// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/loss_function.h" #include #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { namespace { // Helper function for testing a LossFunction callback. // // Compares the values of rho'(s) and rho''(s) computed by the // callback with estimates obtained by symmetric finite differencing // of rho(s). void AssertLossFunctionIsValid(const LossFunction& loss, double s) { CHECK_GT(s, 0); // Evaluate rho(s), rho'(s) and rho''(s). double rho[3]; loss.Evaluate(s, rho); // Use symmetric finite differencing to estimate rho'(s) and // rho''(s). const double kH = 1e-4; // Values at s + kH. double fwd[3]; // Values at s - kH. double bwd[3]; loss.Evaluate(s + kH, fwd); loss.Evaluate(s - kH, bwd); // First derivative. const double fd_1 = (fwd[0] - bwd[0]) / (2 * kH); ASSERT_NEAR(fd_1, rho[1], 1e-6); // Second derivative. const double fd_2 = (fwd[0] - 2*rho[0] + bwd[0]) / (kH * kH); ASSERT_NEAR(fd_2, rho[2], 1e-6); } } // namespace // Try two values of the scaling a = 0.7 and 1.3 // (where scaling makes sense) and of the squared norm // s = 0.357 and 1.792 // // Note that for the Huber loss the test exercises both code paths // (i.e. both small and large values of s). TEST(LossFunction, TrivialLoss) { AssertLossFunctionIsValid(TrivialLoss(), 0.357); AssertLossFunctionIsValid(TrivialLoss(), 1.792); } TEST(LossFunction, HuberLoss) { AssertLossFunctionIsValid(HuberLoss(0.7), 0.357); AssertLossFunctionIsValid(HuberLoss(0.7), 1.792); AssertLossFunctionIsValid(HuberLoss(1.3), 0.357); AssertLossFunctionIsValid(HuberLoss(1.3), 1.792); } TEST(LossFunction, SoftLOneLoss) { AssertLossFunctionIsValid(SoftLOneLoss(0.7), 0.357); AssertLossFunctionIsValid(SoftLOneLoss(0.7), 1.792); AssertLossFunctionIsValid(SoftLOneLoss(1.3), 0.357); AssertLossFunctionIsValid(SoftLOneLoss(1.3), 1.792); } TEST(LossFunction, CauchyLoss) { AssertLossFunctionIsValid(CauchyLoss(0.7), 0.357); AssertLossFunctionIsValid(CauchyLoss(0.7), 1.792); AssertLossFunctionIsValid(CauchyLoss(1.3), 0.357); AssertLossFunctionIsValid(CauchyLoss(1.3), 1.792); } TEST(LossFunction, ArctanLoss) { AssertLossFunctionIsValid(ArctanLoss(0.7), 0.357); AssertLossFunctionIsValid(ArctanLoss(0.7), 1.792); AssertLossFunctionIsValid(ArctanLoss(1.3), 0.357); AssertLossFunctionIsValid(ArctanLoss(1.3), 1.792); } TEST(LossFunction, TolerantLoss) { AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 0.357); AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 1.792); AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 55.5); AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 0.357); AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 1.792); AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 55.5); // Check the value at zero is actually zero. double rho[3]; TolerantLoss(0.7, 0.4).Evaluate(0.0, rho); ASSERT_NEAR(rho[0], 0.0, 1e-6); // Check that loss before and after the approximation threshold are good. // A threshold of 36.7 is used by the implementation. AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.6); AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.7); AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.8); AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 1000.0); } TEST(LossFunction, ComposedLoss) { { HuberLoss f(0.7); CauchyLoss g(1.3); ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); AssertLossFunctionIsValid(c, 0.357); AssertLossFunctionIsValid(c, 1.792); } { CauchyLoss f(0.7); HuberLoss g(1.3); ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); AssertLossFunctionIsValid(c, 0.357); AssertLossFunctionIsValid(c, 1.792); } } TEST(LossFunction, ScaledLoss) { // Wrap a few loss functions, and a few scale factors. This can't combine // construction with the call to AssertLossFunctionIsValid() because Apple's // GCC is unable to eliminate the copy of ScaledLoss, which is not copyable. { ScaledLoss scaled_loss(NULL, 6, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 0.323); } { ScaledLoss scaled_loss(new TrivialLoss(), 10, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 0.357); } { ScaledLoss scaled_loss(new HuberLoss(0.7), 0.1, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } { ScaledLoss scaled_loss(new SoftLOneLoss(1.3), 0.1, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } { ScaledLoss scaled_loss(new CauchyLoss(1.3), 10, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } { ScaledLoss scaled_loss(new ArctanLoss(1.3), 10, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } { ScaledLoss scaled_loss( new TolerantLoss(1.3, 0.1), 10, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } { ScaledLoss scaled_loss( new ComposedLoss( new HuberLoss(0.8), TAKE_OWNERSHIP, new TolerantLoss(1.3, 0.5), TAKE_OWNERSHIP), 10, TAKE_OWNERSHIP); AssertLossFunctionIsValid(scaled_loss, 1.792); } } TEST(LossFunction, LossFunctionWrapper) { // Initialization HuberLoss loss_function1(1.0); LossFunctionWrapper loss_function_wrapper(new HuberLoss(1.0), TAKE_OWNERSHIP); double s = 0.862; double rho_gold[3]; double rho[3]; loss_function1.Evaluate(s, rho_gold); loss_function_wrapper.Evaluate(s, rho); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); } // Resetting HuberLoss loss_function2(0.5); loss_function_wrapper.Reset(new HuberLoss(0.5), TAKE_OWNERSHIP); loss_function_wrapper.Evaluate(s, rho); loss_function2.Evaluate(s, rho_gold); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); } // Not taking ownership. HuberLoss loss_function3(0.3); loss_function_wrapper.Reset(&loss_function3, DO_NOT_TAKE_OWNERSHIP); loss_function_wrapper.Evaluate(s, rho); loss_function3.Evaluate(s, rho_gold); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); } } } // namespace internal } // namespace ceres