1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <stdlib.h>  // for abs()
18 #include <emmintrin.h>
19 
20 #include "../enc/cost.h"
21 #include "../enc/vp8enci.h"
22 #include "../utils/utils.h"
23 
24 //------------------------------------------------------------------------------
25 // Quite useful macro for debugging. Left here for convenience.
26 
27 #if 0
28 #include <stdio.h>
29 static void PrintReg(const __m128i r, const char* const name, int size) {
30   int n;
31   union {
32     __m128i r;
33     uint8_t i8[16];
34     uint16_t i16[8];
35     uint32_t i32[4];
36     uint64_t i64[2];
37   } tmp;
38   tmp.r = r;
39   printf("%s\t: ", name);
40   if (size == 8) {
41     for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
42   } else if (size == 16) {
43     for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
44   } else if (size == 32) {
45     for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
46   } else {
47     for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
48   }
49   printf("\n");
50 }
51 #endif
52 
53 //------------------------------------------------------------------------------
54 // Compute susceptibility based on DCT-coeff histograms:
55 // the higher, the "easier" the macroblock is to compress.
56 
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)57 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
58                              int start_block, int end_block,
59                              VP8Histogram* const histo) {
60   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
61   int j;
62   for (j = start_block; j < end_block; ++j) {
63     int16_t out[16];
64     int k;
65 
66     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
67 
68     // Convert coefficients to bin (within out[]).
69     {
70       // Load.
71       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
72       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
73       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
74       const __m128i sign0 = _mm_srai_epi16(out0, 15);
75       const __m128i sign1 = _mm_srai_epi16(out1, 15);
76       // abs(out) = (out ^ sign) - sign
77       const __m128i xor0 = _mm_xor_si128(out0, sign0);
78       const __m128i xor1 = _mm_xor_si128(out1, sign1);
79       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
80       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
81       // v = abs(out) >> 3
82       const __m128i v0 = _mm_srai_epi16(abs0, 3);
83       const __m128i v1 = _mm_srai_epi16(abs1, 3);
84       // bin = min(v, MAX_COEFF_THRESH)
85       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
86       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
87       // Store.
88       _mm_storeu_si128((__m128i*)&out[0], bin0);
89       _mm_storeu_si128((__m128i*)&out[8], bin1);
90     }
91 
92     // Convert coefficients to bin.
93     for (k = 0; k < 16; ++k) {
94       histo->distribution[out[k]]++;
95     }
96   }
97 }
98 
99 //------------------------------------------------------------------------------
100 // Transforms (Paragraph 14.4)
101 
102 // Does one or two inverse transforms.
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)103 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
104                        int do_two) {
105   // This implementation makes use of 16-bit fixed point versions of two
106   // multiply constants:
107   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
108   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
109   //
110   // To be able to use signed 16-bit integers, we use the following trick to
111   // have constants within range:
112   // - Associated constants are obtained by subtracting the 16-bit fixed point
113   //   version of one:
114   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
115   //      K1 = 85267  =>  k1 =  20091
116   //      K2 = 35468  =>  k2 = -30068
117   // - The multiplication of a variable by a constant become the sum of the
118   //   variable and the multiplication of that variable by the associated
119   //   constant:
120   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
121   const __m128i k1 = _mm_set1_epi16(20091);
122   const __m128i k2 = _mm_set1_epi16(-30068);
123   __m128i T0, T1, T2, T3;
124 
125   // Load and concatenate the transform coefficients (we'll do two inverse
126   // transforms in parallel). In the case of only one inverse transform, the
127   // second half of the vectors will just contain random value we'll never
128   // use nor store.
