Lines Matching refs:samples
33 samples, responses = a[:,1:], a[:,0]
34 return samples, responses
45 def unroll_samples(self, samples): argument
46 sample_n, var_n = samples.shape
48 new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
63 def train(self, samples, responses): argument
64 sample_n, var_n = samples.shape
68 … self.model.train(samples, cv2.CV_ROW_SAMPLE, responses, varType = var_types, params = params)
70 def predict(self, samples): argument
71 return np.float32( [self.model.predict(s) for s in samples] )
78 def train(self, samples, responses): argument
79 self.model.train(samples, responses)
81 def predict(self, samples): argument
82 retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
90 def train(self, samples, responses): argument
91 sample_n, var_n = samples.shape
92 new_samples = self.unroll_samples(samples)
99 def predict(self, samples): argument
100 new_samples = self.unroll_samples(samples)
110 def train(self, samples, responses): argument
114 self.model.train(samples, responses, params = params)
116 def predict(self, samples): argument
117 return self.model.predict_all(samples).ravel()
124 def train(self, samples, responses): argument
125 sample_n, var_n = samples.shape
136 self.model.train(samples, np.float32(new_responses), None, params = params)
138 def predict(self, samples): argument
139 ret, resp = self.model.predict(samples)
159 samples, responses = load_base(args['--data']) variable
163 train_n = int(len(samples)*model.train_ratio)
170 model.train(samples[:train_n], responses[:train_n])
173 train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
174 test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])