//===-- ASTReader.cpp - AST File Reader ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTReader class, which reads AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTReader.h" #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/Frontend/PCHContainerOperations.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/Version.h" #include "clang/Basic/VersionTuple.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/Scope.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTDeserializationListener.h" #include "clang/Serialization/GlobalModuleIndex.h" #include "clang/Serialization/ModuleManager.h" #include "clang/Serialization/SerializationDiagnostic.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace clang; using namespace clang::serialization; using namespace clang::serialization::reader; using llvm::BitstreamCursor; //===----------------------------------------------------------------------===// // ChainedASTReaderListener implementation //===----------------------------------------------------------------------===// bool ChainedASTReaderListener::ReadFullVersionInformation(StringRef FullVersion) { return First->ReadFullVersionInformation(FullVersion) || Second->ReadFullVersionInformation(FullVersion); } void ChainedASTReaderListener::ReadModuleName(StringRef ModuleName) { First->ReadModuleName(ModuleName); Second->ReadModuleName(ModuleName); } void ChainedASTReaderListener::ReadModuleMapFile(StringRef ModuleMapPath) { First->ReadModuleMapFile(ModuleMapPath); Second->ReadModuleMapFile(ModuleMapPath); } bool ChainedASTReaderListener::ReadLanguageOptions(const LangOptions &LangOpts, bool Complain, bool AllowCompatibleDifferences) { return First->ReadLanguageOptions(LangOpts, Complain, AllowCompatibleDifferences) || Second->ReadLanguageOptions(LangOpts, Complain, AllowCompatibleDifferences); } bool ChainedASTReaderListener::ReadTargetOptions( const TargetOptions &TargetOpts, bool Complain, bool AllowCompatibleDifferences) { return First->ReadTargetOptions(TargetOpts, Complain, AllowCompatibleDifferences) || Second->ReadTargetOptions(TargetOpts, Complain, AllowCompatibleDifferences); } bool ChainedASTReaderListener::ReadDiagnosticOptions( IntrusiveRefCntPtr DiagOpts, bool Complain) { return First->ReadDiagnosticOptions(DiagOpts, Complain) || Second->ReadDiagnosticOptions(DiagOpts, Complain); } bool ChainedASTReaderListener::ReadFileSystemOptions(const FileSystemOptions &FSOpts, bool Complain) { return First->ReadFileSystemOptions(FSOpts, Complain) || Second->ReadFileSystemOptions(FSOpts, Complain); } bool ChainedASTReaderListener::ReadHeaderSearchOptions( const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, bool Complain) { return First->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath, Complain) || Second->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath, Complain); } bool ChainedASTReaderListener::ReadPreprocessorOptions( const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) { return First->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines) || Second->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines); } void ChainedASTReaderListener::ReadCounter(const serialization::ModuleFile &M, unsigned Value) { First->ReadCounter(M, Value); Second->ReadCounter(M, Value); } bool ChainedASTReaderListener::needsInputFileVisitation() { return First->needsInputFileVisitation() || Second->needsInputFileVisitation(); } bool ChainedASTReaderListener::needsSystemInputFileVisitation() { return First->needsSystemInputFileVisitation() || Second->needsSystemInputFileVisitation(); } void ChainedASTReaderListener::visitModuleFile(StringRef Filename, ModuleKind Kind) { First->visitModuleFile(Filename, Kind); Second->visitModuleFile(Filename, Kind); } bool ChainedASTReaderListener::visitInputFile(StringRef Filename, bool isSystem, bool isOverridden, bool isExplicitModule) { bool Continue = false; if (First->needsInputFileVisitation() && (!isSystem || First->needsSystemInputFileVisitation())) Continue |= First->visitInputFile(Filename, isSystem, isOverridden, isExplicitModule); if (Second->needsInputFileVisitation() && (!isSystem || Second->needsSystemInputFileVisitation())) Continue |= Second->visitInputFile(Filename, isSystem, isOverridden, isExplicitModule); return Continue; } void ChainedASTReaderListener::readModuleFileExtension( const ModuleFileExtensionMetadata &Metadata) { First->readModuleFileExtension(Metadata); Second->readModuleFileExtension(Metadata); } //===----------------------------------------------------------------------===// // PCH validator implementation //===----------------------------------------------------------------------===// ASTReaderListener::~ASTReaderListener() {} /// \brief Compare the given set of language options against an existing set of /// language options. /// /// \param Diags If non-NULL, diagnostics will be emitted via this engine. /// \param AllowCompatibleDifferences If true, differences between compatible /// language options will be permitted. /// /// \returns true if the languagae options mis-match, false otherwise. static bool checkLanguageOptions(const LangOptions &LangOpts, const LangOptions &ExistingLangOpts, DiagnosticsEngine *Diags, bool AllowCompatibleDifferences = true) { #define LANGOPT(Name, Bits, Default, Description) \ if (ExistingLangOpts.Name != LangOpts.Name) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_mismatch) \ << Description << LangOpts.Name << ExistingLangOpts.Name; \ return true; \ } #define VALUE_LANGOPT(Name, Bits, Default, Description) \ if (ExistingLangOpts.Name != LangOpts.Name) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ if (ExistingLangOpts.get##Name() != LangOpts.get##Name()) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define COMPATIBLE_LANGOPT(Name, Bits, Default, Description) \ if (!AllowCompatibleDifferences) \ LANGOPT(Name, Bits, Default, Description) #define COMPATIBLE_ENUM_LANGOPT(Name, Bits, Default, Description) \ if (!AllowCompatibleDifferences) \ ENUM_LANGOPT(Name, Bits, Default, Description) #define BENIGN_LANGOPT(Name, Bits, Default, Description) #define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) #include "clang/Basic/LangOptions.def" if (ExistingLangOpts.ModuleFeatures != LangOpts.ModuleFeatures) { if (Diags) Diags->Report(diag::err_pch_langopt_value_mismatch) << "module features"; return true; } if (ExistingLangOpts.ObjCRuntime != LangOpts.ObjCRuntime) { if (Diags) Diags->Report(diag::err_pch_langopt_value_mismatch) << "target Objective-C runtime"; return true; } if (ExistingLangOpts.CommentOpts.BlockCommandNames != LangOpts.CommentOpts.BlockCommandNames) { if (Diags) Diags->Report(diag::err_pch_langopt_value_mismatch) << "block command names"; return true; } return false; } /// \brief Compare the given set of target options against an existing set of /// target options. /// /// \param Diags If non-NULL, diagnostics will be emitted via this engine. /// /// \returns true if the target options mis-match, false otherwise. static bool checkTargetOptions(const TargetOptions &TargetOpts, const TargetOptions &ExistingTargetOpts, DiagnosticsEngine *Diags, bool AllowCompatibleDifferences = true) { #define CHECK_TARGET_OPT(Field, Name) \ if (TargetOpts.Field != ExistingTargetOpts.Field) { \ if (Diags) \ Diags->Report(diag::err_pch_targetopt_mismatch) \ << Name << TargetOpts.Field << ExistingTargetOpts.Field; \ return true; \ } // The triple and ABI must match exactly. CHECK_TARGET_OPT(Triple, "target"); CHECK_TARGET_OPT(ABI, "target ABI"); // We can tolerate different CPUs in many cases, notably when one CPU // supports a strict superset of another. When allowing compatible // differences skip this check. if (!AllowCompatibleDifferences) CHECK_TARGET_OPT(CPU, "target CPU"); #undef CHECK_TARGET_OPT // Compare feature sets. SmallVector ExistingFeatures( ExistingTargetOpts.FeaturesAsWritten.begin(), ExistingTargetOpts.FeaturesAsWritten.end()); SmallVector ReadFeatures(TargetOpts.FeaturesAsWritten.begin(), TargetOpts.FeaturesAsWritten.end()); std::sort(ExistingFeatures.begin(), ExistingFeatures.end()); std::sort(ReadFeatures.begin(), ReadFeatures.end()); // We compute the set difference in both directions explicitly so that we can // diagnose the differences differently. SmallVector