129   __m128i in0, in1, in2, in3;
130   {
131     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
132     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
133     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
134     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
135     // a00 a10 a20 a30   x x x x
136     // a01 a11 a21 a31   x x x x
137     // a02 a12 a22 a32   x x x x
138     // a03 a13 a23 a33   x x x x
139     if (do_two) {
140       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
141       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
142       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
143       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
144       in0 = _mm_unpacklo_epi64(in0, inB0);
145       in1 = _mm_unpacklo_epi64(in1, inB1);
146       in2 = _mm_unpacklo_epi64(in2, inB2);
147       in3 = _mm_unpacklo_epi64(in3, inB3);
148       // a00 a10 a20 a30   b00 b10 b20 b30
149       // a01 a11 a21 a31   b01 b11 b21 b31
150       // a02 a12 a22 a32   b02 b12 b22 b32
151       // a03 a13 a23 a33   b03 b13 b23 b33
152     }
153   }
154 
155   // Vertical pass and subsequent transpose.
156   {
157     // First pass, c and d calculations are longer because of the "trick"
158     // multiplications.
159     const __m128i a = _mm_add_epi16(in0, in2);
160     const __m128i b = _mm_sub_epi16(in0, in2);
161     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
162     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
163     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
164     const __m128i c3 = _mm_sub_epi16(in1, in3);
165     const __m128i c4 = _mm_sub_epi16(c1, c2);
166     const __m128i c = _mm_add_epi16(c3, c4);
167     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
168     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
169     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
170     const __m128i d3 = _mm_add_epi16(in1, in3);
171     const __m128i d4 = _mm_add_epi16(d1, d2);
172     const __m128i d = _mm_add_epi16(d3, d4);
173 
174     // Second pass.
175     const __m128i tmp0 = _mm_add_epi16(a, d);
176     const __m128i tmp1 = _mm_add_epi16(b, c);
177     const __m128i tmp2 = _mm_sub_epi16(b, c);
178     const __m128i tmp3 = _mm_sub_epi16(a, d);
179 
180     // Transpose the two 4x4.
181     // a00 a01 a02 a03   b00 b01 b02 b03
182     // a10 a11 a12 a13   b10 b11 b12 b13
183     // a20 a21 a22 a23   b20 b21 b22 b23
184     // a30 a31 a32 a33   b30 b31 b32 b33
185     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
186     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
187     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
188     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
189     // a00 a10 a01 a11   a02 a12 a03 a13
190     // a20 a30 a21 a31   a22 a32 a23 a33
191     // b00 b10 b01 b11   b02 b12 b03 b13
192     // b20 b30 b21 b31   b22 b32 b23 b33
193     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
194     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
195     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
196     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
197     // a00 a10 a20 a30 a01 a11 a21 a31
198     // b00 b10 b20 b30 b01 b11 b21 b31
199     // a02 a12 a22 a32 a03 a13 a23 a33
200     // b02 b12 a22 b32 b03 b13 b23 b33
201     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
202     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
203     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
204     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
205     // a00 a10 a20 a30   b00 b10 b20 b30
206     // a01 a11 a21 a31   b01 b11 b21 b31
207     // a02 a12 a22 a32   b02 b12 b22 b32
208     // a03 a13 a23 a33   b03 b13 b23 b33
209   }
210 
211   // Horizontal pass and subsequent transpose.
212   {
213     // First pass, c and d calculations are longer because of the "trick"
214     // multiplications.
215     const __m128i four = _mm_set1_epi16(4);
216     const __m128i dc = _mm_add_epi16(T0, four);
217     const __m128i a =  _mm_add_epi16(dc, T2);
218     const __m128i b =  _mm_sub_epi16(dc, T2);
219     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
220     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
221     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
222     const __m128i c3 = _mm_sub_epi16(T1, T3);
223     const __m128i c4 = _mm_sub_epi16(c1, c2);
224     const __m128i c = _mm_add_epi16(c3, c4);
225     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
226     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
227     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
228     const __m128i d3 = _mm_add_epi16(T1, T3);
229     const __m128i d4 = _mm_add_epi16(d1, d2);
230     const __m128i d = _mm_add_epi16(d3, d4);
231 
232     // Second pass.
233     const __m128i tmp0 = _mm_add_epi16(a, d);
234     const __m128i tmp1 = _mm_add_epi16(b, c);
235     const __m128i tmp2 = _mm_sub_epi16(b, c);
236     const __m128i tmp3 = _mm_sub_epi16(a, d);
237     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
238     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
239     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
240     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
241 
242     // Transpose the two 4x4.
