/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_ #define ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_ #include #include #include #include #include #include #include #include "cmdline_parse_result.h" #include "cmdline_types.h" #include "token_range.h" #include "unit.h" namespace art { // Implementation details for the parser. Do not look inside if you hate templates. namespace detail { // A non-templated base class for argument parsers. Used by the general parser // to parse arguments, without needing to know the argument type at compile time. // // This is an application of the type erasure idiom. struct CmdlineParseArgumentAny { virtual ~CmdlineParseArgumentAny() {} // Attempt to parse this argument starting at arguments[position]. // If the parsing succeeds, the parsed value will be saved as a side-effect. // // In most situations, the parsing will not match by returning kUnknown. In this case, // no tokens were consumed and the position variable will not be updated. // // At other times, parsing may fail due to validation but the initial token was still matched // (for example an out of range value, or passing in a string where an int was expected). // In this case the tokens are still consumed, and the position variable will get incremented // by all the consumed tokens. // // The # of tokens consumed by the parse attempt will be set as an out-parameter into // consumed_tokens. The parser should skip this many tokens before parsing the next // argument. virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) = 0; // How many tokens should be taken off argv for parsing this argument. // For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space). // // A [min,max] range is returned to represent argument definitions with multiple // value tokens. (e.g. {"-h", "-h " } would return [1,2]). virtual std::pair GetNumTokens() const = 0; // Get the run-time typename of the argument type. virtual const char* GetTypeName() const = 0; // Try to do a close match, returning how many tokens were matched against this argument // definition. More tokens is better. // // Do a quick match token-by-token, and see if they match. // Any tokens with a wildcard in them are only matched up until the wildcard. // If this is true, then the wildcard matching later on can still fail, so this is not // a guarantee that the argument is correct, it's more of a strong hint that the // user-provided input *probably* was trying to match this argument. // // Returns how many tokens were either matched (or ignored because there was a // wildcard present). 0 means no match. If the Size() tokens are returned. virtual size_t MaybeMatches(const TokenRange& tokens) = 0; }; template using EnableIfNumeric = std::enable_if::value>; template using DisableIfNumeric = std::enable_if::value>; // Argument definition information, created by an ArgumentBuilder and an UntypedArgumentBuilder. template struct CmdlineParserArgumentInfo { // This version will only be used if TArg is arithmetic and thus has the <= operators. template // Necessary to get SFINAE to kick in. bool CheckRange(const TArg& value, typename EnableIfNumeric::type* = 0) { if (has_range_) { return min_ <= value && value <= max_; } return true; } // This version will be used at other times when TArg is not arithmetic. template bool CheckRange(const TArg&, typename DisableIfNumeric::type* = 0) { assert(!has_range_); return true; } // Do a quick match token-by-token, and see if they match. // Any tokens with a wildcard in them only match the prefix up until the wildcard. // // If this is true, then the wildcard matching later on can still fail, so this is not // a guarantee that the argument is correct, it's more of a strong hint that the // user-provided input *probably* was trying to match this argument. size_t MaybeMatches(TokenRange token_list) const { auto best_match = FindClosestMatch(token_list); return best_match.second; } // Attempt to find the closest match (see MaybeMatches). // // Returns the token range that was the closest match and the # of tokens that // this range was matched up until. std::pair FindClosestMatch(TokenRange token_list) const { const TokenRange* best_match_ptr = nullptr; size_t best_match = 0; for (auto&& token_range : tokenized_names_) { size_t this_match = token_range.MaybeMatches(token_list, std::string("_")); if (this_match > best_match) { best_match_ptr = &token_range; best_match = this_match; } } return std::make_pair(best_match_ptr, best_match); } // Mark the argument definition as completed, do not mutate the object anymore after this // call is done. // // Performs several sanity checks and token calculations. void CompleteArgument() { assert(names_.size() >= 1); assert(!is_completed_); is_completed_ = true; size_t blank_count = 0; size_t token_count = 0; size_t global_blank_count = 0; size_t global_token_count = 0; for (auto&& name : names_) { std::string s(name); size_t local_blank_count = std::count(s.begin(), s.end(), '_'); size_t local_token_count = std::count(s.begin(), s.end(), ' '); if (global_blank_count != 0) { assert(local_blank_count == global_blank_count && "Every argument descriptor string must have same amount of