UnmatchedExistingFeatures, UnmatchedReadFeatures; std::set_difference( ExistingFeatures.begin(), ExistingFeatures.end(), ReadFeatures.begin(), ReadFeatures.end(), std::back_inserter(UnmatchedExistingFeatures)); std::set_difference(ReadFeatures.begin(), ReadFeatures.end(), ExistingFeatures.begin(), ExistingFeatures.end(), std::back_inserter(UnmatchedReadFeatures)); // If we are allowing compatible differences and the read feature set is // a strict subset of the existing feature set, there is nothing to diagnose. if (AllowCompatibleDifferences && UnmatchedReadFeatures.empty()) return false; if (Diags) { for (StringRef Feature : UnmatchedReadFeatures) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << /* is-existing-feature */ false << Feature; for (StringRef Feature : UnmatchedExistingFeatures) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << /* is-existing-feature */ true << Feature; } return !UnmatchedReadFeatures.empty() || !UnmatchedExistingFeatures.empty(); } bool PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts, bool Complain, bool AllowCompatibleDifferences) { const LangOptions &ExistingLangOpts = PP.getLangOpts(); return checkLanguageOptions(LangOpts, ExistingLangOpts, Complain ? &Reader.Diags : nullptr, AllowCompatibleDifferences); } bool PCHValidator::ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain, bool AllowCompatibleDifferences) { const TargetOptions &ExistingTargetOpts = PP.getTargetInfo().getTargetOpts(); return checkTargetOptions(TargetOpts, ExistingTargetOpts, Complain ? &Reader.Diags : nullptr, AllowCompatibleDifferences); } namespace { typedef llvm::StringMap > MacroDefinitionsMap; typedef llvm::DenseMap > DeclsMap; } static bool checkDiagnosticGroupMappings(DiagnosticsEngine &StoredDiags, DiagnosticsEngine &Diags, bool Complain) { typedef DiagnosticsEngine::Level Level; // Check current mappings for new -Werror mappings, and the stored mappings // for cases that were explicitly mapped to *not* be errors that are now // errors because of options like -Werror. DiagnosticsEngine *MappingSources[] = { &Diags, &StoredDiags }; for (DiagnosticsEngine *MappingSource : MappingSources) { for (auto DiagIDMappingPair : MappingSource->getDiagnosticMappings()) { diag::kind DiagID = DiagIDMappingPair.first; Level CurLevel = Diags.getDiagnosticLevel(DiagID, SourceLocation()); if (CurLevel < DiagnosticsEngine::Error) continue; // not significant Level StoredLevel = StoredDiags.getDiagnosticLevel(DiagID, SourceLocation()); if (StoredLevel < DiagnosticsEngine::Error) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror=" + Diags.getDiagnosticIDs()->getWarningOptionForDiag(DiagID).str(); return true; } } } return false; } static bool isExtHandlingFromDiagsError(DiagnosticsEngine &Diags) { diag::Severity Ext = Diags.getExtensionHandlingBehavior(); if (Ext == diag::Severity::Warning && Diags.getWarningsAsErrors()) return true; return Ext >= diag::Severity::Error; } static bool checkDiagnosticMappings(DiagnosticsEngine &StoredDiags, DiagnosticsEngine &Diags, bool IsSystem, bool Complain) { // Top-level options if (IsSystem) { if (Diags.getSuppressSystemWarnings()) return false; // If -Wsystem-headers was not enabled before, be conservative if (StoredDiags.getSuppressSystemWarnings()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Wsystem-headers"; return true; } } if (Diags.getWarningsAsErrors() && !StoredDiags.getWarningsAsErrors()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror"; return true; } if (Diags.getWarningsAsErrors() && Diags.getEnableAllWarnings() && !StoredDiags.getEnableAllWarnings()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Weverything -Werror"; return true; } if (isExtHandlingFromDiagsError(Diags) && !isExtHandlingFromDiagsError(StoredDiags)) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-pedantic-errors"; return true; } return checkDiagnosticGroupMappings(StoredDiags, Diags, Complain); } bool PCHValidator::ReadDiagnosticOptions( IntrusiveRefCntPtr DiagOpts, bool Complain) { DiagnosticsEngine &ExistingDiags = PP.getDiagnostics(); IntrusiveRefCntPtr DiagIDs(ExistingDiags.getDiagnosticIDs()); IntrusiveRefCntPtr Diags( new DiagnosticsEngine(DiagIDs, DiagOpts.get())); // This should never fail, because we would have processed these options // before writing them to an ASTFile. ProcessWarningOptions(*Diags, *DiagOpts, /*Report*/false); ModuleManager &ModuleMgr = Reader.getModuleManager(); assert(ModuleMgr.size() >= 1 && "what ASTFile is this then"); // If the original import came from a file explicitly generated by the user, // don't check the diagnostic mappings. // FIXME: currently this is approximated by checking whether this is not a // module import of an implicitly-loaded module file. // Note: ModuleMgr.rbegin() may not be the current module, but it must be in // the transitive closure of its imports, since unrelated modules cannot be // imported until after this module finishes validation. ModuleFile *TopImport = *ModuleMgr.rbegin(); while (!TopImport->ImportedBy.empty()) TopImport = TopImport->ImportedBy[0]; if (TopImport->Kind != MK_ImplicitModule) return false; StringRef ModuleName = TopImport->ModuleName; assert(!ModuleName.empty() && "diagnostic options read before module name"); Module *M = PP.getHeaderSearchInfo().lookupModule(ModuleName); assert(M && "missing module"); // FIXME: if the diagnostics are incompatible, save a DiagnosticOptions that // contains the union of their flags. return checkDiagnosticMappings(*Diags, ExistingDiags, M->IsSystem, Complain); } /// \brief Collect the macro definitions provided by the given preprocessor /// options. static void collectMacroDefinitions(const PreprocessorOptions &PPOpts, MacroDefinitionsMap &Macros, SmallVectorImpl *MacroNames = nullptr) { for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) { StringRef Macro = PPOpts.Macros[I].first; bool IsUndef = PPOpts.Macros[I].second; std::pair MacroPair = Macro.split('='); StringRef MacroName = MacroPair.first; StringRef MacroBody = MacroPair.second; // For an #undef'd macro, we only care about the name. if (IsUndef) { if (MacroNames && !Macros.count(MacroName)) MacroNames->push_back(MacroName); Macros[MacroName] = std::make_pair("", true); continue; } // For a #define'd macro, figure out the actual definition. if (MacroName.size() == Macro.size()) MacroBody = "1"; else { // Note: GCC drops anything following an end-of-line character. StringRef::size_type End = MacroBody.find_first_of("\n\r"); MacroBody = MacroBody.substr(0, End); } if (MacroNames && !Macros.count(MacroName)) MacroNames->push_back(MacroName); Macros[MacroName] = std::make_pair(MacroBody, false); } } /// \brief Check the preprocessor options deserialized from the control block /// against the preprocessor options in an existing preprocessor. /// /// \param Diags If non-null, produce diagnostics for any mismatches incurred. static bool checkPreprocessorOptions(const PreprocessorOptions &PPOpts, const PreprocessorOptions &ExistingPPOpts, DiagnosticsEngine *Diags, FileManager &FileMgr, std::string &SuggestedPredefines, const LangOptions &LangOpts) { // Check macro definitions. MacroDefinitionsMap ASTFileMacros; collectMacroDefinitions(PPOpts, ASTFileMacros); MacroDefinitionsMap ExistingMacros; SmallVector ExistingMacroNames; collectMacroDefinitions(ExistingPPOpts, ExistingMacros, &ExistingMacroNames); for (unsigned I = 0, N = ExistingMacroNames.size(); I != N; ++I) { // Dig out the macro definition in the existing preprocessor options. StringRef MacroName = ExistingMacroNames[I]; std::pair Existing = ExistingMacros[MacroName]; // Check whether we know anything about this macro name or not. llvm::StringMap >::iterator Known = ASTFileMacros.find(MacroName); if (Known == ASTFileMacros.end()) { // FIXME: Check whether this identifier was referenced anywhere in the // AST file. If so, we should reject the AST file. Unfortunately, this // information isn't in the control block. What shall we do about it? if (Existing.second) { SuggestedPredefines += "#undef "; SuggestedPredefines += MacroName.str(); SuggestedPredefines += '\n'; } else { SuggestedPredefines += "#define "; SuggestedPredefines += MacroName.str(); SuggestedPredefines += ' '; SuggestedPredefines += Existing.first.str(); SuggestedPredefines += '\n'; } continue; } // If the macro was defined in one but undef'd in the other, we have a // conflict. if (Existing.second != Known->second.second) { if (Diags) { Diags->Report(diag::err_pch_macro_def_undef) << MacroName << Known->second.second; } return true; } // If the macro was #undef'd in both, or if the macro bodies