243     // a00 a01 a02 a03   b00 b01 b02 b03
244     // a10 a11 a12 a13   b10 b11 b12 b13
245     // a20 a21 a22 a23   b20 b21 b22 b23
246     // a30 a31 a32 a33   b30 b31 b32 b33
247     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
248     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
249     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
250     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
251     // a00 a10 a01 a11   a02 a12 a03 a13
252     // a20 a30 a21 a31   a22 a32 a23 a33
253     // b00 b10 b01 b11   b02 b12 b03 b13
254     // b20 b30 b21 b31   b22 b32 b23 b33
255     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
256     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
257     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
258     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
259     // a00 a10 a20 a30 a01 a11 a21 a31
260     // b00 b10 b20 b30 b01 b11 b21 b31
261     // a02 a12 a22 a32 a03 a13 a23 a33
262     // b02 b12 a22 b32 b03 b13 b23 b33
263     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
264     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
265     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
266     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
267     // a00 a10 a20 a30   b00 b10 b20 b30
268     // a01 a11 a21 a31   b01 b11 b21 b31
269     // a02 a12 a22 a32   b02 b12 b22 b32
270     // a03 a13 a23 a33   b03 b13 b23 b33
271   }
272 
273   // Add inverse transform to 'ref' and store.
274   {
275     const __m128i zero = _mm_setzero_si128();
276     // Load the reference(s).
277     __m128i ref0, ref1, ref2, ref3;
278     if (do_two) {
279       // Load eight bytes/pixels per line.
280       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
281       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
282       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
283       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
284     } else {
285       // Load four bytes/pixels per line.
286       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
287       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
288       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
289       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
290     }
291     // Convert to 16b.
292     ref0 = _mm_unpacklo_epi8(ref0, zero);
293     ref1 = _mm_unpacklo_epi8(ref1, zero);
294     ref2 = _mm_unpacklo_epi8(ref2, zero);
295     ref3 = _mm_unpacklo_epi8(ref3, zero);
296     // Add the inverse transform(s).
297     ref0 = _mm_add_epi16(ref0, T0);
298     ref1 = _mm_add_epi16(ref1, T1);
299     ref2 = _mm_add_epi16(ref2, T2);
300     ref3 = _mm_add_epi16(ref3, T3);
301     // Unsigned saturate to 8b.
302     ref0 = _mm_packus_epi16(ref0, ref0);
303     ref1 = _mm_packus_epi16(ref1, ref1);
304     ref2 = _mm_packus_epi16(ref2, ref2);
305     ref3 = _mm_packus_epi16(ref3, ref3);
306     // Store the results.
307     if (do_two) {
308       // Store eight bytes/pixels per line.
309       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
310       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
311       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
312       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
313     } else {
314       // Store four bytes/pixels per line.
315       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
316       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
317       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
318       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
319     }
320   }
321 }
322 
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)323 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
324   const __m128i zero = _mm_setzero_si128();
325   const __m128i seven = _mm_set1_epi16(7);
326   const __m128i k937 = _mm_set1_epi32(937);
327   const __m128i k1812 = _mm_set1_epi32(1812);
328   const __m128i k51000 = _mm_set1_epi32(51000);
329   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
330   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
331                                            5352,  2217, 5352,  2217);
332   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
333                                            2217, -5352, 2217, -5352);
334   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
335   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
336   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
337                                             2217, 5352, 2217, 5352);
338   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
339                                             -5352, 2217, -5352, 2217);
340   __m128i v01, v32;
341 
342 
343   // Difference between src and ref and initial transpose.
344   {
345     // Load src and convert to 16b.
346     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
347     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
348     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
349     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
350     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
351     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
352     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
353     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
354     // Load ref and convert to 16b.
