1// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
2//
3// ====================================================
4// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
5//
6// Developed at SunSoft, a Sun Microsystems, Inc. business.
7// Permission to use, copy, modify, and distribute this
8// software is freely granted, provided that this notice
9// is preserved.
10// ====================================================
11//
12// The original source code covered by the above license above has been
13// modified significantly by Google Inc.
14// Copyright 2014 the V8 project authors. All rights reserved.
15//
16// The following is a straightforward translation of fdlibm routines
17// by Raymond Toy (rtoy@google.com).
18
19// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
20// and exposed through kMath as typed array. We assume the compiler to convert
21// from decimal to binary accurately enough to produce the intended values.
22// kMath is initialized to a Float64Array during genesis and not writable.
23var kMath;
24
25const INVPIO2 = kMath[0];
26const PIO2_1  = kMath[1];
27const PIO2_1T = kMath[2];
28const PIO2_2  = kMath[3];
29const PIO2_2T = kMath[4];
30const PIO2_3  = kMath[5];
31const PIO2_3T = kMath[6];
32const PIO4    = kMath[32];
33const PIO4LO  = kMath[33];
34
35// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
36// precision, r is returned as two values y0 and y1 such that r = y0 + y1
37// to more than double precision.
38macro REMPIO2(X)
39  var n, y0, y1;
40  var hx = %_DoubleHi(X);
41  var ix = hx & 0x7fffffff;
42
43  if (ix < 0x4002d97c) {
44    // |X| ~< 3*pi/4, special case with n = +/- 1
45    if (hx > 0) {
46      var z = X - PIO2_1;
47      if (ix != 0x3ff921fb) {
48        // 33+53 bit pi is good enough
49        y0 = z - PIO2_1T;
50        y1 = (z - y0) - PIO2_1T;
51      } else {
52        // near pi/2, use 33+33+53 bit pi
53        z -= PIO2_2;
54        y0 = z - PIO2_2T;
55        y1 = (z - y0) - PIO2_2T;
56      }
57      n = 1;
58    } else {
59      // Negative X
60      var z = X + PIO2_1;
61      if (ix != 0x3ff921fb) {
62        // 33+53 bit pi is good enough
63        y0 = z + PIO2_1T;
64        y1 = (z - y0) + PIO2_1T;
65      } else {
66        // near pi/2, use 33+33+53 bit pi
67        z += PIO2_2;
68        y0 = z + PIO2_2T;
69        y1 = (z - y0) + PIO2_2T;
70      }
71      n = -1;
72    }
73  } else if (ix <= 0x413921fb) {
74    // |X| ~<= 2^19*(pi/2), medium size
75    var t = MathAbs(X);
76    n = (t * INVPIO2 + 0.5) | 0;
77    var r = t - n * PIO2_1;
78    var w = n * PIO2_1T;
79    // First round good to 85 bit
80    y0 = r - w;
81    if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
82      // 2nd iteration needed, good to 118
83      t = r;
84      w = n * PIO2_2;
85      r = t - w;
86      w = n * PIO2_2T - ((t - r) - w);
87      y0 = r - w;
88      if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
89        // 3rd iteration needed. 151 bits accuracy
90        t = r;
91        w = n * PIO2_3;
92        r = t - w;
93        w = n * PIO2_3T - ((t - r) - w);
94        y0 = r - w;
95      }
96    }
97    y1 = (r - y0) - w;
98    if (hx < 0) {
99      n = -n;
100      y0 = -y0;
101      y1 = -y1;
102    }
103  } else {
104    // Need to do full Payne-Hanek reduction here.
105    var r = %RemPiO2(X);
106    n = r[0];
107    y0 = r[1];
108    y1 = r[2];
109  }
110endmacro
111
112
113// __kernel_sin(X, Y, IY)
114// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
115// Input X is assumed to be bounded by ~pi/4 in magnitude.
116// Input Y is the tail of X so that x = X + Y.
