1 /*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * * Redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer.
8 * * Redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution.
11 * * Neither the name of Google Inc. nor the names of its contributors may
12 * be used to endorse or promote products derived from this software
13 * without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
18 * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
24 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 // This is an implementation of the P256 elliptic curve group. It's written to
28 // be portable 32-bit, although it's still constant-time.
29 //
30 // WARNING: Implementing these functions in a constant-time manner is far from
31 // obvious. Be careful when touching this code.
32 //
33 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
34
35 #include <assert.h>
36 #include <stdint.h>
37 #include <string.h>
38 #include <stdio.h>
39
40 #include "mincrypt/p256.h"
41
42 const p256_int SECP256r1_n = // curve order
43 {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}};
44
45 const p256_int SECP256r1_p = // curve field size
46 {{-1, -1, -1, 0, 0, 0, 1, -1 }};
47
48 const p256_int SECP256r1_b = // curve b
49 {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0,
50 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}};
51
p256_init(p256_int * a)52 void p256_init(p256_int* a) {
53 memset(a, 0, sizeof(*a));
54 }
55
p256_clear(p256_int * a)56 void p256_clear(p256_int* a) { p256_init(a); }
57
p256_get_bit(const p256_int * scalar,int bit)58 int p256_get_bit(const p256_int* scalar, int bit) {
59 return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
60 >> (bit & (P256_BITSPERDIGIT - 1))) & 1;
61 }
62
p256_is_zero(const p256_int * a)63 int p256_is_zero(const p256_int* a) {
64 int i, result = 0;
65 for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
66 return !result;
67 }
68
69 // top, c[] += a[] * b
70 // Returns new top
mulAdd(const p256_int * a,p256_digit b,p256_digit top,p256_digit * c)71 static p256_digit mulAdd(const p256_int* a,
72 p256_digit b,
73 p256_digit top,
74 p256_digit* c) {
75 int i;
76 p256_ddigit carry = 0;
77
78 for (i = 0; i < P256_NDIGITS; ++i) {
79 carry += *c;
80 carry += (p256_ddigit)P256_DIGIT(a, i) * b;
81 *c++ = (p256_digit)carry;
82 carry >>= P256_BITSPERDIGIT;
83 }
84 return top + (p256_digit)carry;
85 }
86
87 // top, c[] -= top_a, a[]
subTop(p256_digit top_a,const p256_digit * a,p256_digit top_c,p256_digit * c)88 static p256_digit subTop(p256_digit top_a,
89 const p256_digit* a,
90 p256_digit top_c,
91 p256_digit* c) {
92 int i;
93 p256_sddigit borrow = 0;
94
95 for (i = 0; i < P256_NDIGITS; ++i) {
96 borrow += *c;
97 borrow -= *a++;
98 *c++ = (p256_digit)borrow;
99 borrow >>= P256_BITSPERDIGIT;
100 }
101 borrow += top_c;
102 borrow -= top_a;
103 top_c = (p256_digit)borrow;
104 assert((borrow >> P256_BITSPERDIGIT) == 0);
105 return top_c;
106 }
107
108 // top, c[] -= MOD[] & mask (0 or -1)
109 // returns new top.
subM(const p256_int * MOD,p256_digit top,p256_digit * c,p256_digit mask)110 static p256_digit subM(const p256_int* MOD,
111 p256_digit top,
112 p256_digit* c,
113 p256_digit mask) {
114 int i;
115 p256_sddigit borrow = 0;
116 for (i = 0; i < P256_NDIGITS; ++i) {
117 borrow += *c;
118 borrow -= P256_DIGIT(MOD, i) & mask;
119 *c++ = (p256_digit)borrow;
120 borrow >>= P256_BITSPERDIGIT;
121 }
122 return top + (p256_digit)borrow;
123 }
124
125 // top, c[] += MOD[] & mask (0 or -1)
126 // returns new top.
addM(const p256_int * MOD,p256_digit top,p256_digit * c,p256_digit mask)127 static p256_digit addM(const p256_int* MOD,
128 p256_digit top,
129 p256_digit* c,
130 p256_digit mask) {
131 int i;
132 p256_ddigit carry = 0;
133 for (i = 0; i < P256_NDIGITS; ++i) {
134 carry += *c;
135 carry += P256_DIGIT(MOD, i) & mask;
136 *c++ = (p256_digit)carry;
137 carry >>= P256_BITSPERDIGIT;
138 }
139 return top + (p256_digit)carry;
140 }
141
142 // c = a * b mod MOD. c can be a and/or b.
p256_modmul(const p256_int * MOD,const p256_int * a,const p256_digit top_b,const p256_int * b,p256_int * c)143 void p256_modmul(const p256_int* MOD,
144 const p256_int* a,
145 const p256_digit top_b,
146 const p256_int* b,
147 p256_int* c) {
148 p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
149 p256_digit top = 0;
150 int i;
151
152 // Multiply/add into tmp.