355     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
356     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
357     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
358     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
359     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
360     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
361     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
362     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
363     // Compute difference. -> 00 01 02 03 00 00 00 00
364     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
365     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
366     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
367     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
368 
369 
370     // Unpack and shuffle
371     // 00 01 02 03   0 0 0 0
372     // 10 11 12 13   0 0 0 0
373     // 20 21 22 23   0 0 0 0
374     // 30 31 32 33   0 0 0 0
375     const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
376     const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
377     // 00 01 10 11 02 03 12 13
378     // 20 21 30 31 22 23 32 33
379     const __m128i shuf01_p =
380         _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
381     const __m128i shuf23_p =
382         _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
383     // 00 01 10 11 03 02 13 12
384     // 20 21 30 31 23 22 33 32
385     const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
386     const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
387     // 00 01 10 11 20 21 30 31
388     // 03 02 13 12 23 22 33 32
389     const __m128i a01 = _mm_add_epi16(s01, s32);
390     const __m128i a32 = _mm_sub_epi16(s01, s32);
391     // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
392     // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
393 
394     const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
395     const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
396     const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
397     const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
398     const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
399     const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
400     const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
401     const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
402     const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
403     const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
404     const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
405     const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
406     const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
407     v01 = _mm_unpacklo_epi32(s_lo, s_hi);
408     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
409   }
410 
411   // Second pass
412   {
413     // Same operations are done on the (0,3) and (1,2) pairs.
414     // a0 = v0 + v3
415     // a1 = v1 + v2
416     // a3 = v0 - v3
417     // a2 = v1 - v2
418     const __m128i a01 = _mm_add_epi16(v01, v32);
419     const __m128i a32 = _mm_sub_epi16(v01, v32);
420     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
421     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
422     const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
423 
424     // d0 = (a0 + a1 + 7) >> 4;
425     // d2 = (a0 - a1 + 7) >> 4;
426     const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
427     const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
428     const __m128i d0 = _mm_srai_epi16(c0, 4);
429     const __m128i d2 = _mm_srai_epi16(c2, 4);
430 
431     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
432     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
433     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
434     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
435     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
436     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
437     const __m128i d3 = _mm_add_epi32(c3, k51000);
438     const __m128i e1 = _mm_srai_epi32(d1, 16);
439     const __m128i e3 = _mm_srai_epi32(d3, 16);
440     const __m128i f1 = _mm_packs_epi32(e1, e1);
441     const __m128i f3 = _mm_packs_epi32(e3, e3);
442     // f1 = f1 + (a3 != 0);
443     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
444     // desired (0, 1), we add one earlier through k12000_plus_one.
445     // -> f1 = f1 + 1 - (a3 == 0)
446     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
447 
448     const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
449     const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
450     _mm_storeu_si128((__m128i*)&out[0], d0_g1);
451     _mm_storeu_si128((__m128i*)&out[8], d2_f3);
452   }
453 }
454 
FTransformWHT(const int16_t * in,int16_t * out)455 static void FTransformWHT(const int16_t* in, int16_t* out) {
456   int32_t tmp[16];
457   int i;
458   for (i = 0; i < 4; ++i, in += 64) {
459     const int a0 = (in[0 * 16] + in[2 * 16]);
460     const int a1 = (in[1 * 16] + in[3 * 16]);
461     const int a2 = (in[1 * 16] - in[3 * 16]);
462     const int a3 = (in[0 * 16] - in[2 * 16]);
463     tmp[0 + i * 4] = a0 + a1;
464     tmp[1 + i * 4] = a3 + a2;
465     tmp[2 + i * 4] = a3 - a2;
466     tmp[3 + i * 4] = a0 - a1;
467   }
468   {
469     const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
470     const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
471     const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
472     const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
473     const __m128i a0 = _mm_add_epi32(src0, src2);
474     const __m128i a1 = _mm_add_epi32(src1, src3);
475     const __m128i a2 = _mm_sub_epi32(src1, src3);
476     const __m128i a3 = _mm_sub_epi32(src0, src2);
477     const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
478     const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
479     const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
480     const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
481     const __m128i out0 = _mm_packs_epi32(b0, b1);
482     const __m128i out1 = _mm_packs_epi32(b2, b3);
483     _mm_storeu_si128((__m128i*)&out[0], out0);
484     _mm_storeu_si128((__m128i*)&out[8], out1);
485   }
486 }
487 
488 //------------------------------------------------------------------------------
489 // Metric
490 
SSE_Nx4(const uint8_t * a,const uint8_t * b,int num_quads,int do_16)491 static int SSE_Nx4(const uint8_t* a, const uint8_t* b,
492                    int num_quads, int do_16) {
493   const __m128i zero = _mm_setzero_si128();
494   __m128i sum1 = zero;
495   __m128i sum2 = zero;
496 
497   while (num_quads-- > 0) {
498     // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
499     // thanks to buffer over-allocation to that effect.
