/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #include "gc/accounting/read_barrier_table.h" #include "object_callbacks.h" #include "space.h" #include "thread.h" namespace art { namespace gc { namespace space { // A space that consists of equal-sized regions. class RegionSpace FINAL : public ContinuousMemMapAllocSpace { public: typedef void(*WalkCallback)(void *start, void *end, size_t num_bytes, void* callback_arg); SpaceType GetType() const OVERRIDE { return kSpaceTypeRegionSpace; } // Create a region space with the requested sizes. The requested base address is not // guaranteed to be granted, if it is required, the caller should call Begin on the returned // space to confirm the request was granted. static RegionSpace* Create(const std::string& name, size_t capacity, uint8_t* requested_begin); // Allocate num_bytes, returns null if the space is full. mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated) OVERRIDE REQUIRES(!region_lock_); // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector. mirror::Object* AllocThreadUnsafe(Thread* self, size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated) OVERRIDE REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); // The main allocation routine. template ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); // Allocate/free large objects (objects that are larger than the region size.) template mirror::Object* AllocLarge(size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_); // Return the storage space required by obj. size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_) { return AllocationSizeNonvirtual(obj, usable_size); } size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); size_t Free(Thread*, mirror::Object*) OVERRIDE { UNIMPLEMENTED(FATAL); return 0; } size_t FreeList(Thread*, size_t, mirror::Object**) OVERRIDE { UNIMPLEMENTED(FATAL); return 0; } accounting::ContinuousSpaceBitmap* GetLiveBitmap() const OVERRIDE { // No live bitmap. return nullptr; } accounting::ContinuousSpaceBitmap* GetMarkBitmap() const OVERRIDE { // No mark bitmap. return nullptr; } void Clear() OVERRIDE REQUIRES(!region_lock_); void Dump(std::ostream& os) const; void DumpRegions(std::ostream& os) REQUIRES(!region_lock_); void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_); size_t RevokeThreadLocalBuffers(Thread* thread) REQUIRES(!region_lock_); void RevokeThreadLocalBuffersLocked(Thread* thread) REQUIRES(region_lock_); size_t RevokeAllThreadLocalBuffers() REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_); void AssertAllThreadLocalBuffersAreRevoked() REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); enum class RegionType : uint8_t { kRegionTypeAll, // All types. kRegionTypeFromSpace, // From-space. To be evacuated. kRegionTypeUnevacFromSpace, // Unevacuated from-space. Not to be evacuated. kRegionTypeToSpace, // To-space. kRegionTypeNone, // None. }; enum class RegionState : uint8_t { kRegionStateFree, // Free region. kRegionStateAllocated, // Allocated region. kRegionStateLarge, // Large allocated (allocation larger than the region size). kRegionStateLargeTail, // Large tail (non-first regions of a large allocation). }; template uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_); template uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_); uint64_t GetBytesAllocated() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocated() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal(); } uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal(); } bool CanMoveObjects() const OVERRIDE { return true; } bool Contains(const mirror::Object* obj) const { const uint8_t* byte_obj = reinterpret_cast(obj); return byte_obj >= Begin() && byte_obj < Limit(); } RegionSpace* AsRegionSpace() OVERRIDE { return this; } // Go through all of the blocks and visit the continuous objects. void Walk(ObjectCallback* callback, void* arg) REQUIRES(Locks::mutator_lock_) { WalkInternal(callback, arg); } void WalkToSpace(ObjectCallback* callback, void* arg) REQUIRES(Locks::mutator_lock_) { WalkInternal(callback, arg); } accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() OVERRIDE { return nullptr; } void LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); // Object alignment within the space. static constexpr size_t kAlignment = kObjectAlignment; // The region size. static constexpr size_t kRegionSize = 1 * MB; bool IsInFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInFromSpace(); } return false; } bool IsInUnevacFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInUnevacFromSpace(); } return false; } bool IsInToSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInToSpace(); } return false; } RegionType GetRegionType(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->Type(); } return RegionType::kRegionTypeNone; } void SetFromSpace(accounting::ReadBarrierTable* rb_table, bool force_evacuate_all) REQUIRES(!region_lock_); size_t FromSpaceSize() REQUIRES(!region_lock_); size_t UnevacFromSpaceSize() REQUIRES(!region_lock_); size_t ToSpaceSize() REQUIRES(!region_lock_); void ClearFromSpace() REQUIRES(!region_lock_); void AddLiveBytes(mirror::Object* ref, size_t alloc_size) { Region* reg = RefToRegionUnlocked(ref); reg->AddLiveBytes(alloc_size); } void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_); void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_); bool AllocNewTlab(Thread* self) REQUIRES(!region_lock_); uint32_t Time() { return time_; } private: RegionSpace(const std::string& name, MemMap* mem_map); template void WalkInternal(ObjectCallback* callback, void* arg) NO_THREAD_SAFETY_ANALYSIS; class Region { public: Region() : idx_(static_cast(-1)), begin_(nullptr), top_(nullptr), end_(nullptr), state_(RegionState::kRegionStateAllocated), type_(RegionType::kRegionTypeToSpace), objects_allocated_(0), alloc_time_(0), live_bytes_(static_cast(-1)), is_newly_allocated_(false), is_a_tlab_(false), thread_(nullptr) {} Region(size_t idx, uint8_t* begin, uint8_t* end) : idx_(idx), begin_(begin), top_(begin), end_(end), state_(RegionState::kRegionStateFree), type_(RegionType::kRegionTypeNone), objects_allocated_(0), alloc_time_(0), live_bytes_(static_cast(-1)), is_newly_allocated_(false), is_a_tlab_(false), thread_(nullptr) { DCHECK_LT(begin, end); DCHECK_EQ(static_cast(end - begin), kRegionSize); } RegionState State() const { return state_; } RegionType Type() const { return type_; } void Clear() { top_ = begin_; state_ = RegionState::kRegionStateFree; type_ = RegionType::kRegionTypeNone; objects_allocated_ = 0; alloc_time_ = 0; live_bytes_ = static_cast(-1); if (!kMadviseZeroes) { memset(begin_, 0, end_ - begin_); } madvise(begin_, end_ - begin_, MADV_DONTNEED); is_newly_allocated_ = false; is_a_tlab_ = false; thread_ = nullptr; } ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated); bool IsFree() const { bool is_free = state_ == RegionState::kRegionStateFree; if (is_free) { DCHECK(IsInNoSpace()); DCHECK_EQ(begin_, top_); DCHECK_EQ(objects_allocated_, 0U); } return is_free; } // Given a free region, declare it non-free (allocated). void Unfree(uint32_t alloc_time) { DCHECK(IsFree()); state_ = RegionState::kRegionStateAllocated; type_ = RegionType::kRegionTypeToSpace; alloc_time_ = alloc_time; } void UnfreeLarge(uint32_t alloc_time) { DCHECK(IsFree()); state_ = RegionState::kRegionStateLarge; type_ = RegionType::kRegionTypeToSpace; alloc_time_ = alloc_time; } void UnfreeLargeTail(uint32_t alloc_time) { DCHECK(IsFree()); state_ = RegionState::kRegionStateLargeTail; type_ = RegionType::kRegionTypeToSpace; alloc_time_ = alloc_time; } void SetNewlyAllocated() { is_newly_allocated_ = true; } // Non-large, non-large-tail allocated. bool IsAllocated() const { return state_ == RegionState::kRegionStateAllocated; } // Large allocated. bool IsLarge() const { bool is_large = state_ == RegionState::kRegionStateLarge; if (is_large) { DCHECK_LT(begin_ + 1 * MB, top_); } return is_large; } // Large-tail allocated. bool IsLargeTail() const { bool is_large_tail = state_ == RegionState::kRegionStateLargeTail; if (is_large_tail) { DCHECK_EQ(begin_, top_); } return is_large_tail; } size_t Idx() const { return idx_; } bool IsInFromSpace() const { return type_ == RegionType::kRegionTypeFromSpace; } bool IsInToSpace() const { return type_ == RegionType::kRegionTypeToSpace; } bool IsInUnevacFromSpace() const { return type_ == RegionType::kRegionTypeUnevacFromSpace; } bool IsInNoSpace() const { return type_ == RegionType::kRegionTypeNone; } void SetAsFromSpace() { DCHECK(!IsFree() && IsInToSpace()); type_ = RegionType::kRegionTypeFromSpace; live_bytes_ = static_cast(-1); } void SetAsUnevacFromSpace() { DCHECK(!IsFree() && IsInToSpace()); type_ = RegionType::kRegionTypeUnevacFromSpace; live_bytes_ = 0U; } void SetUnevacFromSpaceAsToSpace() { DCHECK(!IsFree() && IsInUnevacFromSpace()); type_ = RegionType::kRegionTypeToSpace; } ALWAYS_INLINE bool ShouldBeEvacuated(); void AddLiveBytes(size_t