are identical, // it's fine. if (Existing.second || Existing.first == Known->second.first) continue; // The macro bodies differ; complain. if (Diags) { Diags->Report(diag::err_pch_macro_def_conflict) << MacroName << Known->second.first << Existing.first; } return true; } // Check whether we're using predefines. if (PPOpts.UsePredefines != ExistingPPOpts.UsePredefines) { if (Diags) { Diags->Report(diag::err_pch_undef) << ExistingPPOpts.UsePredefines; } return true; } // Detailed record is important since it is used for the module cache hash. if (LangOpts.Modules && PPOpts.DetailedRecord != ExistingPPOpts.DetailedRecord) { if (Diags) { Diags->Report(diag::err_pch_pp_detailed_record) << PPOpts.DetailedRecord; } return true; } // Compute the #include and #include_macros lines we need. for (unsigned I = 0, N = ExistingPPOpts.Includes.size(); I != N; ++I) { StringRef File = ExistingPPOpts.Includes[I]; if (File == ExistingPPOpts.ImplicitPCHInclude) continue; if (std::find(PPOpts.Includes.begin(), PPOpts.Includes.end(), File) != PPOpts.Includes.end()) continue; SuggestedPredefines += "#include \""; SuggestedPredefines += File; SuggestedPredefines += "\"\n"; } for (unsigned I = 0, N = ExistingPPOpts.MacroIncludes.size(); I != N; ++I) { StringRef File = ExistingPPOpts.MacroIncludes[I]; if (std::find(PPOpts.MacroIncludes.begin(), PPOpts.MacroIncludes.end(), File) != PPOpts.MacroIncludes.end()) continue; SuggestedPredefines += "#__include_macros \""; SuggestedPredefines += File; SuggestedPredefines += "\"\n##\n"; } return false; } bool PCHValidator::ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) { const PreprocessorOptions &ExistingPPOpts = PP.getPreprocessorOpts(); return checkPreprocessorOptions(PPOpts, ExistingPPOpts, Complain? &Reader.Diags : nullptr, PP.getFileManager(), SuggestedPredefines, PP.getLangOpts()); } /// Check the header search options deserialized from the control block /// against the header search options in an existing preprocessor. /// /// \param Diags If non-null, produce diagnostics for any mismatches incurred. static bool checkHeaderSearchOptions(const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, StringRef ExistingModuleCachePath, DiagnosticsEngine *Diags, const LangOptions &LangOpts) { if (LangOpts.Modules) { if (SpecificModuleCachePath != ExistingModuleCachePath) { if (Diags) Diags->Report(diag::err_pch_modulecache_mismatch) << SpecificModuleCachePath << ExistingModuleCachePath; return true; } } return false; } bool PCHValidator::ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, bool Complain) { return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath, PP.getHeaderSearchInfo().getModuleCachePath(), Complain ? &Reader.Diags : nullptr, PP.getLangOpts()); } void PCHValidator::ReadCounter(const ModuleFile &M, unsigned Value) { PP.setCounterValue(Value); } //===----------------------------------------------------------------------===// // AST reader implementation //===----------------------------------------------------------------------===// void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener, bool TakeOwnership) { DeserializationListener = Listener; OwnsDeserializationListener = TakeOwnership; } unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned KeyLen = endian::readNext(d); unsigned DataLen = endian::readNext(d); return std::make_pair(KeyLen, DataLen); } ASTSelectorLookupTrait::internal_key_type ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) { using namespace llvm::support; SelectorTable &SelTable = Reader.getContext().Selectors; unsigned N = endian::readNext(d); IdentifierInfo *FirstII = Reader.getLocalIdentifier( F, endian::readNext(d)); if (N == 0) return SelTable.getNullarySelector(FirstII); else if (N == 1) return SelTable.getUnarySelector(FirstII); SmallVector Args; Args.push_back(FirstII); for (unsigned I = 1; I != N; ++I) Args.push_back(Reader.getLocalIdentifier( F, endian::readNext(d))); return SelTable.getSelector(N, Args.data()); } ASTSelectorLookupTrait::data_type ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d, unsigned DataLen) { using namespace llvm::support; data_type Result; Result.ID = Reader.getGlobalSelectorID( F, endian::readNext(d)); unsigned