1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "OpenGLRenderer"
18
19 #include <math.h>
20 #include <stdlib.h>
21 #include <string.h>
22
23 #include <utils/Log.h>
24
25 #include <SkMatrix.h>
26
27 #include "Matrix.h"
28
29 namespace android {
30 namespace uirenderer {
31
32 ///////////////////////////////////////////////////////////////////////////////
33 // Defines
34 ///////////////////////////////////////////////////////////////////////////////
35
36 static const float EPSILON = 0.0000001f;
37
38 ///////////////////////////////////////////////////////////////////////////////
39 // Matrix
40 ///////////////////////////////////////////////////////////////////////////////
41
identity()42 const Matrix4& Matrix4::identity() {
43 static Matrix4 sIdentity;
44 return sIdentity;
45 }
46
loadIdentity()47 void Matrix4::loadIdentity() {
48 data[kScaleX] = 1.0f;
49 data[kSkewY] = 0.0f;
50 data[2] = 0.0f;
51 data[kPerspective0] = 0.0f;
52
53 data[kSkewX] = 0.0f;
54 data[kScaleY] = 1.0f;
55 data[6] = 0.0f;
56 data[kPerspective1] = 0.0f;
57
58 data[8] = 0.0f;
59 data[9] = 0.0f;
60 data[kScaleZ] = 1.0f;
61 data[11] = 0.0f;
62
63 data[kTranslateX] = 0.0f;
64 data[kTranslateY] = 0.0f;
65 data[kTranslateZ] = 0.0f;
66 data[kPerspective2] = 1.0f;
67
68 mType = kTypeIdentity | kTypeRectToRect;
69 }
70
isZero(float f)71 static bool isZero(float f) {
72 return fabs(f) <= EPSILON;
73 }
74
getType() const75 uint8_t Matrix4::getType() const {
76 if (mType & kTypeUnknown) {
77 mType = kTypeIdentity;
78
79 if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80 data[kPerspective2] != 1.0f) {
81 mType |= kTypePerspective;
82 }
83
84 if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85 mType |= kTypeTranslate;
86 }
87
88 float m00 = data[kScaleX];
89 float m01 = data[kSkewX];
90 float m10 = data[kSkewY];
91 float m11 = data[kScaleY];
92 float m32 = data[kTranslateZ];
93
94 if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95 mType |= kTypeAffine;
96 }
97
98 if (m00 != 1.0f || m11 != 1.0f) {
99 mType |= kTypeScale;
100 }
101
102 // The following section determines whether the matrix will preserve
103 // rectangles. For instance, a rectangle transformed by a pure
104 // translation matrix will result in a rectangle. A rectangle
105 // transformed by a 45 degrees rotation matrix is not a rectangle.
106 // If the matrix has a perspective component then we already know
107 // it doesn't preserve rectangles.
108 if (!(mType & kTypePerspective)) {
109 if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110 (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111 mType |= kTypeRectToRect;
112 }
113 }
114 }
115 return mType;
116 }
117
getGeometryType() const118 uint8_t Matrix4::getGeometryType() const {
119 return getType() & sGeometryMask;
120 }
121
rectToRect() const122 bool Matrix4::rectToRect() const {
123 return getType() & kTypeRectToRect;
124 }
125
positiveScale() const126 bool Matrix4::positiveScale() const {
127 return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128 }
129
changesBounds() const130 bool Matrix4::changesBounds() const {
131 return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132 }
133
isPureTranslate() const134 bool Matrix4::isPureTranslate() const {
135 // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136 // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137 return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138 }
139
isSimple() const140 bool Matrix4::isSimple() const {
141 return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142 }
143
isIdentity() const144 bool Matrix4::isIdentity() const {
145 return getGeometryType() == kTypeIdentity;
146 }
147
isPerspective() const148 bool Matrix4::isPerspective() const {
149 return getType() & kTypePerspective;
150 }
151
load(const float * v)152 void Matrix4::load(const float* v) {
153 memcpy(data, v, sizeof(data));
154 mType = kTypeUnknown;
155 }
156
load(const Matrix4 & v)157 void Matrix4::load(const Matrix4& v) {
158 *this = v;
159 }
160
load(const SkMatrix & v)161 void Matrix4::load(const SkMatrix& v) {
162 memset(data, 0, sizeof(data));
163
164 data[kScaleX] = v[SkMatrix::kMScaleX];
165 data[kSkewX] = v[SkMatrix::kMSkewX];
166 data[kTranslateX] = v[SkMatrix::kMTransX];
167
168 data[kSkewY] = v[SkMatrix::kMSkewY];
169 data[kScaleY] = v[SkMatrix::kMScaleY];
170 data[kTranslateY] = v[SkMatrix::kMTransY];
171
172 data[kPerspective0] = v[SkMatrix::kMPersp0];
173 data[kPerspective1] = v[SkMatrix::kMPersp1];
174 data[kPerspective2] = v[SkMatrix::kMPersp2];
175
176 data[kScaleZ] = 1.0f;
177
178 // NOTE: The flags are compatible between SkMatrix and this class.
