/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include "art_method-inl.h" #include "base/macros.h" #include "base/hex_dump.h" #include "globals.h" #include "base/logging.h" #include "base/hex_dump.h" #include "thread.h" #include "thread-inl.h" // // ARM specific fault handler functions. // namespace art { extern "C" void art_quick_throw_null_pointer_exception(); extern "C" void art_quick_throw_stack_overflow(); extern "C" void art_quick_implicit_suspend(); // Get the size of a thumb2 instruction in bytes. static uint32_t GetInstructionSize(uint8_t* pc) { uint16_t instr = pc[0] | pc[1] << 8; bool is_32bit = ((instr & 0xF000) == 0xF000) || ((instr & 0xF800) == 0xE800); uint32_t instr_size = is_32bit ? 4 : 2; return instr_size; } void FaultManager::HandleNestedSignal(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // Note that in this handler we set up the registers and return to // longjmp directly rather than going through an assembly language stub. The // reason for this is that longjmp is (currently) in ARM mode and that would // require switching modes in the stub - incurring an unwanted relocation. struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); Thread* self = Thread::Current(); CHECK(self != nullptr); // This will cause a SIGABRT if self is null. sc->arm_r0 = reinterpret_cast(*self->GetNestedSignalState()); sc->arm_r1 = 1; sc->arm_pc = reinterpret_cast(longjmp); VLOG(signals) << "longjmp address: " << reinterpret_cast(sc->arm_pc); } void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo ATTRIBUTE_UNUSED, void* context, ArtMethod** out_method, uintptr_t* out_return_pc, uintptr_t* out_sp) { struct ucontext* uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); *out_sp = static_cast(sc->arm_sp); VLOG(signals) << "sp: " << std::hex << *out_sp; if (*out_sp == 0) { return; } // In the case of a stack overflow, the stack is not valid and we can't // get the method from the top of the stack. However it's in r0. uintptr_t* fault_addr = reinterpret_cast(sc->fault_address); uintptr_t* overflow_addr = reinterpret_cast( reinterpret_cast(*out_sp) - GetStackOverflowReservedBytes(kArm)); if (overflow_addr == fault_addr) { *out_method = reinterpret_cast(sc->arm_r0); } else { // The method is at the top of the stack. *out_method = reinterpret_cast(reinterpret_cast(*out_sp)[0]); } // Work out the return PC. This will be the address of the instruction // following the faulting ldr/str instruction. This is in thumb mode so // the instruction might be a 16 or 32 bit one. Also, the GC map always // has the bottom bit of the PC set so we also need to set that. // Need to work out the size of the instruction that caused the exception. uint8_t* ptr = reinterpret_cast(sc->arm_pc); VLOG(signals) << "pc: " << std::hex << static_cast(ptr); if (ptr == nullptr) { // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below. *out_method = nullptr; return; } uint32_t instr_size = GetInstructionSize(ptr); *out_return_pc = (sc->arm_pc + instr_size) | 1; } bool NullPointerHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // The code that looks for the catch location needs to know the value of the // ARM PC at the point of call. For Null checks we insert a GC map that is immediately after // the load/store instruction that might cause the fault. However the mapping table has // the low bits set for thumb mode so we need to set the bottom bit for the LR // register in order to find the mapping. // Need to work out the size of the instruction that caused the exception. struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); uint8_t* ptr = reinterpret_cast(sc->arm_pc); uint32_t instr_size = GetInstructionSize(ptr); sc->arm_lr = (sc->arm_pc + instr_size) | 1; // LR needs to point to gc map location sc->arm_pc = reinterpret_cast(art_quick_throw_null_pointer_exception); VLOG(signals) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction sequence: // 0xf723c0b2: f8d902c0 ldr.w r0, [r9, #704] ; suspend_trigger_ // .. some intervening instruction // 0xf723c0b6: 6800 ldr r0, [r0, #0] // The offset from r9 is Thread::ThreadSuspendTriggerOffset(). // To check for a suspend check, we examine the instructions that caused // the fault (at PC-4 and PC). bool SuspensionHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // These are the instructions to check for. The first one is the ldr r0,[r9,#xxx] // where xxx is the offset of the suspend trigger. uint32_t checkinst1 = 0xf8d90000 + Thread::ThreadSuspendTriggerOffset<4>().Int32Value(); uint16_t checkinst2 = 0x6800; struct ucontext* uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); uint8_t* ptr2 = reinterpret_cast(sc->arm_pc); uint8_t* ptr1 = ptr2 - 4; VLOG(signals) << "checking suspend"; uint16_t inst2 = ptr2[0] | ptr2[1] << 8; VLOG(signals) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2; if (inst2 != checkinst2) { // Second instruction is not good, not ours. return false; } // The first instruction can a little bit up the stream due to load hoisting // in the compiler. uint8_t* limit = ptr1 - 40; // Compiler will hoist to a max of 20 instructions. bool found = false; while (ptr1 > limit) { uint32_t inst1 = ((ptr1[0] | ptr1[1] << 8) << 16) | (ptr1[2] | ptr1[3] << 8); VLOG(signals) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1; if (inst1 == checkinst1) { found = true; break; } ptr1 -= 2; // Min instruction size is 2 bytes. } if (found) { VLOG(signals) << "suspend check match"; // This is a suspend check. Arrange for the signal handler to return to // art_quick_implicit_suspend. Also set LR so that after the suspend check it // will resume the instruction (current PC + 2). PC points to the // ldr r0,[r0,#0] instruction (r0 will be 0, set by the trigger). // NB: remember that we need to set the bottom bit of the LR register // to switch to thumb mode. VLOG(signals) << "arm lr: " << std::hex << sc->arm_lr; VLOG(signals) << "arm pc: " << std::hex << sc->arm_pc; sc->arm_lr = sc->arm_pc + 3; // +2 + 1 (for thumb) sc->arm_pc = reinterpret_cast(art_quick_implicit_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); VLOG(signals) << "removed suspend trigger invoking test suspend"; return true; } return false; } // Stack overflow fault handler. // // This checks that the fault address is equal to the current stack pointer // minus the overflow region size (16K typically). The instruction sequence // that generates this signal is: // // sub r12,sp,#16384 // ldr.w r12,[r12,#0] // // The second instruction will fault if r12 is inside the protected region // on the stack. // // If we determine this is a stack overflow we need to move the stack pointer // to the overflow region below the protected region. bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { struct ucontext* uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; VLOG(signals) << "sigcontext: " << std::hex << sc; uintptr_t sp = sc->arm_sp; VLOG(signals) << "sp: " << std::hex << sp; uintptr_t fault_addr = sc->fault_address; VLOG(signals) << "fault_addr: " << std::hex << fault_addr; VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << ", fault_addr: " << fault_addr; uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kArm); // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { VLOG(signals) << "Not a stack overflow"; return false; } VLOG(signals) << "Stack overflow found"; // Now arrange for the signal handler to return to art_quick_throw_stack_overflow_from. // The value of LR must be the same as it was when we entered the code that // caused this fault. This will be inserted into a callee save frame by // the function to which this handler returns (art_quick_throw_stack_overflow). sc->arm_pc = reinterpret_cast(art_quick_throw_stack_overflow); // The kernel will now return to the address in sc->arm_pc. return true; } } // namespace art