/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "arch/instruction_set.h" #include "arch/arm/instruction_set_features_arm.h" #include "arch/arm/registers_arm.h" #include "arch/arm64/instruction_set_features_arm64.h" #include "arch/mips/instruction_set_features_mips.h" #include "arch/mips/registers_mips.h" #include "arch/mips64/instruction_set_features_mips64.h" #include "arch/mips64/registers_mips64.h" #include "arch/x86/instruction_set_features_x86.h" #include "arch/x86/registers_x86.h" #include "arch/x86_64/instruction_set_features_x86_64.h" #include "base/macros.h" #include "builder.h" #include "code_generator_arm.h" #include "code_generator_arm64.h" #include "code_generator_mips.h" #include "code_generator_mips64.h" #include "code_generator_x86.h" #include "code_generator_x86_64.h" #include "code_simulator_container.h" #include "common_compiler_test.h" #include "dex_file.h" #include "dex_instruction.h" #include "driver/compiler_options.h" #include "graph_checker.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "prepare_for_register_allocation.h" #include "register_allocator.h" #include "ssa_liveness_analysis.h" #include "utils.h" #include "utils/arm/managed_register_arm.h" #include "utils/mips/managed_register_mips.h" #include "utils/mips64/managed_register_mips64.h" #include "utils/x86/managed_register_x86.h" #include "gtest/gtest.h" namespace art { // Provide our own codegen, that ensures the C calling conventions // are preserved. Currently, ART and C do not match as R4 is caller-save // in ART, and callee-save in C. Alternatively, we could use or write // the stub that saves and restores all registers, but it is easier // to just overwrite the code generator. class TestCodeGeneratorARM : public arm::CodeGeneratorARM { public: TestCodeGeneratorARM(HGraph* graph, const ArmInstructionSetFeatures& isa_features, const CompilerOptions& compiler_options) : arm::CodeGeneratorARM(graph, isa_features, compiler_options) { AddAllocatedRegister(Location::RegisterLocation(arm::R6)); AddAllocatedRegister(Location::RegisterLocation(arm::R7)); } void SetupBlockedRegisters() const OVERRIDE { arm::CodeGeneratorARM::SetupBlockedRegisters(); blocked_core_registers_[arm::R4] = true; blocked_core_registers_[arm::R6] = false; blocked_core_registers_[arm::R7] = false; // Makes pair R6-R7 available. blocked_register_pairs_[arm::R6_R7] = false; } }; class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 { public: TestCodeGeneratorX86(HGraph* graph, const X86InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options) : x86::CodeGeneratorX86(graph, isa_features, compiler_options) { // Save edi, we need it for getting enough registers for long multiplication. AddAllocatedRegister(Location::RegisterLocation(x86::EDI)); } void SetupBlockedRegisters() const OVERRIDE { x86::CodeGeneratorX86::SetupBlockedRegisters(); // ebx is a callee-save register in C, but caller-save for ART. blocked_core_registers_[x86::EBX] = true; blocked_register_pairs_[x86::EAX_EBX] = true; blocked_register_pairs_[x86::EDX_EBX] = true; blocked_register_pairs_[x86::ECX_EBX] = true; blocked_register_pairs_[x86::EBX_EDI] = true; // Make edi available. blocked_core_registers_[x86::EDI] = false; blocked_register_pairs_[x86::ECX_EDI] = false; } }; class InternalCodeAllocator : public CodeAllocator { public: InternalCodeAllocator() : size_(0) { } virtual uint8_t* Allocate(size_t size) { size_ = size; memory_.reset(new uint8_t[size]); return memory_.get(); } size_t GetSize() const { return size_; } uint8_t* GetMemory() const { return memory_.get(); } private: size_t size_; std::unique_ptr memory_; DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); }; static bool CanExecuteOnHardware(InstructionSet target_isa) { return (target_isa == kRuntimeISA) // Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2). || (kRuntimeISA == kArm && target_isa == kThumb2); } static bool CanExecute(InstructionSet target_isa) { CodeSimulatorContainer simulator(target_isa); return CanExecuteOnHardware(target_isa) || simulator.CanSimulate(); } template static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)()); template <> bool SimulatorExecute(CodeSimulator* simulator, bool (*f)()) { simulator->RunFrom(reinterpret_cast(f)); return simulator->GetCReturnBool(); } template <> int32_t SimulatorExecute(CodeSimulator* simulator, int32_t (*f)()) { simulator->RunFrom(reinterpret_cast(f)); return