500     const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
501     const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
502     const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
503     const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
504     const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
505     const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
506     const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
507     const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
508 
509     // compute clip0(a-b) and clip0(b-a)
510     const __m128i a0p = _mm_subs_epu8(a0, b0);
511     const __m128i a0m = _mm_subs_epu8(b0, a0);
512     const __m128i a1p = _mm_subs_epu8(a1, b1);
513     const __m128i a1m = _mm_subs_epu8(b1, a1);
514     const __m128i a2p = _mm_subs_epu8(a2, b2);
515     const __m128i a2m = _mm_subs_epu8(b2, a2);
516     const __m128i a3p = _mm_subs_epu8(a3, b3);
517     const __m128i a3m = _mm_subs_epu8(b3, a3);
518 
519     // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
520     const __m128i diff0 = _mm_or_si128(a0p, a0m);
521     const __m128i diff1 = _mm_or_si128(a1p, a1m);
522     const __m128i diff2 = _mm_or_si128(a2p, a2m);
523     const __m128i diff3 = _mm_or_si128(a3p, a3m);
524 
525     // unpack (only four operations, instead of eight)
526     const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
527     const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
528     const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
529     const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
530 
531     // multiply with self
532     const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
533     const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
534     const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
535     const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
536 
537     // collect in a cascading way
538     const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
539     const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
540     sum1 = _mm_add_epi32(sum1, low_sum0);
541     sum2 = _mm_add_epi32(sum2, low_sum1);
542 
543     if (do_16) {  // if necessary, process the higher 8 bytes similarly
544       const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
545       const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
546       const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
547       const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
548 
549       const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
550       const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
551       const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
552       const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
553       const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
554       const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
555       sum1 = _mm_add_epi32(sum1, hi_sum0);
556       sum2 = _mm_add_epi32(sum2, hi_sum1);
557     }
558     a += 4 * BPS;
559     b += 4 * BPS;
560   }
561   {
562     int32_t tmp[4];
563     const __m128i sum = _mm_add_epi32(sum1, sum2);
564     _mm_storeu_si128((__m128i*)tmp, sum);
565     return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
566   }
567 }
568 
SSE16x16(const uint8_t * a,const uint8_t * b)569 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
570   return SSE_Nx4(a, b, 4, 1);
571 }
572 
SSE16x8(const uint8_t * a,const uint8_t * b)573 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
574   return SSE_Nx4(a, b, 2, 1);
575 }
576 
SSE8x8(const uint8_t * a,const uint8_t * b)577 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
578   return SSE_Nx4(a, b, 2, 0);
579 }
580 
SSE4x4(const uint8_t * a,const uint8_t * b)581 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
582   const __m128i zero = _mm_setzero_si128();
583 
584   // Load values. Note that we read 8 pixels instead of 4,
585   // but the a/b buffers are over-allocated to that effect.
586   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
587   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
588   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
589   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
590   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
591   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
592   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
593   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
594 
595   // Combine pair of lines and convert to 16b.
596   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
597   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
598   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
599   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
600   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
601   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
602   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
603   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
604 
605   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
606   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
607   //                  need absolute values, there is no need to do calculation
608   //                  in 8bit as we are already in 16bit, ... Yet this is what
609   //                  benchmarks the fastest!
610   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
611   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
612   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
613   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
614 
615   // Square and add them all together.
