1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 6 // Declares a Simulator for ARM instructions if we are not generating a native 7 // ARM binary. This Simulator allows us to run and debug ARM code generation on 8 // regular desktop machines. 9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, 10 // which will start execution in the Simulator or forwards to the real entry 11 // on a ARM HW platform. 12 13 #ifndef V8_ARM_SIMULATOR_ARM_H_ 14 #define V8_ARM_SIMULATOR_ARM_H_ 15 16 #include "src/allocation.h" 17 18 #if !defined(USE_SIMULATOR) 19 // Running without a simulator on a native arm platform. 20 21 namespace v8 { 22 namespace internal { 23 24 // When running without a simulator we call the entry directly. 25 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ 26 (entry(p0, p1, p2, p3, p4)) 27 28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*, 29 void*, int*, int, Address, int, Isolate*); 30 31 32 // Call the generated regexp code directly. The code at the entry address 33 // should act as a function matching the type arm_regexp_matcher. 34 // The fifth argument is a dummy that reserves the space used for 35 // the return address added by the ExitFrame in native calls. 36 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ 37 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \ 38 p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)) 39 40 // The stack limit beyond which we will throw stack overflow errors in 41 // generated code. Because generated code on arm uses the C stack, we 42 // just use the C stack limit. 43 class SimulatorStack : public v8::internal::AllStatic { 44 public: JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)45 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, 46 uintptr_t c_limit) { 47 USE(isolate); 48 return c_limit; 49 } 50 RegisterCTryCatch(uintptr_t try_catch_address)51 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { 52 return try_catch_address; 53 } 54 UnregisterCTryCatch()55 static inline void UnregisterCTryCatch() { } 56 }; 57 58 } } // namespace v8::internal 59 60 #else // !defined(USE_SIMULATOR) 61 // Running with a simulator. 62 63 #include "src/arm/constants-arm.h" 64 #include "src/assembler.h" 65 #include "src/hashmap.h" 66 67 namespace v8 { 68 namespace internal { 69 70 class CachePage { 71 public: 72 static const int LINE_VALID = 0; 73 static const int LINE_INVALID = 1; 74 75 static const int kPageShift = 12; 76 static const int kPageSize = 1 << kPageShift; 77 static const int kPageMask = kPageSize - 1; 78 static const int kLineShift = 2; // The cache line is only 4 bytes right now. 79 static const int kLineLength = 1 << kLineShift; 80 static const int kLineMask = kLineLength - 1; 81 CachePage()82 CachePage() { 83 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); 84 } 85 ValidityByte(int offset)86 char* ValidityByte(int offset) { 87 return &validity_map_[offset >> kLineShift]; 88 } 89 CachedData(int offset)90 char* CachedData(int offset) { 91 return &data_[offset]; 92 } 93 94 private: 95 char data_[kPageSize]; // The cached data. 96 static const int kValidityMapSize = kPageSize >> kLineShift; 97 char validity_map_[kValidityMapSize]; // One byte per line. 98 }; 99 100 101 class Simulator { 102 public: 103 friend class ArmDebugger; 104 enum Register { 105 no_reg = -1, 106 r0 = 0, r1, r2, r3, r4, r5, r6, r7, 107 r8, r9, r10, r11, r12, r13, r14, r15, 108 num_registers, 109 sp = 13, 110 lr = 14, 111 pc = 15, 112 s0 = 0, s1, s2, s3, s4, s5, s6, s7, 113 s8, s9, s10, s11, s12, s13, s14, s15, 114 s16, s17, s18, s19, s20, s21, s22, s23, 115 s24, s25, s26, s27, s28, s29, s30, s31, 116 num_s_registers = 32, 117 d0 = 0, d1, d2, d3, d4, d5, d6, d7, 118 d8, d9, d10, d11, d12, d13, d14, d15, 119 d16, d17, d18, d19, d20, d21, d22, d23, 120 d24, d25, d26, d27, d28, d29, d30, d31, 121 num_d_registers = 32, 122 q0 = 0, q1, q2, q3, q4, q5, q6, q7, 123 q8, q9, q10, q11, q12, q13, q14, q15, 124 num_q_registers = 16 125 }; 126 127 explicit Simulator(Isolate* isolate); 128 ~Simulator(); 129 130 // The currently executing Simulator instance. Potentially there can be one 131 // for each native thread. 