// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // A simple example of using the Ceres minimizer. // // Minimize 0.5 (10 - x)^2 using analytic jacobian matrix. #include #include "ceres/ceres.h" #include "glog/logging.h" using ceres::CostFunction; using ceres::SizedCostFunction; using ceres::Problem; using ceres::Solver; using ceres::Solve; // A CostFunction implementing analytically derivatives for the // function f(x) = 10 - x. class QuadraticCostFunction : public SizedCostFunction<1 /* number of residuals */, 1 /* size of first parameter */> { public: virtual ~QuadraticCostFunction() {} virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { double x = parameters[0][0]; // f(x) = 10 - x. residuals[0] = 10 - x; // f'(x) = -1. Since there's only 1 parameter and that parameter // has 1 dimension, there is only 1 element to fill in the // jacobians. // // Since the Evaluate function can be called with the jacobians // pointer equal to NULL, the Evaluate function must check to see // if jacobians need to be computed. // // For this simple problem it is overkill to check if jacobians[0] // is NULL, but in general when writing more complex // CostFunctions, it is possible that Ceres may only demand the // derivatives w.r.t. a subset of the parameter blocks. if (jacobians != NULL && jacobians[0] != NULL) { jacobians[0][0] = -1; } return true; } }; int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); // The variable to solve for with its initial value. It will be // mutated in place by the solver. double x = 0.5; const double initial_x = x; // Build the problem. Problem problem; // Set up the only cost function (also known as residual). CostFunction* cost_function = new QuadraticCostFunction; problem.AddResidualBlock(cost_function, NULL, &x); // Run the solver! Solver::Options options; options.minimizer_progress_to_stdout = true; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.BriefReport() << "\n"; std::cout << "x : " << initial_x << " -> " << x << "\n"; return 0; }