// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // An example of solving a dynamically sized problem with various // solvers and loss functions. // // For a simpler bare bones example of doing bundle adjustment with // Ceres, please see simple_bundle_adjuster.cc. // // NOTE: This example will not compile without gflags and SuiteSparse. // // The problem being solved here is known as a Bundle Adjustment // problem in computer vision. Given a set of 3d points X_1, ..., X_n, // a set of cameras P_1, ..., P_m. If the point X_i is visible in // image j, then there is a 2D observation u_ij that is the expected // projection of X_i using P_j. The aim of this optimization is to // find values of X_i and P_j such that the reprojection error // // E(X,P) = sum_ij |u_ij - P_j X_i|^2 // // is minimized. // // The problem used here comes from a collection of bundle adjustment // problems published at University of Washington. // http://grail.cs.washington.edu/projects/bal #include #include #include #include #include #include #include "bal_problem.h" #include "ceres/ceres.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "snavely_reprojection_error.h" DEFINE_string(input, "", "Input File name"); DEFINE_string(trust_region_strategy, "levenberg_marquardt", "Options are: levenberg_marquardt, dogleg."); DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg," "subspace_dogleg."); DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly " "refine each successful trust region step."); DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: " "automatic, cameras, points, cameras,points, points,cameras"); DEFINE_string(linear_solver, "sparse_schur", "Options are: " "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, " "dense_qr, dense_normal_cholesky and cgnr."); DEFINE_string(preconditioner, "jacobi", "Options are: " "identity, jacobi, schur_jacobi, cluster_jacobi, " "cluster_tridiagonal."); DEFINE_string(visibility_clustering, "canonical_views", "single_linkage, canonical_views"); DEFINE_string(sparse_linear_algebra_library, "suite_sparse", "Options are: suite_sparse and cx_sparse."); DEFINE_string(dense_linear_algebra_library, "eigen", "Options are: eigen and lapack."); DEFINE_string(ordering, "automatic", "Options are: automatic, user."); DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent " "rotations. If false, angle axis is used."); DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local " "parameterization."); DEFINE_bool(robustify, false, "Use a robust loss function."); DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the " "accuracy of each linear solve of the truncated newton step. " "Changing this parameter can affect solve performance."); DEFINE_int32(num_threads, 1, "Number of threads."); DEFINE_int32(num_iterations, 5, "Number of iterations."); DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds."); DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use" " nonmonotic steps."); DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation " "perturbation."); DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera " "translation perturbation."); DEFINE_double(point_sigma, 0.0, "Standard deviation of the point " "perturbation."); DEFINE_int32(random_seed, 38401, "Random seed used to set the state " "of the pseudo random number generator used to generate " "the pertubations."); DEFINE_bool(line_search, false, "Use a line search instead of trust region " "algorithm."); namespace ceres { namespace examples { void SetLinearSolver(Solver::Options* options) { CHECK(StringToLinearSolverType(FLAGS_linear_solver, &options->linear_solver_type)); CHECK(StringToPreconditionerType(FLAGS_preconditioner, &options->preconditioner_type)); CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering, &options->visibility_clustering_type)); CHECK(StringToSparseLinearAlgebraLibraryType( FLAGS_sparse_linear_algebra_library, &options->sparse_linear_algebra_library_type)); CHECK(StringToDenseLinearAlgebraLibraryType( FLAGS_dense_linear_algebra_library, &options->dense_linear_algebra_library_type)); options->num_linear_solver_threads = FLAGS_num_threads; } void SetOrdering(BALProblem* bal_problem, Solver::Options* options) { const int num_points = bal_problem->num_points(); const int point_block_size = bal_problem->point_block_size(); double* points = bal_problem->mutable_points(); const int num_cameras = bal_problem->num_cameras(); const int camera_block_size = bal_problem->camera_block_size(); double* cameras = bal_problem->mutable_cameras(); if (options->use_inner_iterations) { if (FLAGS_blocks_for_inner_iterations == "cameras") { LOG(INFO) << "Camera blocks for inner iterations"; options->inner_iteration_ordering.reset(new ParameterBlockOrdering); for (int i = 0; i < num_cameras; ++i) { options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0); } } else if (FLAGS_blocks_for_inner_iterations == "points") { LOG(INFO) << "Point blocks for inner iterations"; options->inner_iteration_ordering.reset(new ParameterBlockOrdering); for (int i = 0; i < num_points; ++i) { options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0); } } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") { LOG(INFO) << "Camera followed by point blocks for inner iterations"; options->inner_iteration_ordering.reset(new ParameterBlockOrdering); for (int i = 0; i < num_cameras; ++i) { options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0); } for (int i = 0; i < num_points; ++i) { options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1); } } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") { LOG(INFO) << "Point