simulator->GetCReturnInt32(); } template <> int64_t SimulatorExecute(CodeSimulator* simulator, int64_t (*f)()) { simulator->RunFrom(reinterpret_cast(f)); return simulator->GetCReturnInt64(); } template static void VerifyGeneratedCode(InstructionSet target_isa, Expected (*f)(), bool has_result, Expected expected) { ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable."; // Verify on simulator. CodeSimulatorContainer simulator(target_isa); if (simulator.CanSimulate()) { Expected result = SimulatorExecute(simulator.Get(), f); if (has_result) { ASSERT_EQ(expected, result); } } // Verify on hardware. if (CanExecuteOnHardware(target_isa)) { Expected result = f(); if (has_result) { ASSERT_EQ(expected, result); } } } template static void Run(const InternalCodeAllocator& allocator, const CodeGenerator& codegen, bool has_result, Expected expected) { InstructionSet target_isa = codegen.GetInstructionSet(); typedef Expected (*fptr)(); CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); fptr f = reinterpret_cast(allocator.GetMemory()); if (target_isa == kThumb2) { // For thumb we need the bottom bit set. f = reinterpret_cast(reinterpret_cast(f) + 1); } VerifyGeneratedCode(target_isa, f, has_result, expected); } template static void RunCode(CodeGenerator* codegen, HGraph* graph, std::function hook_before_codegen, bool has_result, Expected expected) { GraphChecker graph_checker(graph); graph_checker.Run(); if (!graph_checker.IsValid()) { for (auto error : graph_checker.GetErrors()) { std::cout << error << std::endl; } } ASSERT_TRUE(graph_checker.IsValid()); SsaLivenessAnalysis liveness(graph, codegen); PrepareForRegisterAllocation(graph).Run(); liveness.Analyze(); RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters(); hook_before_codegen(graph); InternalCodeAllocator allocator; codegen->Compile(&allocator); Run(allocator, *codegen, has_result, expected); } template static void RunCode(InstructionSet target_isa, HGraph* graph, std::function hook_before_codegen, bool has_result, Expected expected) { CompilerOptions compiler_options; if (target_isa == kArm || target_isa == kThumb2) { std::unique_ptr features_arm( ArmInstructionSetFeatures::FromCppDefines()); TestCodeGeneratorARM codegenARM(graph, *features_arm.get(), compiler_options); RunCode(&codegenARM, graph, hook_before_codegen, has_result, expected); } else if (target_isa == kArm64) { std::unique_ptr features_arm64( Arm64InstructionSetFeatures::FromCppDefines()); arm64::CodeGeneratorARM64 codegenARM64(graph, *features_arm64.get(), compiler_options); RunCode(&codegenARM64, graph, hook_before_codegen, has_result, expected); } else if (target_isa == kX86) { std::unique_ptr features_x86( X86InstructionSetFeatures::FromCppDefines()); x86::CodeGeneratorX86 codegenX86(graph, *features_x86.get(), compiler_options); RunCode(&codegenX86, graph, hook_before_codegen, has_result, expected); } else if (target_isa == kX86_64) { std::unique_ptr features_x86_64( X86_64InstructionSetFeatures::FromCppDefines()); x86_64::CodeGeneratorX86_64 codegenX86_64(graph, *features_x86_64.get(), compiler_options); RunCode(&codegenX86_64, graph, hook_before_codegen, has_result, expected); } else if (target_isa == kMips) { std::unique_ptr features_mips( MipsInstructionSetFeatures::FromCppDefines()); mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), compiler_options); RunCode(&codegenMIPS, graph, hook_before_codegen, has_result, expected); } else if (target_isa == kMips64) { std::unique_ptr features_mips64( Mips64InstructionSetFeatures::FromCppDefines()); mips64::CodeGeneratorMIPS64 codegenMIPS64(graph, *features_mips64.get(), compiler_options); RunCode(&codegenMIPS64, graph, hook_before_codegen, has_result, expected); } } static ::std::vector GetTargetISAs() { ::std::vector v; // Add all ISAs that are executable on hardware or on simulator. const ::std::vector executable_isa_candidates = { kArm, kArm64, kThumb2, kX86, kX86_64, kMips, kMips64 }; for (auto target_isa : executable_isa_candidates) { if (CanExecute(target_isa)) { v.push_back(target_isa); } } return v; } static void TestCode(const uint16_t* data, bool has_result = false, int32_t expected = 0) { for (InstructionSet target_isa : GetTargetISAs()) { ArenaPool pool; ArenaAllocator arena(&pool); HGraph* graph = CreateCFG(&arena, data); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected); } } static void TestCodeLong(const uint16_t* data, bool has_result, int64_t