FullInstanceBits = endian::readNext(d); unsigned FullFactoryBits = endian::readNext(d); Result.InstanceBits = FullInstanceBits & 0x3; Result.InstanceHasMoreThanOneDecl = (FullInstanceBits >> 2) & 0x1; Result.FactoryBits = FullFactoryBits & 0x3; Result.FactoryHasMoreThanOneDecl = (FullFactoryBits >> 2) & 0x1; unsigned NumInstanceMethods = FullInstanceBits >> 3; unsigned NumFactoryMethods = FullFactoryBits >> 3; // Load instance methods for (unsigned I = 0; I != NumInstanceMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs( F, endian::readNext(d))) Result.Instance.push_back(Method); } // Load factory methods for (unsigned I = 0; I != NumFactoryMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs( F, endian::readNext(d))) Result.Factory.push_back(Method); } return Result; } unsigned ASTIdentifierLookupTraitBase::ComputeHash(const internal_key_type& a) { return llvm::HashString(a); } std::pair ASTIdentifierLookupTraitBase::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned DataLen = endian::readNext(d); unsigned KeyLen = endian::readNext(d); return std::make_pair(KeyLen, DataLen); } ASTIdentifierLookupTraitBase::internal_key_type ASTIdentifierLookupTraitBase::ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return StringRef((const char*) d, n-1); } /// \brief Whether the given identifier is "interesting". static bool isInterestingIdentifier(ASTReader &Reader, IdentifierInfo &II, bool IsModule) { return II.hadMacroDefinition() || II.isPoisoned() || (IsModule ? II.hasRevertedBuiltin() : II.getObjCOrBuiltinID()) || II.hasRevertedTokenIDToIdentifier() || (!(IsModule && Reader.getContext().getLangOpts().CPlusPlus) && II.getFETokenInfo()); } static bool readBit(unsigned &Bits) { bool Value = Bits & 0x1; Bits >>= 1; return Value; } IdentID ASTIdentifierLookupTrait::ReadIdentifierID(const unsigned char *d) { using namespace llvm::support; unsigned RawID = endian::readNext(d); return Reader.getGlobalIdentifierID(F, RawID >> 1); } IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace llvm::support; unsigned RawID = endian::readNext(d); bool IsInteresting = RawID & 0x01; // Wipe out the "is interesting" bit. RawID = RawID >> 1; // Build the IdentifierInfo and link the identifier ID with it. IdentifierInfo *II = KnownII; if (!II) { II = &Reader.getIdentifierTable().getOwn(k); KnownII = II; } if (!II->isFromAST()) { II->setIsFromAST(); bool IsModule = Reader.PP.getCurrentModule() != nullptr; if (isInterestingIdentifier(Reader, *II, IsModule)) II->setChangedSinceDeserialization(); } Reader.markIdentifierUpToDate(II); IdentID ID = Reader.getGlobalIdentifierID(F, RawID); if (!IsInteresting) { // For uninteresting identifiers, there's nothing else to do. Just notify // the reader that we've finished loading this identifier. Reader.SetIdentifierInfo(ID, II); return II; } unsigned ObjCOrBuiltinID = endian::readNext(d); unsigned Bits = endian::readNext(d); bool CPlusPlusOperatorKeyword = readBit(Bits); bool HasRevertedTokenIDToIdentifier = readBit(Bits); bool HasRevertedBuiltin = readBit(Bits); bool Poisoned = readBit(Bits); bool ExtensionToken = readBit(Bits); bool HadMacroDefinition = readBit(Bits); assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 8; // Set or check the various bits in the IdentifierInfo structure. // Token IDs are read-only. if (HasRevertedTokenIDToIdentifier && II->getTokenID() != tok::identifier) II->revertTokenIDToIdentifier(); if (!F.isModule()) II->setObjCOrBuiltinID(ObjCOrBuiltinID); else if (HasRevertedBuiltin && II->getBuiltinID()) { II->revertBuiltin(); assert((II->hasRevertedBuiltin() || II->getObjCOrBuiltinID() == ObjCOrBuiltinID) && "Incorrect ObjC keyword or builtin ID"); } assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; if (Poisoned) II->setIsPoisoned(true); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (HadMacroDefinition) { uint32_t MacroDirectivesOffset = endian::readNext(d); DataLen -= 4; Reader.addPendingMacro(II, &F, MacroDirectivesOffset); } Reader.SetIdentifierInfo(ID, II); // Read all of the declarations visible at global scope with this // name. if (DataLen > 0) { SmallVector DeclIDs; for (; DataLen > 0; DataLen -= 4) DeclIDs.push_back(Reader.getGlobalDeclID( F, endian::readNext(d))); Reader.SetGloballyVisibleDecls(II, DeclIDs); } return