616   const __m128i madd0 = _mm_madd_epi16(d0, d0);
617   const __m128i madd1 = _mm_madd_epi16(d1, d1);
618   const __m128i madd2 = _mm_madd_epi16(d2, d2);
619   const __m128i madd3 = _mm_madd_epi16(d3, d3);
620   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
621   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
622   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
623 
624   int32_t tmp[4];
625   _mm_storeu_si128((__m128i*)tmp, sum2);
626   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
627 }
628 
629 //------------------------------------------------------------------------------
630 // Texture distortion
631 //
632 // We try to match the spectral content (weighted) between source and
633 // reconstructed samples.
634 
635 // Hadamard transform
636 // Returns the difference between the weighted sum of the absolute value of
637 // transformed coefficients.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)638 static int TTransform(const uint8_t* inA, const uint8_t* inB,
639                       const uint16_t* const w) {
640   int32_t sum[4];
641   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
642   const __m128i zero = _mm_setzero_si128();
643 
644   // Load, combine and transpose inputs.
645   {
646     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
647     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
648     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
649     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
650     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
651     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
652     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
653     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
654 
655     // Combine inA and inB (we'll do two transforms in parallel).
656     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
657     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
658     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
659     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
660     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
661     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
662     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
663     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
664 
665     // Transpose the two 4x4, discarding the filling zeroes.
666     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
667     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
668     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
669     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
670     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
671     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
672     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
673     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
674 
675     // Convert to 16b.
676     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
677     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
678     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
679     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
680     // a00 a10 a20 a30   b00 b10 b20 b30
681     // a01 a11 a21 a31   b01 b11 b21 b31
682     // a02 a12 a22 a32   b02 b12 b22 b32
683     // a03 a13 a23 a33   b03 b13 b23 b33
684   }
685 
686   // Horizontal pass and subsequent transpose.
687   {
688     // Calculate a and b (two 4x4 at once).
689     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
690     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
691     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
692     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
693     const __m128i b0 = _mm_add_epi16(a0, a1);
694     const __m128i b1 = _mm_add_epi16(a3, a2);
695     const __m128i b2 = _mm_sub_epi16(a3, a2);
696     const __m128i b3 = _mm_sub_epi16(a0, a1);
697     // a00 a01 a02 a03   b00 b01 b02 b03
698     // a10 a11 a12 a13   b10 b11 b12 b13
699     // a20 a21 a22 a23   b20 b21 b22 b23
700     // a30 a31 a32 a33   b30 b31 b32 b33
701 
702     // Transpose the two 4x4.
703     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
704     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
705     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
706     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
707     // a00 a10 a01 a11   a02 a12 a03 a13
708     // a20 a30 a21 a31   a22 a32 a23 a33
709     // b00 b10 b01 b11   b02 b12 b03 b13
710     // b20 b30 b21 b31   b22 b32 b23 b33
711     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
712     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
713     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
714     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
715     // a00 a10 a20 a30 a01 a11 a21 a31
716     // b00 b10 b20 b30 b01 b11 b21 b31
717     // a02 a12 a22 a32 a03 a13 a23 a33
718     // b02 b12 a22 b32 b03 b13 b23 b33
719     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
720     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
721     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
722     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
723     // a00 a10 a20 a30   b00 b10 b20 b30
724     // a01 a11 a21 a31   b01 b11 b21 b31
725     // a02 a12 a22 a32   b02 b12 b22 b32
726     // a03 a13 a23 a33   b03 b13 b23 b33
727   }
728 
729   // Vertical pass and difference of weighted sums.
730   {
731     // Load all inputs.
732     // TODO(cduvivier): Make variable declarations and allocations aligned so
733     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
734     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
735     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
736 
737     // Calculate a and b (two 4x4 at once).
738     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
739     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
740     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
741     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
742     const __m128i b0 = _mm_add_epi16(a0, a1);
743     const __m128i b1 = _mm_add_epi16(a3, a2);
744     const __m128i b2 = _mm_sub_epi16(a3, a2);
745     const __m128i b3 = _mm_sub_epi16(a0, a1);
746 
747     // Separate the transforms of inA and inB.