expected) { for (InstructionSet target_isa : GetTargetISAs()) { ArenaPool pool; ArenaAllocator arena(&pool); HGraph* graph = CreateCFG(&arena, data, Primitive::kPrimLong); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected); } } class CodegenTest : public CommonCompilerTest {}; TEST_F(CodegenTest, ReturnVoid) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG1) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG2) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG3) { const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, Instruction::RETURN_VOID, Instruction::GOTO | 0xFF00); TestCode(data1); const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2); const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3); } TEST_F(CodegenTest, CFG4) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, Instruction::GOTO | 0x100, Instruction::GOTO | 0xFE00); TestCode(data); } TEST_F(CodegenTest, CFG5) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, IntConstant) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, Return1) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN | 0); TestCode(data, true, 0); } TEST_F(CodegenTest, Return2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 0 | 1 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } TEST_F(CodegenTest, Return3) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf1) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } // Exercise bit-wise (one's complement) not-int instruction. #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int32_t input = INPUT; \ const uint16_t input_lo = Low16Bits(input); \ const uint16_t input_hi = High16Bits(input); \ const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ Instruction::CONST | 0 << 8, input_lo, input_hi, \ Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ Instruction::RETURN | 1 << 8); \ \ TestCode(data, true, EXPECTED_OUTPUT); \ } NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) NOT_INT_TEST(ReturnNotInt0, 0, -1) NOT_INT_TEST(ReturnNotInt1, 1, -2) NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) #undef NOT_INT_TEST // Exercise bit-wise (one's complement) not-long instruction. #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int64_t input = INPUT; \ const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ const uint16_t word1 = High16Bits(Low32Bits(input)); \ const uint16_t word2 = Low16Bits(High32Bits(input)); \ const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( \ Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ Instruction::RETURN_WIDE | 2 << 8); \ \ TestCodeLong(data, true, EXPECTED_OUTPUT); \ } NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) NOT_LONG_TEST(ReturnNotLongINT32_MIN, INT64_C(-2147483648), INT64_C(2147483647)) // (2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, INT64_C(-2147483647), INT64_C(2147483646)) // (2^31) - 2 NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, INT64_C(2147483646), INT64_C(-2147483647)) // -(2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MAX, INT64_C(2147483647), INT64_C(-2147483648)) // -(2^31) // Note that the C++ compiler won't accept // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. NOT_LONG_TEST(ReturnNotINT64_MIN, INT64_C(-9223372036854775807)-1, INT64_C(9223372036854775807)); // (2^63) - 1 NOT_LONG_TEST(ReturnNotINT64_MINPlus1, INT64_C(-9223372036854775807), INT64_C(9223372036854775806)); // (2^63) - 2 NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, INT64_C(9223372036854775806), INT64_C(-9223372036854775807)); // -(2^63) - 1 NOT_LONG_TEST(ReturnNotLongINT64_MAX, INT64_C(9223372036854775807), INT64_C(-9223372036854775807)-1); // -(2^63) #undef NOT_LONG_TEST TEST_F(CodegenTest, IntToLongOfLongToInt) { const int64_t input = INT64_C(4294967296); // 2^32 const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. const uint16_t word1 = High16Bits(Low32Bits(input)); const uint16_t word2 = Low16Bits(High32Bits(input)); const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, Instruction::RETURN_WIDE | 2 << 8); TestCodeLong(data, true, 1); } TEST_F(CodegenTest, ReturnAdd1) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd3) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd4) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnMulInt) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulInt2addr) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong) { const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG, 