132 static Simulator* current(v8::internal::Isolate* isolate); 133 134 // Accessors for register state. Reading the pc value adheres to the ARM 135 // architecture specification and is off by a 8 from the currently executing 136 // instruction. 137 void set_register(int reg, int32_t value); 138 int32_t get_register(int reg) const; 139 double get_double_from_register_pair(int reg); 140 void set_register_pair_from_double(int reg, double* value); 141 void set_dw_register(int dreg, const int* dbl); 142 143 // Support for VFP. 144 void get_d_register(int dreg, uint64_t* value); 145 void set_d_register(int dreg, const uint64_t* value); 146 void get_d_register(int dreg, uint32_t* value); 147 void set_d_register(int dreg, const uint32_t* value); 148 void get_q_register(int qreg, uint64_t* value); 149 void set_q_register(int qreg, const uint64_t* value); 150 void get_q_register(int qreg, uint32_t* value); 151 void set_q_register(int qreg, const uint32_t* value); 152 153 void set_s_register(int reg, unsigned int value); 154 unsigned int get_s_register(int reg) const; 155 set_d_register_from_double(int dreg,const double & dbl)156 void set_d_register_from_double(int dreg, const double& dbl) { 157 SetVFPRegister<double, 2>(dreg, dbl); 158 } 159 get_double_from_d_register(int dreg)160 double get_double_from_d_register(int dreg) { 161 return GetFromVFPRegister<double, 2>(dreg); 162 } 163 set_s_register_from_float(int sreg,const float flt)164 void set_s_register_from_float(int sreg, const float flt) { 165 SetVFPRegister<float, 1>(sreg, flt); 166 } 167 get_float_from_s_register(int sreg)168 float get_float_from_s_register(int sreg) { 169 return GetFromVFPRegister<float, 1>(sreg); 170 } 171 set_s_register_from_sinteger(int sreg,const int sint)172 void set_s_register_from_sinteger(int sreg, const int sint) { 173 SetVFPRegister<int, 1>(sreg, sint); 174 } 175 get_sinteger_from_s_register(int sreg)176 int get_sinteger_from_s_register(int sreg) { 177 return GetFromVFPRegister<int, 1>(sreg); 178 } 179 180 // Special case of set_register and get_register to access the raw PC value. 181 void set_pc(int32_t value); 182 int32_t get_pc() const; 183 get_sp()184 Address get_sp() { 185 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp))); 186 } 187 188 // Accessor to the internal simulator stack area. 189 uintptr_t StackLimit() const; 190 191 // Executes ARM instructions until the PC reaches end_sim_pc. 192 void Execute(); 193 194 // Call on program start. 195 static void Initialize(Isolate* isolate); 196 197 // V8 generally calls into generated JS code with 5 parameters and into 198 // generated RegExp code with 7 parameters. This is a convenience function, 199 // which sets up the simulator state and grabs the result on return. 200 int32_t Call(byte* entry, int argument_count, ...); 201 // Alternative: call a 2-argument double function. 202 void CallFP(byte* entry, double d0, double d1); 203 int32_t CallFPReturnsInt(byte* entry, double d0, double d1); 204 double CallFPReturnsDouble(byte* entry, double d0, double d1); 205 206 // Push an address onto the JS stack. 207 uintptr_t PushAddress(uintptr_t address); 208 209 // Pop an address from the JS stack. 210 uintptr_t PopAddress(); 211 212 // Debugger input. 213 void set_last_debugger_input(char* input); last_debugger_input()214 char* last_debugger_input() { return last_debugger_input_; } 215 216 // ICache checking. 217 static void FlushICache(v8::internal::HashMap* i_cache, void* start, 218 size_t size); 219 220 // Returns true if pc register contains one of the 'special_values' defined 221 // below (bad_lr, end_sim_pc). 222 bool has_bad_pc() const; 223 224 // EABI variant for double arguments in use. use_eabi_hardfloat()225 bool use_eabi_hardfloat() { 226 #if USE_EABI_HARDFLOAT 227 return true; 228 #else 229 return false; 230 #endif 231 } 232 233 private: 234 enum special_values { 235 // Known bad pc value to ensure that the simulator does not execute 236 // without being properly setup. 