117//
118// Algorithm
119//  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
120//  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
121//     [0,pi/4]
122//                           3            13
123//          sin(x) ~ x + S1*x + ... + S6*x
124//     where
125//
126//    |ieee_sin(x)    2     4     6     8     10     12  |     -58
127//    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
128//    |  x                                               |
129//
130//  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
131//              ~ ieee_sin(X) + (1-X*X/2)*Y
132//     For better accuracy, let
133//               3      2      2      2      2
134//          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
135//     then                   3    2
136//          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
137//
138macro KSIN(x)
139kMath[7+x]
140endmacro
141
142macro RETURN_KERNELSIN(X, Y, SIGN)
143  var z = X * X;
144  var v = z * X;
145  var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
146                    z * (KSIN(4) + z * KSIN(5))));
147  return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
148endmacro
149
150// __kernel_cos(X, Y)
151// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
152// Input X is assumed to be bounded by ~pi/4 in magnitude.
153// Input Y is the tail of X so that x = X + Y.
154//
155// Algorithm
156//  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
157//  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
158//     [0,pi/4]
159//                                   4            14
160//          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
161//     where the remez error is
162//
163//  |                   2     4     6     8     10    12     14 |     -58
164//  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
165//  |                                                           |
166//
167//                 4     6     8     10    12     14
168//  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
169//         ieee_cos(x) = 1 - x*x/2 + r
170//     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
171//                    ~ ieee_cos(X) - X*Y,
172//     a correction term is necessary in ieee_cos(x) and hence
173//         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
174//     For better accuracy when x > 0.3, let qx = |x|/4 with
175//     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
176//     Then
177//         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
178//     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
179//     magnitude of the latter is at least a quarter of X*X/2,
180//     thus, reducing the rounding error in the subtraction.
181//
182macro KCOS(x)
183kMath[13+x]
184endmacro
185
186macro RETURN_KERNELCOS(X, Y, SIGN)
187  var ix = %_DoubleHi(X) & 0x7fffffff;
188  var z = X * X;
189  var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
190          z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
191  if (ix < 0x3fd33333) {  // |x| ~< 0.3
192    return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
193  } else {
194    var qx;
195    if (ix > 0x3fe90000) {  // |x| > 0.78125
196      qx = 0.28125;
197    } else {
198      qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
199    }
200    var hz = 0.5 * z - qx;
201    return (1 - qx - (hz - (z * r - X * Y))) SIGN;
202  }
203endmacro
204
205
206// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
207// Input x is assumed to be bounded by ~pi/4 in magnitude.
208// Input y is the tail of x.
209// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
210// is returned.
211//
212// Algorithm
213//  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
214//  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
215//  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
216//     [0,0.67434]
217//                           3             27
218//          tan(x) ~ x + T1*x + ... + T13*x
219//     where
220//
221//     |ieee_tan(x)    2     4            26   |     -59.2
222//     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
223//     |  x                                    |
224//
225//     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
226//                    ~ ieee_tan(x) + (1+x*x)*y
227//     Therefore, for better accuracy in computing ieee_tan(x+y), let
228//               3      2      2       2       2
229//          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
230//     then
231//                              3    2
232//          tan(x+y) = x + (T1*x + (x *(r+y)+y))
233//
234//  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
235//          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
236//                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
237//
238// Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
239// and will cause incorrect results.
240//
241macro KTAN(x)
242kMath[19+x]
243endmacro
244
245function KernelTan(x, y, returnTan) {
246  var z;
247  var w;
248  var hx = %_DoubleHi(x);
249  var ix = hx & 0x7fffffff;
250
251  if (ix < 0x3e300000) {  // |x| < 2^-28
252    if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
253      // x == 0 && returnTan = -1
254      return 1 / MathAbs(x);
255    } else {
256      if (returnTan == 1) {
257        return x;
258      } else {