2 << 8 | 0, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong2addr) { const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG_2ADDR | 2 << 12, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit8) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit16) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, NonMaterializedCondition) { for (InstructionSet target_isa : GetTargetISAs()) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = CreateGraph(&allocator); HBasicBlock* entry = new (&allocator) HBasicBlock(graph); graph->AddBlock(entry); graph->SetEntryBlock(entry); entry->AddInstruction(new (&allocator) HGoto()); HBasicBlock* first_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(first_block); entry->AddSuccessor(first_block); HIntConstant* constant0 = graph->GetIntConstant(0); HIntConstant* constant1 = graph->GetIntConstant(1); HEqual* equal = new (&allocator) HEqual(constant0, constant0); first_block->AddInstruction(equal); first_block->AddInstruction(new (&allocator) HIf(equal)); HBasicBlock* then_block = new (&allocator) HBasicBlock(graph); HBasicBlock* else_block = new (&allocator) HBasicBlock(graph); HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); graph->SetExitBlock(exit_block); graph->AddBlock(then_block); graph->AddBlock(else_block); graph->AddBlock(exit_block); first_block->AddSuccessor(then_block); first_block->AddSuccessor(else_block); then_block->AddSuccessor(exit_block); else_block->AddSuccessor(exit_block); exit_block->AddInstruction(new (&allocator) HExit()); then_block->AddInstruction(new (&allocator) HReturn(constant0)); else_block->AddInstruction(new (&allocator) HReturn(constant1)); ASSERT_FALSE(equal->IsEmittedAtUseSite()); graph->BuildDominatorTree(); PrepareForRegisterAllocation(graph).Run(); ASSERT_TRUE(equal->IsEmittedAtUseSite()); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_isa, graph, hook_before_codegen, true, 0); } } TEST_F(CodegenTest, MaterializedCondition1) { for (InstructionSet target_isa : GetTargetISAs()) { // Check that condition are materialized correctly. A materialized condition // should yield `1` if it evaluated to true, and `0` otherwise. // We force the materialization of comparisons for different combinations of // inputs and check the results. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = CreateGraph(&allocator); HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (&allocator) HGoto()); HBasicBlock* code_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(code_block); HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(exit_block); exit_block->AddInstruction(new (&allocator) HExit()); entry_block->AddSuccessor(code_block); code_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HLessThan cmp_lt(cst_lhs, cst_rhs); code_block->AddInstruction(&cmp_lt); HReturn ret(&cmp_lt); code_block->AddInstruction(&ret); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, MaterializedCondition2) { for (InstructionSet target_isa : GetTargetISAs()) { // Check that HIf correctly interprets a materialized condition. // We force the materialization of comparisons for different combinations of // inputs. An HIf takes the materialized combination as input and returns a // value that we verify. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = CreateGraph(&allocator); HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (&allocator) HGoto()); HBasicBlock* if_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(if_block); HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(if_true_block); HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(if_false_block); HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(exit_block); exit_block->AddInstruction(new (&allocator) HExit()); graph->SetEntryBlock(entry_block); entry_block->AddSuccessor(if_block); if_block->AddSuccessor(if_true_block); if_block->AddSuccessor(if_false_block); if_true_block->AddSuccessor(exit_block); if_false_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HLessThan cmp_lt(cst_lhs, cst_rhs); if_block->AddInstruction(&cmp_lt); // We insert a dummy instruction to separate the HIf from the HLessThan // and force the materialization of the condition. HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0); if_block->AddInstruction(&force_materialization); HIf if_lt(&cmp_lt); if_block->AddInstruction(&if_lt); HIntConstant* cst_lt = graph->GetIntConstant(1); HReturn