179 // However, SkMatrix::getType() does not return the flag
180 // kRectStaysRect. The return value is masked with 0xF
181 // so we need the extra rectStaysRect() check
182 mType = v.getType();
183 if (v.rectStaysRect()) {
184 mType |= kTypeRectToRect;
185 }
186 }
187
copyTo(SkMatrix & v) const188 void Matrix4::copyTo(SkMatrix& v) const {
189 v.reset();
190
191 v.set(SkMatrix::kMScaleX, data[kScaleX]);
192 v.set(SkMatrix::kMSkewX, data[kSkewX]);
193 v.set(SkMatrix::kMTransX, data[kTranslateX]);
194
195 v.set(SkMatrix::kMSkewY, data[kSkewY]);
196 v.set(SkMatrix::kMScaleY, data[kScaleY]);
197 v.set(SkMatrix::kMTransY, data[kTranslateY]);
198
199 v.set(SkMatrix::kMPersp0, data[kPerspective0]);
200 v.set(SkMatrix::kMPersp1, data[kPerspective1]);
201 v.set(SkMatrix::kMPersp2, data[kPerspective2]);
202 }
203
loadInverse(const Matrix4 & v)204 void Matrix4::loadInverse(const Matrix4& v) {
205 // Fast case for common translation matrices
206 if (v.isPureTranslate()) {
207 // Reset the matrix
208 // Unnamed fields are never written to except by
209 // loadIdentity(), they don't need to be reset
210 data[kScaleX] = 1.0f;
211 data[kSkewX] = 0.0f;
212
213 data[kScaleY] = 1.0f;
214 data[kSkewY] = 0.0f;
215
216 data[kScaleZ] = 1.0f;
217
218 data[kPerspective0] = 0.0f;
219 data[kPerspective1] = 0.0f;
220 data[kPerspective2] = 1.0f;
221
222 // No need to deal with kTranslateZ because isPureTranslate()
223 // only returns true when the kTranslateZ component is 0
224 data[kTranslateX] = -v.data[kTranslateX];
225 data[kTranslateY] = -v.data[kTranslateY];
226 data[kTranslateZ] = 0.0f;
227
228 // A "pure translate" matrix can be identity or translation
229 mType = v.getType();
230 return;
231 }
232
233 double scale = 1.0 /
234 (v.data[kScaleX] * ((double) v.data[kScaleY] * v.data[kPerspective2] -
235 (double) v.data[kTranslateY] * v.data[kPerspective1]) +
236 v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
237 (double) v.data[kSkewY] * v.data[kPerspective2]) +
238 v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
239 (double) v.data[kScaleY] * v.data[kPerspective0]));
240
241 data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
242 v.data[kTranslateY] * v.data[kPerspective1]) * scale;
243 data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
244 v.data[kSkewX] * v.data[kPerspective2]) * scale;
245 data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
246 v.data[kTranslateX] * v.data[kScaleY]) * scale;
247
248 data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
249 v.data[kSkewY] * v.data[kPerspective2]) * scale;
250 data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
251 v.data[kTranslateX] * v.data[kPerspective0]) * scale;
252 data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
253 v.data[kScaleX] * v.data[kTranslateY]) * scale;
254
255 data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
256 v.data[kScaleY] * v.data[kPerspective0]) * scale;
257 data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
258 v.data[kScaleX] * v.data[kPerspective1]) * scale;
259 data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
260 v.data[kSkewX] * v.data[kSkewY]) * scale;
261
262 mType = kTypeUnknown;
263 }
264
copyTo(float * v) const265 void Matrix4::copyTo(float* v) const {
266 memcpy(v, data, sizeof(data));
267 }
268
getTranslateX() const269 float Matrix4::getTranslateX() const {
270 return data[kTranslateX];
271 }
272
getTranslateY() const273 float Matrix4::getTranslateY() const {
