/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verified_method.h" #include #include #include #include "art_method-inl.h" #include "base/logging.h" #include "base/stl_util.h" #include "dex_file.h" #include "dex_instruction-inl.h" #include "dex_instruction_utils.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "utils.h" #include "verifier/method_verifier-inl.h" #include "verifier/reg_type-inl.h" #include "verifier/register_line-inl.h" namespace art { VerifiedMethod::VerifiedMethod(uint32_t encountered_error_types, bool has_runtime_throw) : encountered_error_types_(encountered_error_types), has_runtime_throw_(has_runtime_throw) { } const VerifiedMethod* VerifiedMethod::Create(verifier::MethodVerifier* method_verifier, bool compile) { std::unique_ptr verified_method( new VerifiedMethod(method_verifier->GetEncounteredFailureTypes(), method_verifier->HasInstructionThatWillThrow())); if (compile) { // TODO: move this out when DEX-to-DEX supports devirtualization. if (method_verifier->HasVirtualOrInterfaceInvokes()) { verified_method->GenerateDevirtMap(method_verifier); } // Only need dequicken info for JIT so far. if (Runtime::Current()->UseJitCompilation() && !verified_method->GenerateDequickenMap(method_verifier)) { return nullptr; } } if (method_verifier->HasCheckCasts()) { verified_method->GenerateSafeCastSet(method_verifier); } return verified_method.release(); } const MethodReference* VerifiedMethod::GetDevirtTarget(uint32_t dex_pc) const { auto it = devirt_map_.find(dex_pc); return (it != devirt_map_.end()) ? &it->second : nullptr; } const DexFileReference* VerifiedMethod::GetDequickenIndex(uint32_t dex_pc) const { DCHECK(Runtime::Current()->UseJitCompilation()); auto it = dequicken_map_.find(dex_pc); return (it != dequicken_map_.end()) ? &it->second : nullptr; } bool VerifiedMethod::IsSafeCast(uint32_t pc) const { return std::binary_search(safe_cast_set_.begin(), safe_cast_set_.end(), pc); } bool VerifiedMethod::GenerateDequickenMap(verifier::MethodVerifier* method_verifier) { if (method_verifier->HasFailures()) { return false; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { const bool is_virtual_quick = inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK; const bool is_range_quick = inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK; if (is_virtual_quick || is_range_quick) { uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); ArtMethod* method = method_verifier->GetQuickInvokedMethod(inst, line, is_range_quick, true); if (method == nullptr) { // It can be null if the line wasn't verified since it was unreachable. return false; } // The verifier must know what the type of the object was or else we would have gotten a // failure. Put the dex method index in the dequicken map since we need this to get number of // arguments in the compiler. dequicken_map_.Put(dex_pc, DexFileReference(method->GetDexFile(), method->GetDexMethodIndex())); } else if (IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) { uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); ArtField* field = method_verifier->GetQuickFieldAccess(inst, line); if (field == nullptr) { // It can be null if the line wasn't verified since it was unreachable. return false; } // The verifier must know what the type of the field was or else we would have gotten a // failure. Put the dex field index in the dequicken map since we need this for lowering // in the compiler. // TODO: Putting a field index in a method reference is gross. dequicken_map_.Put(dex_pc, DexFileReference(field->GetDexFile(), field->GetDexFieldIndex())); } } return true; } void VerifiedMethod::GenerateDevirtMap(verifier::MethodVerifier* method_verifier) { // It is risky to rely on reg_types for sharpening in cases of soft // verification, we might end up sharpening to a wrong implementation. Just abort. if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { const bool is_virtual = inst->Opcode() == Instruction::INVOKE_VIRTUAL || inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE; const bool is_interface = inst->Opcode() == Instruction::INVOKE_INTERFACE || inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE; if (!is_interface && !is_virtual) { continue; } // Get reg type for register holding the reference to the object that will be dispatched upon. uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); const bool is_range = inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE || inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE; const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, is_range ? inst->VRegC_3rc() : inst->VRegC_35c())); if (!reg_type.HasClass()) { // We will compute devirtualization information only when we know the Class of the reg type. continue; } mirror::Class* reg_class = reg_type.GetClass(); if (reg_class->IsInterface()) { // We can't devirtualize when the known type of the register is an interface. continue; } if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) { // We can't devirtualize abstract classes except on arrays of abstract classes. continue; } auto* cl = Runtime::Current()->GetClassLinker(); size_t pointer_size = cl->GetImagePointerSize(); ArtMethod* abstract_method = method_verifier->GetDexCache()->GetResolvedMethod( is_range ? inst->VRegB_3rc() : inst->VRegB_35c(), pointer_size); if (abstract_method == nullptr) { // If the method is not found in the cache this means that it was never found // by ResolveMethodAndCheckAccess() called when verifying invoke_*. continue; } // Find the concrete method. ArtMethod* concrete_method = nullptr; if (is_interface) { concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface( abstract_method, pointer_size); } if (is_virtual) { concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual( abstract_method, pointer_size); } if (concrete_method == nullptr || !concrete_method->IsInvokable()) { // In cases where concrete_method is not found, or is not invokable, continue to the next // invoke. continue; } if (reg_type.IsPreciseReference() || concrete_method->IsFinal() || concrete_method->GetDeclaringClass()->IsFinal()) { // If we knew exactly the class being dispatched upon, or if the target method cannot be // overridden record the target to be used in the compiler driver. devirt_map_.Put(dex_pc, concrete_method->ToMethodReference()); } } } void VerifiedMethod::GenerateSafeCastSet(verifier::MethodVerifier* method_verifier) { /* * Walks over the method code and adds any cast instructions in which * the type cast is implicit to a set, which is used in the code generation * to elide these casts. */ if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const Instruction* inst = Instruction::At(code_item->insns_); const Instruction* end = Instruction::At(code_item->insns_ + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { Instruction::Code code = inst->Opcode(); if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) { uint32_t dex_pc = inst->GetDexPc(code_item->insns_); if (!method_verifier->GetInstructionFlags(dex_pc).IsVisited()) { // Do not attempt to quicken this instruction, it's unreachable anyway. continue; } const verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_safe_cast = false; if (code == Instruction::CHECK_CAST) { const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, inst->VRegA_21c())); const verifier::RegType& cast_type = method_verifier->ResolveCheckedClass(inst->VRegB_21c()); is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type); } else { const verifier::RegType& array_type(line->GetRegisterType(method_verifier, inst->VRegB_23x())); // We only know its safe to assign to an array if the array type is precise. For example, // an Object[] can have any type of object stored in it, but it may also be assigned a // String[] in which case the stores need to be of Strings. if (array_type.IsPreciseReference()) { const verifier::RegType& value_type(line->GetRegisterType(method_verifier, inst->VRegA_23x())); const verifier::RegType& component_type = method_verifier->GetRegTypeCache() ->GetComponentType(array_type, method_verifier->GetClassLoader()); is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type); } } if (is_safe_cast) { // Verify ordering for push_back() to the sorted vector. DCHECK(safe_cast_set_.empty() || safe_cast_set_.back() < dex_pc); safe_cast_set_.push_back(dex_pc); } } } } } // namespace art