259        // Compute -1/(x + y) carefully
260        var w = x + y;
261        var z = %_ConstructDouble(%_DoubleHi(w), 0);
262        var v = y - (z - x);
263        var a = -1 / w;
264        var t = %_ConstructDouble(%_DoubleHi(a), 0);
265        var s = 1 + t * z;
266        return t + a * (s + t * v);
267      }
268    }
269  }
270  if (ix >= 0x3fe59428) {  // |x| > .6744
271    if (x < 0) {
272      x = -x;
273      y = -y;
274    }
275    z = PIO4 - x;
276    w = PIO4LO - y;
277    x = z + w;
278    y = 0;
279  }
280  z = x * x;
281  w = z * z;
282
283  // Break x^5 * (T1 + x^2*T2 + ...) into
284  // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
285  // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
286  var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
287                    w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
288  var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
289                         w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
290  var s = z * x;
291  r = y + z * (s * (r + v) + y);
292  r = r + KTAN(0) * s;
293  w = x + r;
294  if (ix >= 0x3fe59428) {
295    return (1 - ((hx >> 30) & 2)) *
296      (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
297  }
298  if (returnTan == 1) {
299    return w;
300  } else {
301    z = %_ConstructDouble(%_DoubleHi(w), 0);
302    v = r - (z - x);
303    var a = -1 / w;
304    var t = %_ConstructDouble(%_DoubleHi(a), 0);
305    s = 1 + t * z;
306    return t + a * (s + t * v);
307  }
308}
309
310function MathSinSlow(x) {
311  REMPIO2(x);
312  var sign = 1 - (n & 2);
313  if (n & 1) {
314    RETURN_KERNELCOS(y0, y1, * sign);
315  } else {
316    RETURN_KERNELSIN(y0, y1, * sign);
317  }
318}
319
320function MathCosSlow(x) {
321  REMPIO2(x);
322  if (n & 1) {
323    var sign = (n & 2) - 1;
324    RETURN_KERNELSIN(y0, y1, * sign);
325  } else {
326    var sign = 1 - (n & 2);
327    RETURN_KERNELCOS(y0, y1, * sign);
328  }
329}
330
331// ECMA 262 - 15.8.2.16
332function MathSin(x) {
333  x = x * 1;  // Convert to number.
334  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
335    // |x| < pi/4, approximately.  No reduction needed.
336    RETURN_KERNELSIN(x, 0, /* empty */);
337  }
338  return MathSinSlow(x);
339}
340
341// ECMA 262 - 15.8.2.7
342function MathCos(x) {
343  x = x * 1;  // Convert to number.
344  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
345    // |x| < pi/4, approximately.  No reduction needed.
346    RETURN_KERNELCOS(x, 0, /* empty */);
347  }
348  return MathCosSlow(x);
349}
350
351// ECMA 262 - 15.8.2.18
352function MathTan(x) {
353  x = x * 1;  // Convert to number.
354  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
355    // |x| < pi/4, approximately.  No reduction needed.
356    return KernelTan(x, 0, 1);
357  }
358  REMPIO2(x);
359  return KernelTan(y0, y1, (n & 1) ? -1 : 1);
360}
361
362// ES6 draft 09-27-13, section 20.2.2.20.
363// Math.log1p
364//
365// Method :
366//   1. Argument Reduction: find k and f such that
367//                      1+x = 2^k * (1+f),
368//         where  sqrt(2)/2 < 1+f < sqrt(2) .
369//
370//      Note. If k=0, then f=x is exact. However, if k!=0, then f
371//      may not be representable exactly. In that case, a correction
372//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
373//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
374//      and add back the correction term c/u.
375//      (Note: when x > 2**53, one can simply return log(x))
376//
377//   2. Approximation of log1p(f).
378//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
379//            = 2s + 2/3 s**3 + 2/5 s**5 + .....,
380//            = 2s + s*R
381//      We use a special Reme algorithm on [0,0.1716] to generate
382//      a polynomial of degree 14 to approximate R The maximum error
383//      of this polynomial approximation is bounded by 2**-58.45. In
384//      other words,
385//                      2      4      6      8      10      12      14
386//          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
387//      (the values of Lp1 to Lp7 are listed in the program)
388//      and
389//          |      2          14          |     -58.45
390//          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
391//          |                             |
392//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
393//      In order to guarantee error in log below 1ulp, we compute log
394//      by
395//              log1p(f) = f - (hfsq - s*(hfsq+R)).
396//
397//      3. Finally, log1p(x) = k*ln2 + log1p(f).
398//                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
399//         Here ln2 is split into two floating point number:
400//                      ln2_hi + ln2_lo,
401//         where n*ln2_hi is always exact for |n| < 2000.
402//
403// Special cases:
404//      log1p(x) is NaN with signal if x < -1 (including -INF) ;
405//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
406//      log1p(NaN) is that NaN with no signal.
407//
408// Accuracy:
409//      according to an error analysis, the error is always less than
410//      1 ulp (unit in the last place).
411//
412// Constants:
413//      Constants are found in fdlibm.cc. We assume the C++ compiler to convert
414//      from decimal to binary accurately enough to produce the intended values.