274 return data[kTranslateY];
275 }
276
multiply(float v)277 void Matrix4::multiply(float v) {
278 for (int i = 0; i < 16; i++) {
279 data[i] *= v;
280 }
281 mType = kTypeUnknown;
282 }
283
loadTranslate(float x,float y,float z)284 void Matrix4::loadTranslate(float x, float y, float z) {
285 loadIdentity();
286
287 data[kTranslateX] = x;
288 data[kTranslateY] = y;
289 data[kTranslateZ] = z;
290
291 mType = kTypeTranslate | kTypeRectToRect;
292 }
293
loadScale(float sx,float sy,float sz)294 void Matrix4::loadScale(float sx, float sy, float sz) {
295 loadIdentity();
296
297 data[kScaleX] = sx;
298 data[kScaleY] = sy;
299 data[kScaleZ] = sz;
300
301 mType = kTypeScale | kTypeRectToRect;
302 }
303
loadSkew(float sx,float sy)304 void Matrix4::loadSkew(float sx, float sy) {
305 loadIdentity();
306
307 data[kScaleX] = 1.0f;
308 data[kSkewX] = sx;
309 data[kTranslateX] = 0.0f;
310
311 data[kSkewY] = sy;
312 data[kScaleY] = 1.0f;
313 data[kTranslateY] = 0.0f;
314
315 data[kPerspective0] = 0.0f;
316 data[kPerspective1] = 0.0f;
317 data[kPerspective2] = 1.0f;
318
319 mType = kTypeUnknown;
320 }
321
loadRotate(float angle)322 void Matrix4::loadRotate(float angle) {
323 angle *= float(M_PI / 180.0f);
324 float c = cosf(angle);
325 float s = sinf(angle);
326
327 loadIdentity();
328
329 data[kScaleX] = c;
330 data[kSkewX] = -s;
331
332 data[kSkewY] = s;
333 data[kScaleY] = c;
334
335 mType = kTypeUnknown;
336 }
337
loadRotate(float angle,float x,float y,float z)338 void Matrix4::loadRotate(float angle, float x, float y, float z) {
339 data[kPerspective0] = 0.0f;
340 data[kPerspective1] = 0.0f;
341 data[11] = 0.0f;
342 data[kTranslateX] = 0.0f;
343 data[kTranslateY] = 0.0f;
344 data[kTranslateZ] = 0.0f;
345 data[kPerspective2] = 1.0f;
346
347 angle *= float(M_PI / 180.0f);
348 float c = cosf(angle);
349 float s = sinf(angle);
350
351 const float length = sqrtf(x * x + y * y + z * z);
352 float recipLen = 1.0f / length;
353 x *= recipLen;
354 y *= recipLen;
355 z *= recipLen;
356
357 const float nc = 1.0f - c;
358 const float xy = x * y;
359 const float yz = y * z;
360 const float zx = z * x;
361 const float xs = x * s;
362 const float ys = y * s;
363 const float zs = z * s;
364
365 data[kScaleX] = x * x * nc + c;
366 data[kSkewX] = xy * nc - zs;
367 data[8] = zx * nc + ys;
368 data[kSkewY] = xy * nc + zs;
369 data[kScaleY] = y * y * nc + c;
370 data[9] = yz * nc - xs;
371 data[2] = zx * nc - ys;
372 data[6] = yz * nc + xs;
373 data[kScaleZ] = z * z * nc + c;
374
375 mType = kTypeUnknown;
376 }
377
loadMultiply(const Matrix4 & u,const Matrix4 & v)378 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
379 for (int i = 0 ; i < 4 ; i++) {
380 float x = 0;
381 float y = 0;
382 float z = 0;
383 float w = 0;
384
385 for (int j = 0 ; j < 4 ; j++) {
386 const float e = v.get(i, j);
387 x += u.get(j, 0) * e;
388 y += u.get(j, 1) * e;
389 z += u.get(j, 2) * e;
390 w += u.get(j, 3) * e;
391 }
392
393 set(i, 0, x);
394 set(i, 1, y);
395 set(i, 2, z);
396 set(i, 3, w);
397 }
398
399 mType = kTypeUnknown;
400 }
401
loadOrtho(float left,float right,float bottom,float top,float near,float far)402 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
403 loadIdentity();
404
405 data[kScaleX] = 2.0f / (right - left);
406 data[kScaleY] = 2.0f / (top - bottom);
407 data[kScaleZ] = -2.0f / (far - near);
408 data[kTranslateX] = -(right + left) / (right - left);
409 data[kTranslateY] = -(top + bottom) / (top - bottom);
