;\n"
2043      << "\n"
2044      << "      // Perform the filter operation.\n"
2045      << "      if (Val != CurFieldValue)\n"
2046      << "        Ptr += NumToSkip;\n"
2047      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
2048      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
2049      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
2050      << "\n"
2051      << "      break;\n"
2052      << "    }\n"
2053      << "    case MCD::OPC_CheckField: {\n"
2054      << "      unsigned Start = *++Ptr;\n"
2055      << "      unsigned Len = *++Ptr;\n"
2056      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2057      << "      // Decode the field value.\n"
2058      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2059      << "      Ptr += Len;\n"
2060      << "      // NumToSkip is a plain 16-bit integer.\n"
2061      << "      unsigned NumToSkip = *Ptr++;\n"
2062      << "      NumToSkip |= (*Ptr++) << 8;\n"
2063      << "\n"
2064      << "      // If the actual and expected values don't match, skip.\n"
2065      << "      if (ExpectedValue != FieldValue)\n"
2066      << "        Ptr += NumToSkip;\n"
2067      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
2068      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
2069      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
2070      << "                   << ExpectedValue << \": \"\n"
2071      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2072      << "      break;\n"
2073      << "    }\n"
2074      << "    case MCD::OPC_CheckPredicate: {\n"
2075      << "      unsigned Len;\n"
2076      << "      // Decode the Predicate Index value.\n"
2077      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2078      << "      Ptr += Len;\n"
2079      << "      // NumToSkip is a plain 16-bit integer.\n"
2080      << "      unsigned NumToSkip = *Ptr++;\n"
2081      << "      NumToSkip |= (*Ptr++) << 8;\n"
2082      << "      // Check the predicate.\n"
2083      << "      bool Pred;\n"
2084      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2085      << "        Ptr += NumToSkip;\n"
2086      << "      (void)Pred;\n"
2087      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
2088      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2089      << "\n"
2090      << "      break;\n"
2091      << "    }\n"
2092      << "    case MCD::OPC_Decode: {\n"
2093      << "      unsigned Len;\n"
2094      << "      // Decode the Opcode value.\n"
2095      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2096      << "      Ptr += Len;\n"
2097      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2098      << "      Ptr += Len;\n"
2099      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2100      << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
2101      << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
2102      << "\n"
2103      << "      MI.setOpcode(Opc);\n"
2104      << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
2105      << "    }\n"
2106      << "    case MCD::OPC_SoftFail: {\n"
2107      << "      // Decode the mask values.\n"
2108      << "      unsigned Len;\n"
2109      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2110      << "      Ptr += Len;\n"
2111      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2112      << "      Ptr += Len;\n"
2113      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2114      << "      if (Fail)\n"
2115      << "        S = MCDisassembler::SoftFail;\n"
2116      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
2117      << "      break;\n"
2118      << "    }\n"
2119      << "    case MCD::OPC_Fail: {\n"
2120      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2121      << "      return MCDisassembler::Fail;\n"
2122      << "    }\n"
2123      << "    }\n"
2124      << "  }\n"
2125      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
2126      << "}\n\n";
2127 }
2128 
2129 // Emits disassembler code for instruction decoding.
run(raw_ostream & o)2130 void FixedLenDecoderEmitter::run(raw_ostream &o) {
2131   formatted_raw_ostream OS(o);
2132   OS << "#include \"llvm/MC/MCInst.h\"\n";
2133   OS << "#include \"llvm/Support/Debug.h\"\n";
2134   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2135   OS << "#include \"llvm/Support/LEB128.h\"\n";
2136   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2137   OS << "#include <assert.h>\n";
2138   OS << '\n';
2139   OS << "namespace llvm {\n\n";
2140 
2141   emitFieldFromInstruction(OS);
2142 
2143   Target.reverseBitsForLittleEndianEncoding();
2144 
2145   // Parameterize the decoders based on namespace and instruction width.
2146   NumberedInstructions = &Target.getInstructionsByEnumValue();
2147   std::map<std::pair<std::string, unsigned>,
2148            std::vector<unsigned> > OpcMap;
2149   std::map<unsigned, std::vector<OperandInfo> > Operands;
2150 
2151   for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
2152     const CodeGenInstruction *Inst = NumberedInstructions->at(i);
2153     const Record *Def = Inst->TheDef;
2154     unsigned Size = Def->getValueAsInt("Size");
2155     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2156         Def->getValueAsBit("isPseudo") ||
2157         Def->getValueAsBit("isAsmParserOnly") ||
2158         Def->getValueAsBit("isCodeGenOnly"))
2159       continue;
2160 
2161     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
2162 
2163     if (Size) {
2164       if (populateInstruction(Target, *Inst, i, Operands)) {
2165         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
2166       }
2167     }
2168   }
2169 
2170   DecoderTableInfo TableInfo;
2171   for (const auto &Opc : OpcMap) {
2172     // Emit the decoder for this namespace+width combination.
2173     FilterChooser FC(*NumberedInstructions, Opc.second, Operands,
2174                      8*Opc.first.second, this);
2175 
2176     // The decode table is cleared for each top level decoder function. The
2177     // predicates and decoders themselves, however, are shared across all
2178     // decoders to give more opportunities for uniqueing.
2179     TableInfo.Table.clear();
2180     TableInfo.FixupStack.clear();
2181     TableInfo.Table.reserve(16384);
2182     TableInfo.FixupStack.push_back(FixupList());
2183     FC.emitTableEntries(TableInfo);
2184     // Any NumToSkip fixups in the top level scope can resolve to the
2185     // OPC_Fail at the end of the table.
2186     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2187     // Resolve any NumToSkip fixups in the current scope.
2188     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2189                        TableInfo.Table.size());
2190     TableInfo.FixupStack.clear();
2191 
2192     TableInfo.Table.push_back(MCD::OPC_Fail);
2193 
2194     // Print the table to the output stream.
2195     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2196     OS.flush();
2197   }
2198 
2199   // Emit the predicate function.
2200   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2201 
2202   // Emit the decoder function.
2203   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2204 
2205   // Emit the main entry point for the decoder, decodeInstruction().
2206   emitDecodeInstruction(OS);
2207 
2208   OS << "\n} // End llvm namespace\n";
2209 }
2210 
2211 namespace llvm {
2212 
EmitFixedLenDecoder(RecordKeeper & RK,raw_ostream & OS,std::string PredicateNamespace,std::string GPrefix,std::string GPostfix,std::string ROK,std::string RFail,std::string L)2213 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2214                          std::string PredicateNamespace,
2215                          std::string GPrefix,
2216                          std::string GPostfix,
2217                          std::string ROK,
2218                          std::string RFail,
2219                          std::string L) {
2220   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2221                          ROK, RFail, L).run(OS);
2222 }
2223 
2224 } // End llvm namespace
2225