live_bytes) { DCHECK(IsInUnevacFromSpace()); DCHECK(!IsLargeTail()); DCHECK_NE(live_bytes_, static_cast(-1)); live_bytes_ += live_bytes; DCHECK_LE(live_bytes_, BytesAllocated()); } size_t LiveBytes() const { return live_bytes_; } uint GetLivePercent() const { DCHECK(IsInToSpace()); DCHECK(!IsLargeTail()); DCHECK_NE(live_bytes_, static_cast(-1)); DCHECK_LE(live_bytes_, BytesAllocated()); size_t bytes_allocated = RoundUp(BytesAllocated(), kRegionSize); DCHECK_GE(bytes_allocated, 0U); uint result = (live_bytes_ * 100U) / bytes_allocated; DCHECK_LE(result, 100U); return result; } size_t BytesAllocated() const { if (IsLarge()) { DCHECK_LT(begin_ + kRegionSize, top_); return static_cast(top_ - begin_); } else if (IsLargeTail()) { DCHECK_EQ(begin_, top_); return 0; } else { DCHECK(IsAllocated()) << static_cast(state_); DCHECK_LE(begin_, top_); size_t bytes = static_cast(top_ - begin_); DCHECK_LE(bytes, kRegionSize); return bytes; } } size_t ObjectsAllocated() const { if (IsLarge()) { DCHECK_LT(begin_ + 1 * MB, top_); DCHECK_EQ(objects_allocated_, 0U); return 1; } else if (IsLargeTail()) { DCHECK_EQ(begin_, top_); DCHECK_EQ(objects_allocated_, 0U); return 0; } else { DCHECK(IsAllocated()) << static_cast(state_); return objects_allocated_; } } uint8_t* Begin() const { return begin_; } uint8_t* Top() const { return top_; } void SetTop(uint8_t* new_top) { top_ = new_top; } uint8_t* End() const { return end_; } bool Contains(mirror::Object* ref) const { return begin_ <= reinterpret_cast(ref) && reinterpret_cast(ref) < end_; } void Dump(std::ostream& os) const; void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) { DCHECK(IsAllocated()); DCHECK_EQ(objects_allocated_, 0U); DCHECK_EQ(top_, end_); objects_allocated_ = num_objects; top_ = begin_ + num_bytes; DCHECK_EQ(top_, end_); } private: size_t idx_; // The region's index in the region space. uint8_t* begin_; // The begin address of the region. // Can't use Atomic as Atomic's copy operator is implicitly deleted. uint8_t* top_; // The current position of the allocation. uint8_t* end_; // The end address of the region. RegionState state_; // The region state (see RegionState). RegionType type_; // The region type (see RegionType). uint64_t objects_allocated_; // The number of objects allocated. uint32_t alloc_time_; // The allocation time of the region. size_t live_bytes_; // The live bytes. Used to compute the live percent. bool is_newly_allocated_; // True if it's allocated after the last collection. bool is_a_tlab_; // True if it's a tlab. Thread* thread_; // The owning thread if it's a tlab. friend class RegionSpace; }; Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) { MutexLock mu(Thread::Current(), region_lock_); return RefToRegionLocked(ref); } Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { // For a performance reason (this is frequently called via // IsInFromSpace() etc.) we avoid taking a lock here. Note that // since we only change a region from to-space to from-space only // during a pause (SetFromSpace()) and from from-space to free // (after GC is done) as long as ref is a valid reference into an // allocated region, it's safe to access the region state without // the lock. return RefToRegionLocked(ref); } Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) { DCHECK(HasAddress(ref)); uintptr_t offset = reinterpret_cast(ref) - reinterpret_cast(Begin()); size_t reg_idx = offset / kRegionSize; DCHECK_LT(reg_idx, num_regions_); Region* reg = ®ions_[reg_idx]; DCHECK_EQ(reg->Idx(), reg_idx); DCHECK(reg->Contains(ref)); return reg; } mirror::Object* GetNextObject(mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_); Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; uint32_t time_; // The time as the number of collections since the startup. size_t num_regions_; // The number of regions in this space. size_t num_non_free_regions_; // The number of non-free regions in this space. std::unique_ptr regions_ GUARDED_BY(region_lock_); // The pointer to the region array. Region* current_region_; // The region that's being allocated currently. Region* evac_region_; // The region that's being evacuated to currently. Region full_region_; // The dummy/sentinel region that looks full. DISALLOW_COPY_AND_ASSIGN(RegionSpace); }; std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionState& value); std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionType& value); } // namespace space } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_