410 data[kTranslateZ] = -(far + near) / (far - near);
411
412 mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
413 }
414
mapZ(const Vector3 & orig) const415 float Matrix4::mapZ(const Vector3& orig) const {
416 // duplicates logic for mapPoint3d's z coordinate
417 return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
418 }
419
mapPoint3d(Vector3 & vec) const420 void Matrix4::mapPoint3d(Vector3& vec) const {
421 //TODO: optimize simple case
422 const Vector3 orig(vec);
423 vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
424 vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
425 vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
426 }
427
428 #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
429
mapPoint(float & x,float & y) const430 void Matrix4::mapPoint(float& x, float& y) const {
431 if (isSimple()) {
432 MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
433 MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
434 return;
435 }
436
437 float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
438 float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
439 float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
440 if (dz) dz = 1.0f / dz;
441
442 x = dx * dz;
443 y = dy * dz;
444 }
445
mapRect(Rect & r) const446 void Matrix4::mapRect(Rect& r) const {
447 if (isIdentity()) return;
448
449 if (isSimple()) {
450 MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
451 MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
452 MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
453 MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
454
455 if (r.left > r.right) {
456 float x = r.left;
457 r.left = r.right;
458 r.right = x;
459 }
460
461 if (r.top > r.bottom) {
462 float y = r.top;
463 r.top = r.bottom;
464 r.bottom = y;
465 }
466
467 return;
468 }
469
470 float vertices[] = {
471 r.left, r.top,
472 r.right, r.top,
473 r.right, r.bottom,
474 r.left, r.bottom
475 };
476
477 float x, y, z;
478
479 for (int i = 0; i < 8; i+= 2) {
480 float px = vertices[i];
481 float py = vertices[i + 1];
482
483 x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
484 y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
485 z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
486 if (z) z = 1.0f / z;
487
488 vertices[i] = x * z;
489 vertices[i + 1] = y * z;
490 }
491
492 r.left = r.right = vertices[0];
493 r.top = r.bottom = vertices[1];
494
495 for (int i = 2; i < 8; i += 2) {
496 x = vertices[i];
497 y = vertices[i + 1];
498
499 if (x < r.left) r.left = x;
500 else if (x > r.right) r.right = x;
501 if (y < r.top) r.top = y;
502 else if (y > r.bottom) r.bottom = y;
503 }
504 }
505
decomposeScale(float & sx,float & sy) const506 void Matrix4::decomposeScale(float& sx, float& sy) const {
507 float len;
508 len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
509 sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
510 len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
511 sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
512 }
513
dump(const char * label) const514 void Matrix4::dump(const char* label) const {
515 ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
516 ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
517 ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
518 ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
519 ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
520 ALOGD("]");
521 }
522
523 }; // namespace uirenderer
524 }; // namespace android
525