/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "ScopedSignalHandler.h" #include "utils.h" #include "private/bionic_constants.h" TEST(time, gmtime) { time_t t = 0; tm* broken_down = gmtime(&t); ASSERT_TRUE(broken_down != NULL); ASSERT_EQ(0, broken_down->tm_sec); ASSERT_EQ(0, broken_down->tm_min); ASSERT_EQ(0, broken_down->tm_hour); ASSERT_EQ(1, broken_down->tm_mday); ASSERT_EQ(0, broken_down->tm_mon); ASSERT_EQ(1970, broken_down->tm_year + 1900); } static void* gmtime_no_stack_overflow_14313703_fn(void*) { const char* original_tz = getenv("TZ"); // Ensure we'll actually have to enter tzload by using a time zone that doesn't exist. setenv("TZ", "gmtime_stack_overflow_14313703", 1); tzset(); if (original_tz != NULL) { setenv("TZ", original_tz, 1); } tzset(); return NULL; } TEST(time, gmtime_no_stack_overflow_14313703) { // Is it safe to call tzload on a thread with a small stack? // http://b/14313703 // https://code.google.com/p/android/issues/detail?id=61130 pthread_attr_t a; ASSERT_EQ(0, pthread_attr_init(&a)); ASSERT_EQ(0, pthread_attr_setstacksize(&a, PTHREAD_STACK_MIN)); pthread_t t; ASSERT_EQ(0, pthread_create(&t, &a, gmtime_no_stack_overflow_14313703_fn, NULL)); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST(time, mktime_empty_TZ) { // tzcode used to have a bug where it didn't reinitialize some internal state. // Choose a time where DST is set. struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 1980 - 1900; t.tm_mon = 6; t.tm_mday = 2; setenv("TZ", "America/Los_Angeles", 1); tzset(); ASSERT_EQ(static_cast(331372800U), mktime(&t)); memset(&t, 0, sizeof(tm)); t.tm_year = 1980 - 1900; t.tm_mon = 6; t.tm_mday = 2; setenv("TZ", "", 1); // Implies UTC. tzset(); ASSERT_EQ(static_cast(331344000U), mktime(&t)); } TEST(time, mktime_10310929) { struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 200; t.tm_mon = 2; t.tm_mday = 10; #if !defined(__LP64__) // 32-bit bionic stupidly had a signed 32-bit time_t. ASSERT_EQ(-1, mktime(&t)); #else // Everyone else should be using a signed 64-bit time_t. ASSERT_GE(sizeof(time_t) * 8, 64U); setenv("TZ", "America/Los_Angeles", 1); tzset(); ASSERT_EQ(static_cast(4108348800U), mktime(&t)); setenv("TZ", "UTC", 1); tzset(); ASSERT_EQ(static_cast(4108320000U), mktime(&t)); #endif } TEST(time, strftime) { setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 200; t.tm_mon = 2; t.tm_mday = 10; char buf[64]; // Seconds since the epoch. #if defined(__BIONIC__) || defined(__LP64__) // Not 32-bit glibc. EXPECT_EQ(10U, strftime(buf, sizeof(buf), "%s", &t)); EXPECT_STREQ("4108320000", buf); #endif // Date and time as text. EXPECT_EQ(24U, strftime(buf, sizeof(buf), "%c", &t)); EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf); } TEST(time, strftime_null_tm_zone) { // Netflix on Nexus Player wouldn't start (http://b/25170306). struct tm t; memset(&t, 0, sizeof(tm)); char buf[64]; setenv("TZ", "America/Los_Angeles", 1); tzset(); t.tm_isdst = 0; // "0 if Daylight Savings Time is not in effect". EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); #if defined(__BIONIC__) // glibc 2.19 only copes with tm_isdst being 0 and 1. t.tm_isdst = 2; // "positive if Daylight Savings Time is in effect" EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); t.tm_isdst = -123; // "and negative if the information is not available". EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("<>", buf); #endif setenv("TZ", "UTC", 1); tzset(); t.tm_isdst = 0; EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); #if defined(__BIONIC__) // glibc 2.19 thinks UTC DST is "UTC". t.tm_isdst = 1; // UTC has no DST. EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("<>", buf); #endif } TEST(time, strptime) { setenv("TZ", "UTC", 1); struct tm t; char buf[64]; memset(&t, 0, sizeof(t)); strptime("11:14", "%R", &t); strftime(buf, sizeof(buf), "%H:%M", &t); EXPECT_STREQ("11:14", buf); memset(&t, 0, sizeof(t)); strptime("09:41:53", "%T", &t); strftime(buf, sizeof(buf), "%H:%M:%S", &t); EXPECT_STREQ("09:41:53", buf); } void SetTime(timer_t t, time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) { itimerspec ts; ts.it_value.tv_sec = value_s; ts.it_value.tv_nsec = value_ns; ts.it_interval.tv_sec = interval_s; ts.it_interval.tv_nsec = interval_ns; ASSERT_EQ(0, timer_settime(t, 0, &ts, NULL)); } static void NoOpNotifyFunction(sigval_t) { } TEST(time, timer_create) { sigevent_t