415//
416// Note: Assuming log() return accurate answer, the following
417//       algorithm can be used to compute log1p(x) to within a few ULP:
418//
419//              u = 1+x;
420//              if (u==1.0) return x ; else
421//                          return log(u)*(x/(u-1.0));
422//
423//       See HP-15C Advanced Functions Handbook, p.193.
424//
425const LN2_HI    = kMath[34];
426const LN2_LO    = kMath[35];
427const TWO54     = kMath[36];
428const TWO_THIRD = kMath[37];
429macro KLOG1P(x)
430(kMath[38+x])
431endmacro
432
433function MathLog1p(x) {
434  x = x * 1;  // Convert to number.
435  var hx = %_DoubleHi(x);
436  var ax = hx & 0x7fffffff;
437  var k = 1;
438  var f = x;
439  var hu = 1;
440  var c = 0;
441  var u = x;
442
443  if (hx < 0x3fda827a) {
444    // x < 0.41422
445    if (ax >= 0x3ff00000) {  // |x| >= 1
446      if (x === -1) {
447        return -INFINITY;  // log1p(-1) = -inf
448      } else {
449        return NAN;  // log1p(x<-1) = NaN
450      }
451    } else if (ax < 0x3c900000)  {
452      // For |x| < 2^-54 we can return x.
453      return x;
454    } else if (ax < 0x3e200000) {
455      // For |x| < 2^-29 we can use a simple two-term Taylor series.
456      return x - x * x * 0.5;
457    }
458
459    if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d
460      // -.2929 < x < 0.41422
461      k = 0;
462    }
463  }
464
465  // Handle Infinity and NAN
466  if (hx >= 0x7ff00000) return x;
467
468  if (k !== 0) {
469    if (hx < 0x43400000) {
470      // x < 2^53
471      u = 1 + x;
472      hu = %_DoubleHi(u);
473      k = (hu >> 20) - 1023;
474      c = (k > 0) ? 1 - (u - x) : x - (u - 1);
475      c = c / u;
476    } else {
477      hu = %_DoubleHi(u);
478      k = (hu >> 20) - 1023;
479    }
480    hu = hu & 0xfffff;
481    if (hu < 0x6a09e) {
482      u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u.
483    } else {
484      ++k;
485      u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2.
486      hu = (0x00100000 - hu) >> 2;
487    }
488    f = u - 1;
489  }
490
491  var hfsq = 0.5 * f * f;
492  if (hu === 0) {
493    // |f| < 2^-20;
494    if (f === 0) {
495      if (k === 0) {
496        return 0.0;
497      } else {
498        return k * LN2_HI + (c + k * LN2_LO);
499      }
500    }
501    var R = hfsq * (1 - TWO_THIRD * f);
502    if (k === 0) {
503      return f - R;
504    } else {
505      return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
506    }
507  }
508
509  var s = f / (2 + f);
510  var z = s * s;
511  var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
512              (KLOG1P(2) + z * (KLOG1P(3) + z *
513              (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
514  if (k === 0) {
515    return f - (hfsq - s * (hfsq + R));
516  } else {
517    return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
518  }
519}
520
521// ES6 draft 09-27-13, section 20.2.2.14.
522// Math.expm1
523// Returns exp(x)-1, the exponential of x minus 1.
524//
525// Method
526//   1. Argument reduction:
527//      Given x, find r and integer k such that
528//
529//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
530//
531//      Here a correction term c will be computed to compensate
532//      the error in r when rounded to a floating-point number.