153 for (i = 0; i < P256_NDIGITS; ++i) {
154 if (i) tmp[i + P256_NDIGITS - 1] = top;
155 top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
156 }
157
158 // Multiply/add top digit
159 tmp[i + P256_NDIGITS - 1] = top;
160 top = mulAdd(a, top_b, 0, tmp + i);
161
162 // Reduce tmp, digit by digit.
163 for (; i >= 0; --i) {
164 p256_digit reducer[P256_NDIGITS] = { 0 };
165 p256_digit top_reducer;
166
167 // top can be any value at this point.
168 // Guestimate reducer as top * MOD, since msw of MOD is -1.
169 top_reducer = mulAdd(MOD, top, 0, reducer);
170
171 // Subtract reducer from top | tmp.
172 top = subTop(top_reducer, reducer, top, tmp + i);
173
174 // top is now either 0 or 1. Make it 0, fixed-timing.
175 assert(top <= 1);
176
177 top = subM(MOD, top, tmp + i, ~(top - 1));
178
179 assert(top == 0);
180
181 // We have now reduced the top digit off tmp. Fetch new top digit.
182 top = tmp[i + P256_NDIGITS - 1];
183 }
184
185 // tmp might still be larger than MOD, yet same bit length.
186 // Make sure it is less, fixed-timing.
187 addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));
188
189 memcpy(c, tmp, P256_NBYTES);
190 }
p256_is_odd(const p256_int * a)191 int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; }
p256_is_even(const p256_int * a)192 int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }
193
p256_shl(const p256_int * a,int n,p256_int * b)194 p256_digit p256_shl(const p256_int* a, int n, p256_int* b) {
195 int i;
196 p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);
197
198 n %= P256_BITSPERDIGIT;
199 for (i = P256_NDIGITS - 1; i > 0; --i) {
200 p256_digit accu = (P256_DIGIT(a, i) << n);
201 accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
202 P256_DIGIT(b, i) = accu;
203 }
204 P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);
205
206 top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT);
207
208 return top;
209 }
210
p256_shr(const p256_int * a,int n,p256_int * b)211 void p256_shr(const p256_int* a, int n, p256_int* b) {
212 int i;
213
214 n %= P256_BITSPERDIGIT;
215 for (i = 0; i < P256_NDIGITS - 1; ++i) {
216 p256_digit accu = (P256_DIGIT(a, i) >> n);
217 accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
218 P256_DIGIT(b, i) = accu;
219 }
220 P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
221 }
222
p256_shr1(const p256_int * a,int highbit,p256_int * b)223 static void p256_shr1(const p256_int* a, int highbit, p256_int* b) {
224 int i;
225
226 for (i = 0; i < P256_NDIGITS - 1; ++i) {
227 p256_digit accu = (P256_DIGIT(a, i) >> 1);
228 accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
229 P256_DIGIT(b, i) = accu;
230 }
231 P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
232 (highbit << (P256_BITSPERDIGIT - 1));
233 }
234
235 // Return -1, 0, 1 for a < b, a == b or a > b respectively.
p256_cmp(const p256_int * a,const p256_int * b)236 int p256_cmp(const p256_int* a, const p256_int* b) {
237 int i;
238 p256_sddigit borrow = 0;
239 p256_digit notzero = 0;
240
241 for (i = 0; i < P256_NDIGITS; ++i) {
242 borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
243 // Track whether any result digit is ever not zero.