followed by camera blocks for inner iterations"; options->inner_iteration_ordering.reset(new ParameterBlockOrdering); for (int i = 0; i < num_cameras; ++i) { options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1); } for (int i = 0; i < num_points; ++i) { options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0); } } else if (FLAGS_blocks_for_inner_iterations == "automatic") { LOG(INFO) << "Choosing automatic blocks for inner iterations"; } else { LOG(FATAL) << "Unknown block type for inner iterations: " << FLAGS_blocks_for_inner_iterations; } } // Bundle adjustment problems have a sparsity structure that makes // them amenable to more specialized and much more efficient // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and // ITERATIVE_SCHUR solvers make use of this specialized // structure. // // This can either be done by specifying Options::ordering_type = // ceres::SCHUR, in which case Ceres will automatically determine // the right ParameterBlock ordering, or by manually specifying a // suitable ordering vector and defining // Options::num_eliminate_blocks. if (FLAGS_ordering == "automatic") { return; } ceres::ParameterBlockOrdering* ordering = new ceres::ParameterBlockOrdering; // The points come before the cameras. for (int i = 0; i < num_points; ++i) { ordering->AddElementToGroup(points + point_block_size * i, 0); } for (int i = 0; i < num_cameras; ++i) { // When using axis-angle, there is a single parameter block for // the entire camera. ordering->AddElementToGroup(cameras + camera_block_size * i, 1); // If quaternions are used, there are two blocks, so add the // second block to the ordering. if (FLAGS_use_quaternions) { ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1); } } options->linear_solver_ordering.reset(ordering); } void SetMinimizerOptions(Solver::Options* options) { options->max_num_iterations = FLAGS_num_iterations; options->minimizer_progress_to_stdout = true; options->num_threads = FLAGS_num_threads; options->eta = FLAGS_eta; options->max_solver_time_in_seconds = FLAGS_max_solver_time; options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps; if (FLAGS_line_search) { options->minimizer_type = ceres::LINE_SEARCH; } CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy, &options->trust_region_strategy_type)); CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type)); options->use_inner_iterations = FLAGS_inner_iterations; } void SetSolverOptionsFromFlags(BALProblem* bal_problem, Solver::Options* options) { SetMinimizerOptions(options); SetLinearSolver(options); SetOrdering(bal_problem, options); } void BuildProblem(BALProblem* bal_problem, Problem* problem) { const int point_block_size = bal_problem->point_block_size(); const int camera_block_size = bal_problem->camera_block_size(); double* points = bal_problem->mutable_points(); double* cameras = bal_problem->mutable_cameras(); // Observations is 2*num_observations long array observations = // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x // and y positions of the observation. const double* observations = bal_problem->observations(); for (int i = 0; i < bal_problem->num_observations(); ++i) { CostFunction* cost_function; // Each Residual block takes a point and a camera as input and // outputs a 2 dimensional residual. cost_function = (FLAGS_use_quaternions) ? SnavelyReprojectionErrorWithQuaternions::Create( observations[2 * i + 0], observations[2 * i + 1]) : SnavelyReprojectionError::Create( observations[2 * i + 0], observations[2 * i + 1]); // If enabled use Huber's loss function. LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL; // Each observation correponds to a pair of a camera and a point // which are identified by camera_index()[i] and point_index()[i] // respectively. double* camera = cameras + camera_block_size * bal_problem->camera_index()[i]; double* point = points + point_block_size * bal_problem->point_index()[i]; if (FLAGS_use_quaternions) { // When using quaternions, we split the camera into two // parameter blocks. One of size 4 for the quaternion and the // other of size 6 containing the translation, focal length and // the radial distortion parameters. problem->AddResidualBlock(cost_function, loss_function, camera, camera + 4, point); } else { problem->AddResidualBlock(cost_function, loss_function, camera, point); } } if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) { LocalParameterization* quaternion_parameterization = new QuaternionParameterization; for (int i = 0; i < bal_problem->num_cameras(); ++i) { problem->SetParameterization(cameras + camera_block_size * i, quaternion_parameterization); } } } void SolveProblem(const char* filename) { BALProblem bal_problem(filename, FLAGS_use_quaternions); Problem problem; srand(FLAGS_random_seed); bal_problem.Normalize(); bal_problem.Perturb(FLAGS_rotation_sigma, FLAGS_translation_sigma, FLAGS_point_sigma); BuildProblem(&bal_problem, &problem); Solver::Options options; SetSolverOptionsFromFlags(&bal_problem, &options); options.gradient_tolerance = 1e-16; options.function_tolerance = 1e-16; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.FullReport() << "\n"; } } // namespace examples } // namespace ceres int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); if (FLAGS_input.empty()) { LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem"; return 1; } CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization) << "--use_local_parameterization can only be used with " << "--use_quaternions."; ceres::examples::SolveProblem(FLAGS_input.c_str()); return 0; }