533//
534//   2. Approximating expm1(r) by a special rational function on
535//      the interval [0,0.34658]:
536//      Since
537//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
538//      we define R1(r*r) by
539//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
540//      That is,
541//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
542//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
543//                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
544//      We use a special Remes algorithm on [0,0.347] to generate
545//      a polynomial of degree 5 in r*r to approximate R1. The
546//      maximum error of this polynomial approximation is bounded
547//      by 2**-61. In other words,
548//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
549//      where   Q1  =  -1.6666666666666567384E-2,
550//              Q2  =   3.9682539681370365873E-4,
551//              Q3  =  -9.9206344733435987357E-6,
552//              Q4  =   2.5051361420808517002E-7,
553//              Q5  =  -6.2843505682382617102E-9;
554//      (where z=r*r, and the values of Q1 to Q5 are listed below)
555//      with error bounded by
556//          |                  5           |     -61
557//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
558//          |                              |
559//
560//      expm1(r) = exp(r)-1 is then computed by the following
561//      specific way which minimize the accumulation rounding error:
562//                             2     3
563//                            r     r    [ 3 - (R1 + R1*r/2)  ]
564//            expm1(r) = r + --- + --- * [--------------------]
565//                            2     2    [ 6 - r*(3 - R1*r/2) ]
566//
567//      To compensate the error in the argument reduction, we use
568//              expm1(r+c) = expm1(r) + c + expm1(r)*c
569//                         ~ expm1(r) + c + r*c
570//      Thus c+r*c will be added in as the correction terms for
571//      expm1(r+c). Now rearrange the term to avoid optimization
572//      screw up:
573//                      (      2                                    2 )
574//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
575//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
576//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
577//                      (                                             )
578//
579//                 = r - E
580//   3. Scale back to obtain expm1(x):
581//      From step 1, we have
582//         expm1(x) = either 2^k*[expm1(r)+1] - 1
583//                  = or     2^k*[expm1(r) + (1-2^-k)]
584//   4. Implementation notes:
585//      (A). To save one multiplication, we scale the coefficient Qi
586//           to Qi*2^i, and replace z by (x^2)/2.
587//      (B). To achieve maximum accuracy, we compute expm1(x) by
588//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
589//        (ii)  if k=0, return r-E
590//        (iii) if k=-1, return 0.5*(r-E)-0.5
591//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
592//                     else          return  1.0+2.0*(r-E);
593//        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
594//        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
595//        (vii) return 2^k(1-((E+2^-k)-r))
596//
597// Special cases:
598//      expm1(INF) is INF, expm1(NaN) is NaN;
599//      expm1(-INF) is -1, and
600//      for finite argument, only expm1(0)=0 is exact.
601//
602// Accuracy:
603//      according to an error analysis, the error is always less than
604//      1 ulp (unit in the last place).
605//
606// Misc. info.
607//      For IEEE double
608//          if x > 7.09782712893383973096e+02 then expm1(x) overflow
609//
610const KEXPM1_OVERFLOW = kMath[45];
611const INVLN2          = kMath[46];
612macro KEXPM1(x)
613(kMath[47+x])
614endmacro
615
616function MathExpm1(x) {
617  x = x * 1;  // Convert to number.
618  var y;
619  var hi;
620  var lo;
621  var k;
622  var t;
623  var c;
624
625  var hx = %_DoubleHi(x);
626  var xsb = hx & 0x80000000;     // Sign bit of x
627  var y = (xsb === 0) ? x : -x;  // y = |x|
628  hx &= 0x7fffffff;              // High word of |x|
629
630  // Filter out huge and non-finite argument
631  if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2
632    if (hx >= 0x40862e42) {   // if |x| >= 709.78
633      if (hx >= 0x7ff00000) {
634        // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
635        return (x === -INFINITY) ? -1 : x;
636      }
637      if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow
638    }
639    if (xsb != 0) return -1;  // x < -56 * ln2, return -1.
640  }
641
642  // Argument reduction
643  if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2
644    if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2
645      if (xsb === 0) {
646        hi = x - LN2_HI;
647        lo = LN2_LO;
648        k = 1;
649      } else {
650        hi = x + LN2_HI;
651        lo = -LN2_LO;
652        k = -1;
653      }
654    } else {
655      k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
656      t = k;
657      // t * ln2_hi is exact here.
658      hi = x - t * LN2_HI;
659      lo = t * LN2_LO;
660    }
661    x = hi - lo;
662    c = (hi - x) - lo;
663  } else if (hx < 0x3c900000)	{
664    // When |x| < 2^-54, we can return x.
665    return x;
666  } else {
667    // Fall through.