244 // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
245 notzero |= !!((p256_digit)borrow);
246 borrow >>= P256_BITSPERDIGIT;
247 }
248 return (int)borrow | notzero;
249 }
250
251 // c = a - b. Returns borrow: 0 or -1.
p256_sub(const p256_int * a,const p256_int * b,p256_int * c)252 int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) {
253 int i;
254 p256_sddigit borrow = 0;
255
256 for (i = 0; i < P256_NDIGITS; ++i) {
257 borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
258 if (c) P256_DIGIT(c, i) = (p256_digit)borrow;
259 borrow >>= P256_BITSPERDIGIT;
260 }
261 return (int)borrow;
262 }
263
264 // c = a + b. Returns carry: 0 or 1.
p256_add(const p256_int * a,const p256_int * b,p256_int * c)265 int p256_add(const p256_int* a, const p256_int* b, p256_int* c) {
266 int i;
267 p256_ddigit carry = 0;
268
269 for (i = 0; i < P256_NDIGITS; ++i) {
270 carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
271 if (c) P256_DIGIT(c, i) = (p256_digit)carry;
272 carry >>= P256_BITSPERDIGIT;
273 }
274 return (int)carry;
275 }
276
277 // b = a + d. Returns carry, 0 or 1.
p256_add_d(const p256_int * a,p256_digit d,p256_int * b)278 int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) {
279 int i;
280 p256_ddigit carry = d;
281
282 for (i = 0; i < P256_NDIGITS; ++i) {
283 carry += (p256_ddigit)P256_DIGIT(a, i);
284 if (b) P256_DIGIT(b, i) = (p256_digit)carry;
285 carry >>= P256_BITSPERDIGIT;
286 }
287 return (int)carry;
288 }
289
290 // b = 1/a mod MOD, binary euclid.
p256_modinv_vartime(const p256_int * MOD,const p256_int * a,p256_int * b)291 void p256_modinv_vartime(const p256_int* MOD,
292 const p256_int* a,
293 p256_int* b) {
294 p256_int R = P256_ZERO;
295 p256_int S = P256_ONE;
296 p256_int U = *MOD;
297 p256_int V = *a;
298
299 for (;;) {
300 if (p256_is_even(&U)) {
301 p256_shr1(&U, 0, &U);
302 if (p256_is_even(&R)) {
303 p256_shr1(&R, 0, &R);
304 } else {
305 // R = (R+MOD)/2
306 p256_shr1(&R, p256_add(&R, MOD, &R), &R);
307 }
308 } else if (p256_is_even(&V)) {
309 p256_shr1(&V, 0, &V);
310 if (p256_is_even(&S)) {
311 p256_shr1(&S, 0, &S);
312 } else {
313 // S = (S+MOD)/2
314 p256_shr1(&S, p256_add(&S, MOD, &S) , &S);
315 }
316 } else { // U,V both odd.
317 if (!p256_sub(&V, &U, NULL)) {
318 p256_sub(&V, &U, &V);
319 if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S);
320 if (p256_is_zero(&V)) break; // done.
321 } else {
322 p256_sub(&U, &V, &U);
323 if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R);
324 }
325 }
326 }
327
328 p256_mod(MOD, &R, b);
329 }
330
p256_mod(const p256_int * MOD,const p256_int * in,p256_int * out)331 void p256_mod(const p256_int* MOD,
332 const p256_int* in,
333 p256_int* out) {
334 if (out != in) *out = *in;
335 addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
336 }
337
338 // Verify y^2 == x^3 - 3x + b mod p
339 // and 0 < x < p and 0 < y < p
p256_is_valid_point(const p256_int * x,const p256_int * y)340 int p256_is_valid_point(const p256_int* x, const p256_int* y) {
341 p256_int y2, x3;
342
343 if (p256_cmp(&SECP256r1_p, x) <= 0 ||
344 p256_cmp(&SECP256r1_p, y) <= 0 ||
345 p256_is_zero(x) ||
346 p256_is_zero(y)) return 0;
347
348 p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2
349
350 p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2
351 p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3
352 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x
353 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x
354 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x
355 if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b
356 p256_sub(&x3, &SECP256r1_p, &x3);
357
358 return p256_cmp(&y2, &x3) == 0;
359 }
360
p256_from_bin(const uint8_t src[P256_NBYTES],p256_int * dst)361 void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) {
362 int i;
363 const uint8_t* p = &src[0];
364
365 for (i = P256_NDIGITS - 1; i >= 0; --i) {
366 P256_DIGIT(dst, i) =
367 (p[0] << 24) |
368 (p[1] << 16) |
369 (p[2] << 8) |
370 p[3];
371 p += 4;
372 }
373 }
374