748     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
749     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
750     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
751     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
752 
753     {
754       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
755       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
756       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
757       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
758       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
759 
760       // b = abs(b) = (b ^ sign) - sign
761       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
762       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
763       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
764       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
765       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
766       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
767       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
768       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
769     }
770 
771     // weighted sums
772     A_b0 = _mm_madd_epi16(A_b0, w_0);
773     A_b2 = _mm_madd_epi16(A_b2, w_8);
774     B_b0 = _mm_madd_epi16(B_b0, w_0);
775     B_b2 = _mm_madd_epi16(B_b2, w_8);
776     A_b0 = _mm_add_epi32(A_b0, A_b2);
777     B_b0 = _mm_add_epi32(B_b0, B_b2);
778 
779     // difference of weighted sums
780     A_b0 = _mm_sub_epi32(A_b0, B_b0);
781     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
782   }
783   return sum[0] + sum[1] + sum[2] + sum[3];
784 }
785 
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)786 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
787                     const uint16_t* const w) {
788   const int diff_sum = TTransform(a, b, w);
789   return abs(diff_sum) >> 5;
790 }
791 
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)792 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
793                       const uint16_t* const w) {
794   int D = 0;
795   int x, y;
796   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
797     for (x = 0; x < 16; x += 4) {
798       D += Disto4x4(a + x + y, b + x + y, w);
799     }
800   }
801   return D;
802 }
803 
804 //------------------------------------------------------------------------------
805 // Quantization
806 //
807 
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)808 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
809                                        const uint16_t* const sharpen,
810                                        const VP8Matrix* const mtx) {
811   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
812   const __m128i zero = _mm_setzero_si128();
813   __m128i coeff0, coeff8;
814   __m128i out0, out8;
815   __m128i packed_out;
816 
817   // Load all inputs.
818   // TODO(cduvivier): Make variable declarations and allocations aligned so that
819   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
820   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
821   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
822   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
823   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
824   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
825   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
826 
827   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
828   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
829   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
830 
831   // coeff = abs(in) = (in ^ sign) - sign
832   coeff0 = _mm_xor_si128(in0, sign0);
833   coeff8 = _mm_xor_si128(in8, sign8);
834   coeff0 = _mm_sub_epi16(coeff0, sign0);
835   coeff8 = _mm_sub_epi16(coeff8, sign8);
836 
837   // coeff = abs(in) + sharpen
838   if (sharpen != NULL) {
839     const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]);
840     const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]);
841     coeff0 = _mm_add_epi16(coeff0, sharpen0);
842     coeff8 = _mm_add_epi16(coeff8, sharpen8);
843   }
844 
845   // out = (coeff * iQ + B) >> QFIX
846   {
847     // doing calculations with 32b precision (QFIX=17)
848     // out = (coeff * iQ)
849     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
850     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
851     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
852     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
853     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
854     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
855     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
856     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
857     // out = (coeff * iQ + B)
858     const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
859     const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]);
860     const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
861     const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]);
862     out_00 = _mm_add_epi32(out_00, bias_00);
863     out_04 = _mm_add_epi32(out_04, bias_04);
864     out_08 = _mm_add_epi32(out_08, bias_08);
865     out_12 = _mm_add_epi32(out_12, bias_12);
866     // out = QUANTDIV(coeff, iQ, B, QFIX)
867     out_00 = _mm_srai_epi32(out_00, QFIX);
868     out_04 = _mm_srai_epi32(out_04, QFIX);
869     out_08 = _mm_srai_epi32(out_08, QFIX);
870     out_12 = _mm_srai_epi32(out_12, QFIX);
871 
872     // pack result as 16b
873     out0 = _mm_packs_epi32(out_00, out_04);
874     out8 = _mm_packs_epi32(out_08, out_12);
875 
876     // if (coeff > 2047) coeff = 2047
877     out0 = _mm_min_epi16(out0, max_coeff_2047);
878     out8 = _mm_min_epi16(out8, max_coeff_2047);
879   }
880 
881   // get sign back (if (sign[j]) out_n = -out_n)
882   out0 = _mm_xor_si128(out0, sign0);
883   out8 = _mm_xor_si128(out8, sign8);
884   out0 = _mm_sub_epi16(out0, sign0);
885   out8 = _mm_sub_epi16(out8, sign8);
886 
887   // in = out * Q
888   in0 = _mm_mullo_epi16(out0, q0);
889   in8 = _mm_mullo_epi16(out8, q8);
890 
891   _mm_storeu_si128((__m128i*)&in[0], in0);
892   _mm_storeu_si128((__m128i*)&in[8], in8);
893 
894   // zigzag the output before storing it.