blanks (_)"); } if (local_blank_count != 0) { global_blank_count = local_blank_count; blank_count++; assert(local_blank_count == 1 && "More than one blank is not supported"); assert(s.back() == '_' && "The blank character must only be at the end of the string"); } if (global_token_count != 0) { assert(local_token_count == global_token_count && "Every argument descriptor string must have same amount of tokens (spaces)"); } if (local_token_count != 0) { global_token_count = local_token_count; token_count++; } // Tokenize every name, turning it from a string to a token list. tokenized_names_.clear(); for (auto&& name1 : names_) { // Split along ' ' only, removing any duplicated spaces. tokenized_names_.push_back( TokenRange::Split(name1, {' '}).RemoveToken(" ")); } // remove the _ character from each of the token ranges // we will often end up with an empty token (i.e. ["-XX", "_"] -> ["-XX", ""] // and this is OK because we still need an empty token to simplify // range comparisons simple_names_.clear(); for (auto&& tokenized_name : tokenized_names_) { simple_names_.push_back(tokenized_name.RemoveCharacter('_')); } } if (token_count != 0) { assert(("Every argument descriptor string must have equal amount of tokens (spaces)" && token_count == names_.size())); } if (blank_count != 0) { assert(("Every argument descriptor string must have an equal amount of blanks (_)" && blank_count == names_.size())); } using_blanks_ = blank_count > 0; { size_t smallest_name_token_range_size = std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), ~(0u), [](size_t min, const TokenRange& cur) { return std::min(min, cur.Size()); }); size_t largest_name_token_range_size = std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), 0u, [](size_t max, const TokenRange& cur) { return std::max(max, cur.Size()); }); token_range_size_ = std::make_pair(smallest_name_token_range_size, largest_name_token_range_size); } if (has_value_list_) { assert(names_.size() == value_list_.size() && "Number of arg descriptors must match number of values"); assert(!has_value_map_); } if (has_value_map_) { if (!using_blanks_) { assert(names_.size() == value_map_.size() && "Since no blanks were specified, each arg is mapped directly into a mapped " "value without parsing; sizes must match"); } assert(!has_value_list_); } if (!using_blanks_ && !CmdlineType::kCanParseBlankless) { assert((has_value_map_ || has_value_list_) && "Arguments without a blank (_) must provide either a value map or a value list"); } TypedCheck(); } // List of aliases for a single argument definition, e.g. {"-Xdex2oat", "-Xnodex2oat"}. std::vector names_; // Is there at least 1 wildcard '_' in the argument definition? bool using_blanks_ = false; // [min, max] token counts in each arg def std::pair token_range_size_; // contains all the names in a tokenized form, i.e. as a space-delimited list std::vector tokenized_names_; // contains the tokenized names, but with the _ character stripped std::vector simple_names_; // For argument definitions created with '.AppendValues()' // Meaning that parsing should mutate the existing value in-place if possible. bool appending_values_ = false; // For argument definitions created with '.WithRange(min, max)' bool has_range_ = false; TArg min_; TArg max_; // For argument definitions created with '.WithValueMap' bool has_value_map_ = false; std::vector> value_map_; // For argument definitions created with '.WithValues' bool has_value_list_ = false; std::vector value_list_; // Make sure there's a default constructor. CmdlineParserArgumentInfo() = default; // Ensure there's a default move constructor. CmdlineParserArgumentInfo(CmdlineParserArgumentInfo&&) = default; private: // Perform type-specific checks at runtime. template void TypedCheck(typename std::enable_if::value>::type* = 0) { assert(!using_blanks_ && "Blanks are not supported in Unit arguments; since a Unit has no parse-able value"); } void TypedCheck() {} bool is_completed_ = false; }; // A virtual-implementation of the necessary argument information in order to // be able to parse arguments. template struct CmdlineParseArgument : CmdlineParseArgumentAny { CmdlineParseArgument(CmdlineParserArgumentInfo&& argument_info, std::function&& save_argument, std::function&& load_argument) : argument_info_(std::forward(argument_info)), save_argument_(std::forward(save_argument)), load_argument_(std::forward(load_argument)) { } using UserTypeInfo = CmdlineType; virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) { assert(arguments.Size() > 0); assert(consumed_tokens != nullptr); auto closest_match_res = argument_info_.FindClosestMatch(arguments); size_t best_match_size = closest_match_res.second; const TokenRange* best_match_arg_def = closest_match_res.first; if (best_match_size > arguments.Size()) { // The best match has more tokens than were provided. // Shouldn't happen in practice since the outer parser does this check. return CmdlineResult(CmdlineResult::kUnknown, "Size mismatch"); } assert(best_match_arg_def != nullptr); *consumed_tokens = best_match_arg_def->Size(); if (!argument_info_.using_blanks_) { return ParseArgumentSingle(arguments.Join(' ')); } // Extract out the blank value