se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = NoOpNotifyFunction; timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id)); pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { // Timers are not inherited by the child. ASSERT_EQ(-1, timer_delete(timer_id)); ASSERT_EQ(EINVAL, errno); _exit(0); } AssertChildExited(pid, 0); ASSERT_EQ(0, timer_delete(timer_id)); } static int timer_create_SIGEV_SIGNAL_signal_handler_invocation_count; static void timer_create_SIGEV_SIGNAL_signal_handler(int signal_number) { ++timer_create_SIGEV_SIGNAL_signal_handler_invocation_count; ASSERT_EQ(SIGUSR1, signal_number); } TEST(time, timer_create_SIGEV_SIGNAL) { sigevent_t se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_SIGNAL; se.sigev_signo = SIGUSR1; timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id)); timer_create_SIGEV_SIGNAL_signal_handler_invocation_count = 0; ScopedSignalHandler ssh(SIGUSR1, timer_create_SIGEV_SIGNAL_signal_handler); ASSERT_EQ(0, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count); itimerspec ts; ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 1; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; ASSERT_EQ(0, timer_settime(timer_id, 0, &ts, NULL)); usleep(500000); ASSERT_EQ(1, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count); } struct Counter { private: std::atomic value; timer_t timer_id; sigevent_t se; bool timer_valid; void Create() { ASSERT_FALSE(timer_valid); ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &timer_id)); timer_valid = true; } public: Counter(void (*fn)(sigval_t)) : value(0), timer_valid(false) { memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = fn; se.sigev_value.sival_ptr = this; Create(); } void DeleteTimer() { ASSERT_TRUE(timer_valid); ASSERT_EQ(0, timer_delete(timer_id)); timer_valid = false; } ~Counter() { if (timer_valid) { DeleteTimer(); } } int Value() const { return value; } void SetTime(time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) { ::SetTime(timer_id, value_s, value_ns, interval_s, interval_ns); } bool ValueUpdated() { int current_value = value; time_t start = time(NULL); while (current_value == value && (time(NULL) - start) < 5) { } return current_value != value; } static void CountNotifyFunction(sigval_t value) { Counter* cd = reinterpret_cast(value.sival_ptr); ++cd->value; } static void CountAndDisarmNotifyFunction(sigval_t value) { Counter* cd = reinterpret_cast(value.sival_ptr); ++cd->value; // Setting the initial expiration time to 0 disarms the timer. cd->SetTime(0, 0, 1, 0); } }; TEST(time, timer_settime_0) { Counter counter(Counter::CountAndDisarmNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 500000000, 1, 0); sleep(1); // The count should just be 1 because we disarmed the timer the first time it fired. ASSERT_EQ(1, counter.Value()); } TEST(time, timer_settime_repeats) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 10); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.DeleteTimer(); // Add a sleep as other threads may be calling the callback function when the timer is deleted. usleep(500000); } static int timer_create_NULL_signal_handler_invocation_count; static void timer_create_NULL_signal_handler(int signal_number) { ++timer_create_NULL_signal_handler_invocation_count; ASSERT_EQ(SIGALRM, signal_number); } TEST(time, timer_create_NULL) { // A NULL sigevent* is equivalent to asking for SIGEV_SIGNAL for SIGALRM. timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id)); timer_create_NULL_signal_handler_invocation_count = 0; ScopedSignalHandler ssh(SIGALRM, timer_create_NULL_signal_handler); ASSERT_EQ(0, timer_create_NULL_signal_handler_invocation_count); SetTime(timer_id, 0, 1, 0, 0); usleep(500000); ASSERT_EQ(1, timer_create_NULL_signal_handler_invocation_count); } TEST(time, timer_create_EINVAL) { clockid_t invalid_clock = 16; // A SIGEV_SIGNAL timer is easy; the kernel does all that. timer_t timer_id; ASSERT_EQ(-1, timer_create(invalid_clock, NULL, &timer_id)); ASSERT_EQ(EINVAL, errno); // A SIGEV_THREAD timer is more interesting because we have stuff to clean up. sigevent_t se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = NoOpNotifyFunction; ASSERT_EQ(-1, timer_create(invalid_clock, &se, &timer_id)); ASSERT_EQ(EINVAL, errno); } TEST(time, timer_delete_multiple) { timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id)); ASSERT_EQ(0, timer_delete(timer_id)); ASSERT_EQ(-1, timer_delete(timer_id)); ASSERT_EQ(EINVAL, errno); sigevent_t