895   //
896   // The zigzag pattern can almost be reproduced with a small sequence of
897   // shuffles. After it, we only need to swap the 7th (ending up in third
898   // position instead of twelfth) and 8th values.
899   {
900     __m128i outZ0, outZ8;
901     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
902     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
903     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
904     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
905     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
906     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
907     _mm_storeu_si128((__m128i*)&out[0], outZ0);
908     _mm_storeu_si128((__m128i*)&out[8], outZ8);
909     packed_out = _mm_packs_epi16(outZ0, outZ8);
910   }
911   {
912     const int16_t outZ_12 = out[12];
913     const int16_t outZ_3 = out[3];
914     out[3] = outZ_12;
915     out[12] = outZ_3;
916   }
917 
918   // detect if all 'out' values are zeroes or not
919   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
920 }
921 
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)922 static int QuantizeBlock(int16_t in[16], int16_t out[16],
923                          const VP8Matrix* const mtx) {
924   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
925 }
926 
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)927 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
928                             const VP8Matrix* const mtx) {
929   return DoQuantizeBlock(in, out, NULL, mtx);
930 }
931 
932 // Forward declaration.
933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
934                               VP8Residual* const res);
935 
VP8SetResidualCoeffsSSE2(const int16_t * const coeffs,VP8Residual * const res)936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
937                               VP8Residual* const res) {
938   const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs);
939   const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8));
940   // Use SSE to compare 8 values with a single instruction.
941   const __m128i zero = _mm_setzero_si128();
942   const __m128i m0 = _mm_cmpeq_epi16(c0, zero);
943   const __m128i m1 = _mm_cmpeq_epi16(c1, zero);
944   // Get the comparison results as a bitmask, consisting of two times 16 bits:
945   // two identical bits for each result. Concatenate both bitmasks to get a
946   // single 32 bit value. Negate the mask to get the position of entries that
947   // are not equal to zero. We don't need to mask out least significant bits
948   // according to res->first, since coeffs[0] is 0 if res->first > 0
949   const uint32_t mask =
950       ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0));
951   // The position of the most significant non-zero bit indicates the position of
952   // the last non-zero value. Divide the result by two because __movemask_epi8
953   // operates on 8 bit values instead of 16 bit values.
954   assert(res->first == 0 || coeffs[0] == 0);
955   res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1;
956   res->coeffs = coeffs;
957 }
958 
959 #endif   // WEBP_USE_SSE2
960 
961 //------------------------------------------------------------------------------
962 // Entry point
963 
964 extern void VP8EncDspInitSSE2(void);
965 
VP8EncDspInitSSE2(void)966 void VP8EncDspInitSSE2(void) {
967 #if defined(WEBP_USE_SSE2)
968   VP8CollectHistogram = CollectHistogram;
969   VP8EncQuantizeBlock = QuantizeBlock;
970   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
971   VP8ITransform = ITransform;
972   VP8FTransform = FTransform;
973   VP8FTransformWHT = FTransformWHT;
974   VP8SSE16x16 = SSE16x16;
975   VP8SSE16x8 = SSE16x8;
976   VP8SSE8x8 = SSE8x8;
977   VP8SSE4x4 = SSE4x4;
978   VP8TDisto4x4 = Disto4x4;
979   VP8TDisto16x16 = Disto16x16;
980 #endif   // WEBP_USE_SSE2
981 }
982 
983