from arguments // e.g. for a def of "foo:_" and input "foo:bar", blank_value == "bar" std::string blank_value = ""; size_t idx = 0; for (auto&& def_token : *best_match_arg_def) { auto&& arg_token = arguments[idx]; // Does this definition-token have a wildcard in it? if (def_token.find('_') == std::string::npos) { // No, regular token. Match 1:1 against the argument token. bool token_match = def_token == arg_token; if (!token_match) { return CmdlineResult(CmdlineResult::kFailure, std::string("Failed to parse ") + best_match_arg_def->GetToken(0) + " at token " + std::to_string(idx)); } } else { // This is a wild-carded token. TokenRange def_split_wildcards = TokenRange::Split(def_token, {'_'}); // Extract the wildcard contents out of the user-provided arg_token. std::unique_ptr arg_matches = def_split_wildcards.MatchSubstrings(arg_token, "_"); if (arg_matches == nullptr) { return CmdlineResult(CmdlineResult::kFailure, std::string("Failed to parse ") + best_match_arg_def->GetToken(0) + ", with a wildcard pattern " + def_token + " at token " + std::to_string(idx)); } // Get the corresponding wildcard tokens from arg_matches, // and concatenate it to blank_value. for (size_t sub_idx = 0; sub_idx < def_split_wildcards.Size() && sub_idx < arg_matches->Size(); ++sub_idx) { if (def_split_wildcards[sub_idx] == "_") { blank_value += arg_matches->GetToken(sub_idx); } } } ++idx; } return ParseArgumentSingle(blank_value); } private: virtual CmdlineResult ParseArgumentSingle(const std::string& argument) { // TODO: refactor to use LookupValue for the value lists/maps // Handle the 'WithValueMap(...)' argument definition if (argument_info_.has_value_map_) { for (auto&& value_pair : argument_info_.value_map_) { const char* name = value_pair.first; if (argument == name) { return SaveArgument(value_pair.second); } } // Error case: Fail, telling the user what the allowed values were. std::vector allowed_values; for (auto&& value_pair : argument_info_.value_map_) { const char* name = value_pair.first; allowed_values.push_back(name); } std::string allowed_values_flat = Join(allowed_values, ','); return CmdlineResult(CmdlineResult::kFailure, "Argument value '" + argument + "' does not match any of known valid" "values: {" + allowed_values_flat + "}"); } // Handle the 'WithValues(...)' argument definition if (argument_info_.has_value_list_) { size_t arg_def_idx = 0; for (auto&& value : argument_info_.value_list_) { auto&& arg_def_token = argument_info_.names_[arg_def_idx]; if (arg_def_token == argument) { return SaveArgument(value); } ++arg_def_idx; } assert(arg_def_idx + 1 == argument_info_.value_list_.size() && "Number of named argument definitions must match number of values defined"); // Error case: Fail, telling the user what the allowed values were. std::vector allowed_values; for (auto&& arg_name : argument_info_.names_) { allowed_values.push_back(arg_name); } std::string allowed_values_flat = Join(allowed_values, ','); return CmdlineResult(CmdlineResult::kFailure, "Argument value '" + argument + "' does not match any of known valid" "values: {" + allowed_values_flat + "}"); } // Handle the regular case where we parsed an unknown value from a blank. UserTypeInfo type_parser; if (argument_info_.appending_values_) { TArg& existing = load_argument_(); CmdlineParseResult result = type_parser.ParseAndAppend(argument, existing); assert(!argument_info_.has_range_); return result; } CmdlineParseResult result = type_parser.Parse(argument); if (result.IsSuccess()) { TArg& value = result.GetValue(); // Do a range check for 'WithRange(min,max)' argument definition. if (!argument_info_.CheckRange(value)) { return CmdlineParseResult::OutOfRange( value, argument_info_.min_, argument_info_.max_); } return SaveArgument(value); } // Some kind of type-specific parse error. Pass the result as-is. CmdlineResult raw_result = std::move(result); return raw_result; } public: virtual const char* GetTypeName() const { // TODO: Obviate the need for each type specialization to hardcode the type name return UserTypeInfo::Name(); } // How many tokens should be taken off argv for parsing this argument. // For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space). // // A [min,max] range is returned to represent argument definitions with multiple // value tokens. (e.g. {"-h", "-h " } would return [1,2]). virtual std::pair GetNumTokens() const { return argument_info_.token_range_size_; } // See if this token range might begin the same as the argument definition. virtual size_t MaybeMatches(const TokenRange& tokens) { return argument_info_.MaybeMatches(tokens); } private: CmdlineResult SaveArgument(const TArg& value) { assert(!argument_info_.appending_values_ && "If the values are being appended, then the updated parse value is " "updated by-ref as a side effect and shouldn't be stored directly"); TArg val = value; save_argument_(val); return CmdlineResult(CmdlineResult::kSuccess); } CmdlineParserArgumentInfo argument_info_; std::function save_argument_; std::function load_argument_; }; } // namespace detail // NOLINT [readability/namespace] [5] [whitespace/comments] [2] } // namespace art #endif // ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_