237 bad_lr = -1, 238 // A pc value used to signal the simulator to stop execution. Generally 239 // the lr is set to this value on transition from native C code to 240 // simulated execution, so that the simulator can "return" to the native 241 // C code. 242 end_sim_pc = -2 243 }; 244 245 // Unsupported instructions use Format to print an error and stop execution. 246 void Format(Instruction* instr, const char* format); 247 248 // Checks if the current instruction should be executed based on its 249 // condition bits. 250 inline bool ConditionallyExecute(Instruction* instr); 251 252 // Helper functions to set the conditional flags in the architecture state. 253 void SetNZFlags(int32_t val); 254 void SetCFlag(bool val); 255 void SetVFlag(bool val); 256 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); 257 bool BorrowFrom(int32_t left, int32_t right); 258 bool OverflowFrom(int32_t alu_out, 259 int32_t left, 260 int32_t right, 261 bool addition); 262 GetCarry()263 inline int GetCarry() { 264 return c_flag_ ? 1 : 0; 265 } 266 267 // Support for VFP. 268 void Compute_FPSCR_Flags(double val1, double val2); 269 void Copy_FPSCR_to_APSR(); 270 inline double canonicalizeNaN(double value); 271 272 // Helper functions to decode common "addressing" modes 273 int32_t GetShiftRm(Instruction* instr, bool* carry_out); 274 int32_t GetImm(Instruction* instr, bool* carry_out); 275 int32_t ProcessPU(Instruction* instr, 276 int num_regs, 277 int operand_size, 278 intptr_t* start_address, 279 intptr_t* end_address); 280 void HandleRList(Instruction* instr, bool load); 281 void HandleVList(Instruction* inst); 282 void SoftwareInterrupt(Instruction* instr); 283 284 // Stop helper functions. 285 inline bool isStopInstruction(Instruction* instr); 286 inline bool isWatchedStop(uint32_t bkpt_code); 287 inline bool isEnabledStop(uint32_t bkpt_code); 288 inline void EnableStop(uint32_t bkpt_code); 289 inline void DisableStop(uint32_t bkpt_code); 290 inline void IncreaseStopCounter(uint32_t bkpt_code); 291 void PrintStopInfo(uint32_t code); 292 293 // Read and write memory. 294 inline uint8_t ReadBU(int32_t addr); 295 inline int8_t ReadB(int32_t addr); 296 inline void WriteB(int32_t addr, uint8_t value); 297 inline void WriteB(int32_t addr, int8_t value); 298 299 inline uint16_t ReadHU(int32_t addr, Instruction* instr); 300 inline int16_t ReadH(int32_t addr, Instruction* instr); 301 // Note: Overloaded on the sign of the value. 302 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr); 303 inline void WriteH(int32_t addr, int16_t value, Instruction* instr); 304 305 inline int ReadW(int32_t addr, Instruction* instr); 306 inline void WriteW(int32_t addr, int value, Instruction* instr); 307 308 int32_t* ReadDW(int32_t addr); 309 void WriteDW(int32_t addr, int32_t value1, int32_t value2); 310 311 // Executing is handled based on the instruction type. 312 // Both type 0 and type 1 rolled into one. 313 void DecodeType01(Instruction* instr); 314 void DecodeType2(Instruction* instr); 315 void DecodeType3(Instruction* instr); 316 void DecodeType4(Instruction* instr); 317 void DecodeType5(Instruction* instr); 318 void DecodeType6(Instruction* instr); 319 void DecodeType7(Instruction* instr); 320 321 // Support for VFP. 322 void DecodeTypeVFP(Instruction* instr); 323 void DecodeType6CoprocessorIns(Instruction* instr); 324 void DecodeSpecialCondition(Instruction* instr); 325 326 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); 327 void DecodeVCMP(Instruction* instr); 328 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); 329 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); 330 331 // Executes one instruction. 332 void InstructionDecode(Instruction* instr); 333 334 // ICache. 335 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); 336 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, 337 int size); 338 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); 339 340 // Runtime call support. 341 static void* RedirectExternalReference( 342 void* external_function, 343 v8::internal::ExternalReference::Type type); 344 345 // Handle arguments and return value for runtime FP functions. 