se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = NoOpNotifyFunction; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id)); ASSERT_EQ(0, timer_delete(timer_id)); ASSERT_EQ(-1, timer_delete(timer_id)); ASSERT_EQ(EINVAL, errno); } TEST(time, timer_create_multiple) { Counter counter1(Counter::CountNotifyFunction); Counter counter2(Counter::CountNotifyFunction); Counter counter3(Counter::CountNotifyFunction); ASSERT_EQ(0, counter1.Value()); ASSERT_EQ(0, counter2.Value()); ASSERT_EQ(0, counter3.Value()); counter2.SetTime(0, 500000000, 0, 0); sleep(1); EXPECT_EQ(0, counter1.Value()); EXPECT_EQ(1, counter2.Value()); EXPECT_EQ(0, counter3.Value()); } // Test to verify that disarming a repeatable timer disables the callbacks. TEST(time, timer_disarm_terminates) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 1); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.SetTime(0, 0, 0, 0); // Add a sleep as the kernel may have pending events when the timer is disarmed. usleep(500000); int value = counter.Value(); usleep(500000); // Verify the counter has not been incremented. ASSERT_EQ(value, counter.Value()); } // Test to verify that deleting a repeatable timer disables the callbacks. TEST(time, timer_delete_terminates) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 1); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.DeleteTimer(); // Add a sleep as other threads may be calling the callback function when the timer is deleted. usleep(500000); int value = counter.Value(); usleep(500000); // Verify the counter has not been incremented. ASSERT_EQ(value, counter.Value()); } struct TimerDeleteData { timer_t timer_id; pthread_t thread_id; volatile bool complete; }; static void TimerDeleteCallback(sigval_t value) { TimerDeleteData* tdd = reinterpret_cast(value.sival_ptr); tdd->thread_id = pthread_self(); timer_delete(tdd->timer_id); tdd->complete = true; } TEST(time, timer_delete_from_timer_thread) { TimerDeleteData tdd; sigevent_t se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = TimerDeleteCallback; se.sigev_value.sival_ptr = &tdd; tdd.complete = false; ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &tdd.timer_id)); itimerspec ts; ts.it_value.tv_sec = 1; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; ASSERT_EQ(0, timer_settime(tdd.timer_id, 0, &ts, NULL)); time_t cur_time = time(NULL); while (!tdd.complete && (time(NULL) - cur_time) < 5); ASSERT_TRUE(tdd.complete); #if defined(__BIONIC__) // Since bionic timers are implemented by creating a thread to handle the // callback, verify that the thread actually completes. cur_time = time(NULL); while (pthread_detach(tdd.thread_id) != ESRCH && (time(NULL) - cur_time) < 5); ASSERT_EQ(ESRCH, pthread_detach(tdd.thread_id)); #endif } TEST(time, clock_gettime) { // Try to ensure that our vdso clock_gettime is working. timespec ts1; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts1)); timespec ts2; ASSERT_EQ(0, syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &ts2)); // What's the difference between the two? ts2.tv_sec -= ts1.tv_sec; ts2.tv_nsec -= ts1.tv_nsec; if (ts2.tv_nsec < 0) { --ts2.tv_sec; ts2.tv_nsec += NS_PER_S; } // Should be less than (a very generous, to try to avoid flakiness) 1000000ns. ASSERT_EQ(0, ts2.tv_sec); ASSERT_LT(ts2.tv_nsec, 1000000); } TEST(time, clock) { // clock(3) is hard to test, but a 1s sleep should cost less than 1ms. clock_t t0 = clock(); sleep(1); clock_t t1 = clock(); ASSERT_LT(t1 - t0, CLOCKS_PER_SEC / 1000); } pid_t GetInvalidPid() { FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); long pid_max; fscanf(fp, "%ld", &pid_max); pid_t invalid_pid = static_cast(pid_max + 1); fclose(fp); return invalid_pid; } TEST(time, clock_getcpuclockid) { // For current process. clockid_t clockid; ASSERT_EQ(0, clock_getcpuclockid(getpid(), &clockid)); timespec ts; ASSERT_EQ(0, clock_gettime(clockid, &ts)); // For parent process. ASSERT_EQ(0, clock_getcpuclockid(getppid(), &clockid)); ASSERT_EQ(0, clock_gettime(clockid, &ts)); // For invalid process. // We can't use -1 for invalid pid here, because clock_getcpuclockid() can't detect it. errno = 0; ASSERT_EQ(ESRCH, clock_getcpuclockid(GetInvalidPid(), &clockid)); ASSERT_EQ(0, errno); } TEST(time, clock_settime) { errno = 0; timespec ts; ASSERT_EQ(-1, clock_settime(-1, &ts)); ASSERT_EQ(EINVAL, errno); } TEST(time, clock_nanosleep) { timespec in; timespec out; ASSERT_EQ(EINVAL, clock_nanosleep(-1, 0, &in, &out)); }