668    k = 0;
669  }
670
671  // x is now in primary range
672  var hfx = 0.5 * x;
673  var hxs = x * hfx;
674  var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
675                     (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
676  t = 3 - r1 * hfx;
677  var e = hxs * ((r1 - t) / (6 - x * t));
678  if (k === 0) {  // c is 0
679    return x - (x*e - hxs);
680  } else {
681    e = (x * (e - c) - c);
682    e -= hxs;
683    if (k === -1) return 0.5 * (x - e) - 0.5;
684    if (k === 1) {
685      if (x < -0.25) return -2 * (e - (x + 0.5));
686      return 1 + 2 * (x - e);
687    }
688
689    if (k <= -2 || k > 56) {
690      // suffice to return exp(x) + 1
691      y = 1 - (e - x);
692      // Add k to y's exponent
693      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
694      return y - 1;
695    }
696    if (k < 20) {
697      // t = 1 - 2^k
698      t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
699      y = t - (e - x);
700      // Add k to y's exponent
701      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
702    } else {
703      // t = 2^-k
704      t = %_ConstructDouble((0x3ff - k) << 20, 0);
705      y = x - (e + t);
706      y += 1;
707      // Add k to y's exponent
708      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
709    }
710  }
711  return y;
712}
713
714
715// ES6 draft 09-27-13, section 20.2.2.30.
716// Math.sinh
717// Method :
718// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
719//      1. Replace x by |x| (sinh(-x) = -sinh(x)).
720//      2.
721//                                                  E + E/(E+1)
722//          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
723//                                                      2
724//
725//          22       <= x <= lnovft :  sinh(x) := exp(x)/2
726//          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
727//          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow)
728//
729// Special cases:
730//      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
731//      only sinh(0)=0 is exact for finite x.
732//
733const KSINH_OVERFLOW = kMath[52];
734const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half
735const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half
736
737function MathSinh(x) {
738  x = x * 1;  // Convert to number.
739  var h = (x < 0) ? -0.5 : 0.5;
740  // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
741  var ax = MathAbs(x);
742  if (ax < 22) {
743    // For |x| < 2^-28, sinh(x) = x
744    if (ax < TWO_M28) return x;
745    var t = MathExpm1(ax);
746    if (ax < 1) return h * (2 * t - t * t / (t + 1));
747    return h * (t + t / (t + 1));
748  }
749  // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
750  if (ax < LOG_MAXD) return h * MathExp(ax);
751  // |x| in [log(maxdouble), overflowthreshold]
752  // overflowthreshold = 710.4758600739426
753  if (ax <= KSINH_OVERFLOW) {
754    var w = MathExp(0.5 * ax);
755    var t = h * w;
756    return t * w;
757  }
758  // |x| > overflowthreshold or is NaN.
759  // Return Infinity of the appropriate sign or NaN.
760  return x * INFINITY;
761}
762
763
764// ES6 draft 09-27-13, section 20.2.2.12.
765// Math.cosh
766// Method :
767// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
768//      1. Replace x by |x| (cosh(x) = cosh(-x)).
769//      2.
770//                                                      [ exp(x) - 1 ]^2
771//          0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
772//                                                         2*exp(x)
773//
774//                                                 exp(x) + 1/exp(x)
775//          ln2/2    <= x <= 22     :  cosh(x) := -------------------
776//                                                        2
777//          22       <= x <= lnovft :  cosh(x) := exp(x)/2
778//          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
779//          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow)
780//
781// Special cases:
782//      cosh(x) is |x| if x is +INF, -INF, or NaN.
783//      only cosh(0)=1 is exact for finite x.
784//
785const KCOSH_OVERFLOW = kMath[52];
786
787function MathCosh(x) {
788  x = x * 1;  // Convert to number.
789  var ix = %_DoubleHi(x) & 0x7fffffff;
790  // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
791  if (ix < 0x3fd62e43) {
792    var t = MathExpm1(MathAbs(x));
793    var w = 1 + t;
794    // For |x| < 2^-55, cosh(x) = 1
795    if (ix < 0x3c800000) return w;
796    return 1 + (t * t) / (w + w);
797  }
798  // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
799  if (ix < 0x40360000) {
800    var t = MathExp(MathAbs(x));
801    return 0.5 * t + 0.5 / t;
802  }
803  // |x| in [22, log(maxdouble)], return half*exp(|x|)
804  if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
805  // |x| in [log(maxdouble), overflowthreshold]
806  if (MathAbs(x) <= KCOSH_OVERFLOW) {
807    var w = MathExp(0.5 * MathAbs(x));
808    var t = 0.5 * w;
809    return t * w;
810  }
811  if (NUMBER_IS_NAN(x)) return x;
812  // |x| > overflowthreshold.
813  return INFINITY;
814}
815