346 void GetFpArgs(double* x, double* y, int32_t* z); 347 void SetFpResult(const double& result); 348 void TrashCallerSaveRegisters(); 349 350 template<class ReturnType, int register_size> 351 ReturnType GetFromVFPRegister(int reg_index); 352 353 template<class InputType, int register_size> 354 void SetVFPRegister(int reg_index, const InputType& value); 355 356 void CallInternal(byte* entry); 357 358 // Architecture state. 359 // Saturating instructions require a Q flag to indicate saturation. 360 // There is currently no way to read the CPSR directly, and thus read the Q 361 // flag, so this is left unimplemented. 362 int32_t registers_[16]; 363 bool n_flag_; 364 bool z_flag_; 365 bool c_flag_; 366 bool v_flag_; 367 368 // VFP architecture state. 369 unsigned int vfp_registers_[num_d_registers * 2]; 370 bool n_flag_FPSCR_; 371 bool z_flag_FPSCR_; 372 bool c_flag_FPSCR_; 373 bool v_flag_FPSCR_; 374 375 // VFP rounding mode. See ARM DDI 0406B Page A2-29. 376 VFPRoundingMode FPSCR_rounding_mode_; 377 bool FPSCR_default_NaN_mode_; 378 379 // VFP FP exception flags architecture state. 380 bool inv_op_vfp_flag_; 381 bool div_zero_vfp_flag_; 382 bool overflow_vfp_flag_; 383 bool underflow_vfp_flag_; 384 bool inexact_vfp_flag_; 385 386 // Simulator support. 387 char* stack_; 388 bool pc_modified_; 389 int icount_; 390 391 // Debugger input. 392 char* last_debugger_input_; 393 394 // Icache simulation 395 v8::internal::HashMap* i_cache_; 396 397 // Registered breakpoints. 398 Instruction* break_pc_; 399 Instr break_instr_; 400 401 v8::internal::Isolate* isolate_; 402 403 // A stop is watched if its code is less than kNumOfWatchedStops. 404 // Only watched stops support enabling/disabling and the counter feature. 405 static const uint32_t kNumOfWatchedStops = 256; 406 407 // Breakpoint is disabled if bit 31 is set. 408 static const uint32_t kStopDisabledBit = 1 << 31; 409 410 // A stop is enabled, meaning the simulator will stop when meeting the 411 // instruction, if bit 31 of watched_stops_[code].count is unset. 412 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times 413 // the breakpoint was hit or gone through. 414 struct StopCountAndDesc { 415 uint32_t count; 416 char* desc; 417 }; 418 StopCountAndDesc watched_stops_[kNumOfWatchedStops]; 419 }; 420 421 422 // When running with the simulator transition into simulated execution at this 423 // point. 424 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ 425 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \ 426 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4)) 427 428 #define CALL_GENERATED_FP_INT(entry, p0, p1) \ 429 Simulator::current(Isolate::Current())->CallFPReturnsInt( \ 430 FUNCTION_ADDR(entry), p0, p1) 431 432 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ 433 Simulator::current(Isolate::Current())->Call( \ 434 entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8) 435 436 437 // The simulator has its own stack. Thus it has a different stack limit from 438 // the C-based native code. Setting the c_limit to indicate a very small 439 // stack cause stack overflow errors, since the simulator ignores the input. 440 // This is unlikely to be an issue in practice, though it might cause testing 441 // trouble down the line. 442 class SimulatorStack : public v8::internal::AllStatic { 443 public: JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)444 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, 445 uintptr_t c_limit) { 446 return Simulator::current(isolate)->StackLimit(); 447 } 448 RegisterCTryCatch(uintptr_t try_catch_address)449 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { 450 Simulator* sim = Simulator::current(Isolate::Current()); 451 return sim->PushAddress(try_catch_address); 452 } 453 UnregisterCTryCatch()454 static inline void UnregisterCTryCatch() { 455 Simulator::current(Isolate::Current())->PopAddress(); 456 } 457 }; 458 459 } } // namespace v8::internal 460 461 #endif // !defined(USE_SIMULATOR) 462 #endif // V8_ARM_SIMULATOR_ARM_H_ 463