ret_lt(cst_lt); if_true_block->AddInstruction(&ret_lt); HIntConstant* cst_ge = graph->GetIntConstant(0); HReturn ret_ge(cst_ge); if_false_block->AddInstruction(&ret_ge); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, ReturnDivIntLit8) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::DIV_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnDivInt2Addr) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0, Instruction::CONST_4 | 2 << 12 | 1 << 8, Instruction::DIV_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 2); } // Helper method. static void TestComparison(IfCondition condition, int64_t i, int64_t j, Primitive::Type type, const InstructionSet target_isa) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = CreateGraph(&allocator); HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (&allocator) HGoto()); HBasicBlock* block = new (&allocator) HBasicBlock(graph); graph->AddBlock(block); HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(exit_block); graph->SetExitBlock(exit_block); exit_block->AddInstruction(new (&allocator) HExit()); entry_block->AddSuccessor(block); block->AddSuccessor(exit_block); HInstruction* op1; HInstruction* op2; if (type == Primitive::kPrimInt) { op1 = graph->GetIntConstant(i); op2 = graph->GetIntConstant(j); } else { DCHECK_EQ(type, Primitive::kPrimLong); op1 = graph->GetLongConstant(i); op2 = graph->GetLongConstant(j); } HInstruction* comparison = nullptr; bool expected_result = false; const uint64_t x = i; const uint64_t y = j; switch (condition) { case kCondEQ: comparison = new (&allocator) HEqual(op1, op2); expected_result = (i == j); break; case kCondNE: comparison = new (&allocator) HNotEqual(op1, op2); expected_result = (i != j); break; case kCondLT: comparison = new (&allocator) HLessThan(op1, op2); expected_result = (i < j); break; case kCondLE: comparison = new (&allocator) HLessThanOrEqual(op1, op2); expected_result = (i <= j); break; case kCondGT: comparison = new (&allocator) HGreaterThan(op1, op2); expected_result = (i > j); break; case kCondGE: comparison = new (&allocator) HGreaterThanOrEqual(op1, op2); expected_result = (i >= j); break; case kCondB: comparison = new (&allocator) HBelow(op1, op2); expected_result = (x < y); break; case kCondBE: comparison = new (&allocator) HBelowOrEqual(op1, op2); expected_result = (x <= y); break; case kCondA: comparison = new (&allocator) HAbove(op1, op2); expected_result = (x > y); break; case kCondAE: comparison = new (&allocator) HAboveOrEqual(op1, op2); expected_result = (x >= y); break; } block->AddInstruction(comparison); block->AddInstruction(new (&allocator) HReturn(comparison)); graph->BuildDominatorTree(); RunCode(target_isa, graph, [](HGraph*) {}, true, expected_result); } TEST_F(CodegenTest, ComparisonsInt) { for (InstructionSet target_isa : GetTargetISAs()) { for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { TestComparison(kCondEQ, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondNE, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondLT, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondLE, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondGT, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondGE, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondB, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondBE, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondA, i, j, Primitive::kPrimInt, target_isa); TestComparison(kCondAE, i, j, Primitive::kPrimInt, target_isa); } } } } TEST_F(CodegenTest, ComparisonsLong) { // TODO: make MIPS work for long if (kRuntimeISA == kMips || kRuntimeISA == kMips64) { return; } for (InstructionSet target_isa : GetTargetISAs()) { if (target_isa == kMips || target_isa == kMips64) { continue; } for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { TestComparison(kCondEQ, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondNE, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondLT, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondLE, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondGT, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondGE, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondB, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondBE, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondA, i, j, Primitive::kPrimLong, target_isa); TestComparison(kCondAE, i, j, Primitive::kPrimLong, target_isa); } } } } } // namespace art