Lines Matching refs:td
35 <tr><td>
36 \ref Rotation2D "2D rotation" from an angle</td><td>\code
37 Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr>
38 <tr class="alt"><td>
39 3D rotation as an \ref AngleAxis "angle + axis"</td><td>\code
41 <span class="note">The axis vector must be normalized.</span></td></tr>
42 <tr><td>
43 3D rotation as a \ref Quaternion "quaternion"</td><td>\code
44 Quaternion<float> q; q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr>
45 <tr class="alt"><td>
46 N-D Scaling</td><td>\code
50 Scaling(vecN)\endcode</td></tr>
51 <tr><td>
52 N-D Translation</td><td>\code
56 Translation<float,N>(vecN)\endcode</td></tr>
57 <tr class="alt"><td>
58 N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code
60 Transform<float,3,Affine> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
61 <tr><td>
63 <em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code
66 Matrix<float,3> t = AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
83 <tr><td>\code
91 \endcode</td></tr>
100 <tr><td>
101 Concatenation of two transformations</td><td>\code
102 gen1 * gen2;\endcode</td></tr>
103 <tr class="alt"><td>Apply the transformation to a vector</td><td>\code
104 vec2 = gen1 * vec1;\endcode</td></tr>
105 <tr><td>Get the inverse of the transformation</td><td>\code
106 gen2 = gen1.inverse();\endcode</td></tr>
107 <tr class="alt"><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code
108 rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr>
120 <tr><td>
121 Apply the transformation to a \b point </td><td>\code
123 p2 = t * p1;\endcode</td></tr>
124 <tr class="alt"><td>
125 Apply the transformation to a \b vector </td><td>\code
127 vec2 = t.linear() * vec1;\endcode</td></tr>
128 <tr><td>
130 (<a href="http://femto.cs.uiuc.edu/faqs/cga-faq.html#S5.27">explanations</a>)</td><td>\code
133 n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
134 <tr class="alt"><td>
136 (no scaling, no shear)</td><td>\code
137 n2 = t.linear() * n1;\endcode</td></tr>
138 <tr><td>
139 OpenGL compatibility \b 3D </td><td>\code
140 glLoadMatrixf(t.data());\endcode</td></tr>
141 <tr class="alt"><td>
142 OpenGL compatibility \b 2D </td><td>\code
146 glLoadMatrixf(aux.data());\endcode</td></tr>
151 <tr><td>
152 full read-write access to the internal matrix</td><td>\code
155 \endcode</td></tr>
156 <tr class="alt"><td>
157 coefficient accessors</td><td>\code
160 \endcode</td></tr>
161 <tr><td>
162 translation part</td><td>\code
165 \endcode</td></tr>
166 <tr class="alt"><td>
167 linear part</td><td>\code
170 \endcode</td></tr>
171 <tr><td>
172 extract the rotation matrix</td><td>\code
174 \endcode</td></tr>
183 <tr><td>Translation</td><td>\code
186 \endcode</td><td>\code
189 \endcode</td></tr>
190 …lass="alt"><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can …
193 \endcode</td><td>\code
196 \endcode</td></tr>
197 <tr><td>Scaling</td><td>\code
202 \endcode</td><td>\code
207 \endcode</td></tr>
208 <tr class="alt"><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code
211 \endcode</td><td></td></tr>
216 <tr><td>\code
218 \endcode</td></tr>
219 <tr><td>\code
221 \endcode</td></tr>
228 <tr><td style="max-width:30em;">
231 to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
236 \endcode</td></tr>