Lines Matching refs:evolution_

74             evolution_.push_back(aux);  in Allocate_Memory_Evolution()
79 for (size_t i = 1; i < evolution_.size(); i++) in Allocate_Memory_Evolution()
84 ttime = evolution_[i].etime - evolution_[i - 1].etime; in Allocate_Memory_Evolution()
100 CV_Assert(evolution_.size() > 0); in Create_Nonlinear_Scale_Space()
103 img.copyTo(evolution_[0].Lt); in Create_Nonlinear_Scale_Space()
104 gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset); in Create_Nonlinear_Scale_Space()
105 gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lsmooth, 0, 0, options_.sderivatives); in Create_Nonlinear_Scale_Space()
108 Compute_KContrast(evolution_[0].Lt, options_.kcontrast_percentille); in Create_Nonlinear_Scale_Space()
111 Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); in Create_Nonlinear_Scale_Space()
112 Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); in Create_Nonlinear_Scale_Space()
115 for (size_t i = 1; i < evolution_.size(); i++) in Create_Nonlinear_Scale_Space()
117 evolution_[i - 1].Lt.copyTo(evolution_[i].Lt); in Create_Nonlinear_Scale_Space()
118 … gaussian_2D_convolution(evolution_[i - 1].Lt, evolution_[i].Lsmooth, 0, 0, options_.sderivatives); in Create_Nonlinear_Scale_Space()
121 Scharr(evolution_[i].Lsmooth, evolution_[i].Lx, CV_32F, 1, 0, 1, 0, BORDER_DEFAULT); in Create_Nonlinear_Scale_Space()
122 Scharr(evolution_[i].Lsmooth, evolution_[i].Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT); in Create_Nonlinear_Scale_Space()
126 pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); in Create_Nonlinear_Scale_Space()
128 pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); in Create_Nonlinear_Scale_Space()
130 weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); in Create_Nonlinear_Scale_Space()
134 nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]); in Create_Nonlinear_Scale_Space()
163 for (size_t i = 0; i < evolution_.size(); i++) in Compute_Detector_Response()
169 lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx); in Compute_Detector_Response()
170 lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx); in Compute_Detector_Response()
171 lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx); in Compute_Detector_Response()
172 *(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy); in Compute_Detector_Response()
195 explicit MultiscaleDerivativesKAZEInvoker(std::vector<TEvolution>& ev) : evolution_(&ev) in MultiscaleDerivativesKAZEInvoker()
201 std::vector<TEvolution>& evolution = *evolution_; in operator ()()
219 std::vector<TEvolution>* evolution_; member in cv::MultiscaleDerivativesKAZEInvoker
228 parallel_for_(Range(0, (int)evolution_.size()), in Compute_Multiscale_Derivatives()
229 MultiscaleDerivativesKAZEInvoker(evolution_)); in Compute_Multiscale_Derivatives()
238 … const KAZEOptions& options) : evolution_(&ev), kpts_par_(&kpts_par), options_(options) in FindExtremumKAZEInvoker()
244 std::vector<TEvolution>& evolution = *evolution_; in operator ()()
299 std::vector<TEvolution>* evolution_; member in cv::FindExtremumKAZEInvoker
328 for (size_t i = 1; i < evolution_.size() - 1; i++) { in Determinant_Hessian()
332 parallel_for_(Range(1, (int)evolution_.size()-1), in Determinant_Hessian()
333 FindExtremumKAZEInvoker(evolution_, kpts_par_, options_)); in Determinant_Hessian()
350 if (dist < evolution_[level].sigma_size*evolution_[level].sigma_size) { in Determinant_Hessian()
371 if (left_x < 0 || right_x >= evolution_[level].Ldet.cols || in Determinant_Hessian()
372 up_y < 0 || down_y >= evolution_[level].Ldet.rows) { in Determinant_Hessian()
415 Dx = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step) in Do_Subpixel_Refinement()
416 - *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step)); in Do_Subpixel_Refinement()
417 Dy = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x) in Do_Subpixel_Refinement()
418 - *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x)); in Do_Subpixel_Refinement()
419 Ds = 0.5f*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x) in Do_Subpixel_Refinement()
420 - *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x)); in Do_Subpixel_Refinement()
423 Dxx = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step) in Do_Subpixel_Refinement()
424 + *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step) in Do_Subpixel_Refinement()
425 - 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x))); in Do_Subpixel_Refinement()
427 Dyy = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x) in Do_Subpixel_Refinement()
428 + *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x) in Do_Subpixel_Refinement()
429 - 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x))); in Do_Subpixel_Refinement()
431 Dss = *(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x) in Do_Subpixel_Refinement()
432 + *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x) in Do_Subpixel_Refinement()
433 - 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x)); in Do_Subpixel_Refinement()
435 … Dxy = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x + step) in Do_Subpixel_Refinement()
436 + (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x - step))) in Do_Subpixel_Refinement()
437 … - (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x + step) in Do_Subpixel_Refinement()
438 + (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x - step))); in Do_Subpixel_Refinement()
440 Dxs = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x + step) in Do_Subpixel_Refinement()
441 + (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x - step))) in Do_Subpixel_Refinement()
442 - (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x - step) in Do_Subpixel_Refinement()
443 + (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x + step))); in Do_Subpixel_Refinement()
445 … Dys = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y + step) + x) in Do_Subpixel_Refinement()
446 + (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y - step) + x))) in Do_Subpixel_Refinement()
447 … - (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y - step) + x) in Do_Subpixel_Refinement()
448 + (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y + step) + x))); in Do_Subpixel_Refinement()
497 , evolution_(&evolution) in KAZE_Descriptor_Invoker()
510 std::vector<TEvolution> &evolution = *evolution_; in operator ()()
542 std::vector<TEvolution> * evolution_; member in cv::KAZE_Descriptor_Invoker
556 CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size())); in Feature_Description()
567 …parallel_for_(Range(0, (int)kpts.size()), KAZE_Descriptor_Invoker(kpts, desc, evolution_, options_… in Feature_Description()
577 …Compute_Main_Orientation(KeyPoint &kpt, const std::vector<TEvolution>& evolution_, const KAZEOptio… in Compute_Main_Orientation() argument
601 resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix)); in Compute_Main_Orientation()
602 resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix)); in Compute_Main_Orientation()
666 std::vector<TEvolution>& evolution = *evolution_; in Get_KAZE_Upright_Descriptor_64()
794 std::vector<TEvolution>& evolution = *evolution_; in Get_KAZE_Descriptor_64()
928 std::vector<TEvolution>& evolution = *evolution_; in Get_KAZE_Upright_Descriptor_128()
1077 std::vector<TEvolution>& evolution = *evolution_; in Get_KAZE_Descriptor_128()