// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // A preconditioned conjugate gradients solver // (ConjugateGradientsSolver) for positive semidefinite linear // systems. // // We have also augmented the termination criterion used by this // solver to support not just residual based termination but also // termination based on decrease in the value of the quadratic model // that CG optimizes. #include "ceres/conjugate_gradients_solver.h" #include #include #include "ceres/fpclassify.h" #include "ceres/internal/eigen.h" #include "ceres/linear_operator.h" #include "ceres/stringprintf.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { bool IsZeroOrInfinity(double x) { return ((x == 0.0) || (IsInfinite(x))); } } // namespace ConjugateGradientsSolver::ConjugateGradientsSolver( const LinearSolver::Options& options) : options_(options) { } LinearSolver::Summary ConjugateGradientsSolver::Solve( LinearOperator* A, const double* b, const LinearSolver::PerSolveOptions& per_solve_options, double* x) { CHECK_NOTNULL(A); CHECK_NOTNULL(x); CHECK_NOTNULL(b); CHECK_EQ(A->num_rows(), A->num_cols()); LinearSolver::Summary summary; summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE; summary.message = "Maximum number of iterations reached."; summary.num_iterations = 0; const int num_cols = A->num_cols(); VectorRef xref(x, num_cols); ConstVectorRef bref(b, num_cols); const double norm_b = bref.norm(); if (norm_b == 0.0) { xref.setZero(); summary.termination_type = LINEAR_SOLVER_SUCCESS; summary.message = "Convergence. |b| = 0."; return summary; } Vector r(num_cols); Vector p(num_cols); Vector z(num_cols); Vector tmp(num_cols); const double tol_r = per_solve_options.r_tolerance * norm_b; tmp.setZero(); A->RightMultiply(x, tmp.data()); r = bref - tmp; double norm_r = r.norm(); if (norm_r <= tol_r) { summary.termination_type = LINEAR_SOLVER_SUCCESS; summary.message = StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r); return summary; } double rho = 1.0; // Initial value of the quadratic model Q = x'Ax - 2 * b'x. double Q0 = -1.0 * xref.dot(bref + r); for (summary.num_iterations = 1; summary.num_iterations < options_.max_num_iterations; ++summary.num_iterations) { // Apply preconditioner if (per_solve_options.preconditioner != NULL) { z.setZero(); per_solve_options.preconditioner->RightMultiply(r.data(), z.data()); } else { z = r; } double last_rho = rho; rho = r.dot(z); if (IsZeroOrInfinity(rho)) { summary.termination_type = LINEAR_SOLVER_FAILURE; summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho); break; }; if (summary.num_iterations == 1) { p = z; } else { double beta = rho / last_rho; if (IsZeroOrInfinity(beta)) { summary.termination_type = LINEAR_SOLVER_FAILURE; summary.message = StringPrintf( "Numerical failure. beta = rho_n / rho_{n-1} = %e.", beta); break; } p = z + beta * p; } Vector& q = z; q.setZero(); A->RightMultiply(p.data(), q.data()); const double pq = p.dot(q); if ((pq <= 0) || IsInfinite(pq)) { summary.termination_type = LINEAR_SOLVER_FAILURE; summary.message = StringPrintf("Numerical failure. p'q = %e.", pq); break; } const double alpha = rho / pq; if (IsInfinite(alpha)) { summary.termination_type = LINEAR_SOLVER_FAILURE; summary.message = StringPrintf("Numerical failure. alpha = rho / pq = %e", alpha); break; } xref = xref + alpha * p; // Ideally we would just use the update r = r - alpha*q to keep // track of the residual vector. However this estimate tends to // drift over time due to round off errors. Thus every // residual_reset_period iterations, we calculate the residual as // r = b - Ax. We do not do this every iteration because this // requires an additional matrix vector multiply which would // double the complexity of the CG algorithm. if (summary.num_iterations % options_.residual_reset_period == 0) { tmp.setZero(); A->RightMultiply(x, tmp.data()); r = bref - tmp; } else { r = r - alpha * q; } // Quadratic model based termination. // Q1 = x'Ax - 2 * b' x. const double Q1 = -1.0 * xref.dot(bref + r); // For PSD matrices A, let // // Q(x) = x'Ax - 2b'x // // be the cost of the quadratic function defined by A and b. Then, // the solver terminates at iteration i if // // i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance. // // This termination criterion is more useful when using CG to // solve the Newton step. This particular convergence test comes // from Stephen Nash's work on truncated Newton // methods. References: // // 1. Stephen G. Nash & Ariela Sofer, Assessing A Search // Direction Within A Truncated Newton Method, Operation // Research Letters 9(1990) 219-221. // // 2. Stephen G. Nash, A Survey of Truncated Newton Methods, // Journal of Computational and Applied Mathematics, // 124(1-2), 45-59, 2000. // const double zeta = summary.num_iterations * (Q1 - Q0) / Q1; if (zeta < per_solve_options.q_tolerance) { summary.termination_type = LINEAR_SOLVER_SUCCESS; summary.message = StringPrintf("Convergence: zeta = %e < %e", zeta, per_solve_options.q_tolerance); break; } Q0 = Q1; // Residual based termination. norm_r = r. norm(); if (norm_r <= tol_r) { summary.termination_type = LINEAR_SOLVER_SUCCESS; summary.message = StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r); break; } } return summary; }; } // namespace internal } // namespace ceres