Lines Matching refs:current_state

116   State current_state(num_parameters, num_effective_parameters);  in Minimize()  local
134 if (!Evaluate(evaluator, x, &current_state, &summary->message)) { in Minimize()
142 summary->initial_cost = current_state.cost + summary->fixed_cost; in Minimize()
143 iteration_summary.cost = current_state.cost + summary->fixed_cost; in Minimize()
145 iteration_summary.gradient_max_norm = current_state.gradient_max_norm; in Minimize()
146 iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); in Minimize()
238 current_state.search_direction = -current_state.gradient; in Minimize()
242 current_state, in Minimize()
243 &current_state.search_direction); in Minimize()
278 current_state.search_direction = -current_state.gradient; in Minimize()
281 line_search_function.Init(x, current_state.search_direction); in Minimize()
282 current_state.directional_derivative = in Minimize()
283 current_state.gradient.dot(current_state.search_direction); in Minimize()
293 ? min(1.0, 1.0 / current_state.gradient_max_norm) in Minimize()
294 : min(1.0, 2.0 * (current_state.cost - previous_state.cost) / in Minimize()
295 current_state.directional_derivative); in Minimize()
304 initial_step_size, current_state.directional_derivative, in Minimize()
305 (current_state.cost - previous_state.cost)); in Minimize()
312 current_state.cost, in Minimize()
313 current_state.directional_derivative, in Minimize()
321 initial_step_size, current_state.cost, in Minimize()
322 current_state.directional_derivative); in Minimize()
328 current_state.step_size = line_search_summary.optimal_step_size; in Minimize()
329 delta = current_state.step_size * current_state.search_direction; in Minimize()
331 previous_state = current_state; in Minimize()
344 &current_state, in Minimize()
357 iteration_summary.gradient_max_norm = current_state.gradient_max_norm; in Minimize()
358 iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); in Minimize()
359 iteration_summary.cost_change = previous_state.cost - current_state.cost; in Minimize()
360 iteration_summary.cost = current_state.cost + summary->fixed_cost; in Minimize()
365 iteration_summary.step_size = current_state.step_size; in Minimize()