// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include #include "ceres/internal/eigen.h" #include "ceres/low_rank_inverse_hessian.h" #include "glog/logging.h" namespace ceres { namespace internal { // The (L)BFGS algorithm explicitly requires that the secant equation: // // B_{k+1} * s_k = y_k // // Is satisfied at each iteration, where B_{k+1} is the approximated // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be // positive definite, this is equivalent to the condition: // // s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0] // // This condition would always be satisfied if the function was strictly // convex, alternatively, it is always satisfied provided that a Wolfe line // search is used (even if the function is not strictly convex). See [1] // (p138) for a proof. // // Although Ceres will always use a Wolfe line search when using (L)BFGS, // practical implementation considerations mean that the line search // may return a point that satisfies only the Armijo condition, and thus // could violate the Secant equation. As such, we will only use a step // to update the Hessian approximation if: // // s_k^T * y_k > tolerance // // It is important that tolerance is very small (and >=0), as otherwise we // might skip the update too often and fail to capture important curvature // information in the Hessian. For example going from 1e-10 -> 1e-14 improves // the NIST benchmark score from 43/54 to 53/54. // // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999. // // TODO(alexs.mac): Consider using Damped BFGS update instead of // skipping update. const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14; LowRankInverseHessian::LowRankInverseHessian( int num_parameters, int max_num_corrections, bool use_approximate_eigenvalue_scaling) : num_parameters_(num_parameters), max_num_corrections_(max_num_corrections), use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling), approximate_eigenvalue_scale_(1.0), delta_x_history_(num_parameters, max_num_corrections), delta_gradient_history_(num_parameters, max_num_corrections), delta_x_dot_delta_gradient_(max_num_corrections) { } bool LowRankInverseHessian::Update(const Vector& delta_x, const Vector& delta_gradient) { const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); if (delta_x_dot_delta_gradient <= kLBFGSSecantConditionHessianUpdateTolerance) { VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too " << "small: " << delta_x_dot_delta_gradient << ", tolerance: " << kLBFGSSecantConditionHessianUpdateTolerance << " (Secant condition)."; return false; } int next = indices_.size(); // Once the size of the list reaches max_num_corrections_, simulate // a circular buffer by removing the first element of the list and // making it the next position where the LBFGS history is stored. if (next == max_num_corrections_) { next = indices_.front(); indices_.pop_front(); } indices_.push_back(next); delta_x_history_.col(next) = delta_x; delta_gradient_history_.col(next) = delta_gradient; delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient; approximate_eigenvalue_scale_ = delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); return true; } void LowRankInverseHessian::RightMultiply(const double* x_ptr, double* y_ptr) const { ConstVectorRef gradient(x_ptr, num_parameters_); VectorRef search_direction(y_ptr, num_parameters_); search_direction = gradient; const int num_corrections = indices_.size(); Vector alpha(num_corrections); for (std::list::const_reverse_iterator it = indices_.rbegin(); it != indices_.rend(); ++it) { const double alpha_i = delta_x_history_.col(*it).dot(search_direction) / delta_x_dot_delta_gradient_(*it); search_direction -= alpha_i * delta_gradient_history_.col(*it); alpha(*it) = alpha_i; } if (use_approximate_eigenvalue_scaling_) { // Rescale the initial inverse Hessian approximation (H_0) to be iteratively // updated so that it is of similar 'size' to the true inverse Hessian along // the most recent search direction. As shown in [1]: // // \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) / // (delta_gradient_{k-1}' * delta_gradient_{k-1}) // // Satisfies: // // (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1) // // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of // the true Hessian (not the inverse) along the most recent search direction // respectively. Thus \gamma is an approximate eigenvalue of the true // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting // point that has a similar scale to the true inverse Hessian. This // technique is widely reported to often improve convergence, however this // is not universally true, particularly if there are errors in the initial // jacobians, or if there are significant differences in the sensitivity // of the problem to the parameters (i.e. the range of the magnitudes of // the components of the gradient is large). // // The original origin of this rescaling trick is somewhat unclear, the // earliest reference appears to be Oren [1], however it is widely discussed // without specific attributation in various texts including [2] (p143/178). // // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II: // Implementation and experiments, Management Science, // 20(5), 863-874, 1974. // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999. search_direction *= approximate_eigenvalue_scale_; VLOG(4) << "Applying approximate_eigenvalue_scale: " << approximate_eigenvalue_scale_ << " to initial inverse Hessian " << "approximation."; } for (std::list::const_iterator it = indices_.begin(); it != indices_.end(); ++it) { const double beta = delta_gradient_history_.col(*it).dot(search_direction) / delta_x_dot_delta_gradient_(*it); search_direction += delta_x_history_.col(*it) * (alpha(*it) - beta); } } } // namespace internal } // namespace ceres