II; } DeclarationNameKey::DeclarationNameKey(DeclarationName Name) : Kind(Name.getNameKind()) { switch (Kind) { case DeclarationName::Identifier: Data = (uint64_t)Name.getAsIdentifierInfo(); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Data = Name.getCXXOverloadedOperator(); break; case DeclarationName::CXXLiteralOperatorName: Data = (uint64_t)Name.getCXXLiteralIdentifier(); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Data = 0; break; } } unsigned DeclarationNameKey::getHash() const { llvm::FoldingSetNodeID ID; ID.AddInteger(Kind); switch (Kind) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: ID.AddString(((IdentifierInfo*)Data)->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Selector(Data))); break; case DeclarationName::CXXOperatorName: ID.AddInteger((OverloadedOperatorKind)Data); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } ModuleFile * ASTDeclContextNameLookupTrait::ReadFileRef(const unsigned char *&d) { using namespace llvm::support; uint32_t ModuleFileID = endian::readNext(d); return Reader.getLocalModuleFile(F, ModuleFileID); } std::pair ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char *&d) { using namespace llvm::support; unsigned KeyLen = endian::readNext(d); unsigned DataLen = endian::readNext(d); return std::make_pair(KeyLen, DataLen); } ASTDeclContextNameLookupTrait::internal_key_type ASTDeclContextNameLookupTrait::ReadKey(const unsigned char *d, unsigned) { using namespace llvm::support; auto Kind = (DeclarationName::NameKind)*d++; uint64_t Data; switch (Kind) { case DeclarationName::Identifier: Data = (uint64_t)Reader.getLocalIdentifier( F, endian::readNext(d)); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Data = (uint64_t)Reader.getLocalSelector( F, endian::readNext( d)).getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Data = *d++; // OverloadedOperatorKind break; case DeclarationName::CXXLiteralOperatorName: Data = (uint64_t)Reader.getLocalIdentifier( F, endian::readNext(d)); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Data = 0; break; } return DeclarationNameKey(Kind, Data); } void ASTDeclContextNameLookupTrait::ReadDataInto(internal_key_type, const unsigned char *d, unsigned DataLen, data_type_builder &Val) { using namespace llvm::support; for (unsigned NumDecls = DataLen / 4; NumDecls; --NumDecls) { uint32_t LocalID = endian::readNext(d); Val.insert(Reader.getGlobalDeclID(F, LocalID)); } } bool ASTReader::ReadLexicalDeclContextStorage(ModuleFile &M, BitstreamCursor &Cursor, uint64_t Offset, DeclContext *DC) { assert(Offset != 0); SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Offset); RecordData Record; StringRef Blob; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record, &Blob); if (RecCode != DECL_CONTEXT_LEXICAL) { Error("Expected lexical block"); return true; } assert(!isa(DC) && "expected a TU_UPDATE_LEXICAL record for TU"); // If we are handling a C++ class template instantiation, we can see multiple // lexical updates for the same record. It's important that we select only one // of them, so that field numbering works properly. Just pick the first one we // see. auto &Lex = LexicalDecls[DC]; if (!Lex.first) { Lex = std::make_pair( &M, llvm::makeArrayRef( reinterpret_cast( Blob.data()), Blob.size() / 4)); } DC->setHasExternalLexicalStorage(true); return false; } bool ASTReader::ReadVisibleDeclContextStorage(ModuleFile &M, BitstreamCursor &Cursor, uint64_t Offset, DeclID ID) { assert(Offset != 0); SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Offset); RecordData Record; StringRef Blob; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record, &Blob); if (RecCode != DECL_CONTEXT_VISIBLE) { Error("Expected visible lookup table block"); return true; } // We can't safely determine the primary context yet, so delay attaching the // lookup table until we're done with recursive deserialization. auto *Data = (const unsigned char*)Blob.data(); PendingVisibleUpdates[ID].push_back(PendingVisibleUpdate{&M, Data}); return false; } void ASTReader::Error(StringRef Msg) { Error(diag::err_fe_pch_malformed, Msg); if (Context.getLangOpts().Modules && !Diags.isDiagnosticInFlight() && !PP.getHeaderSearchInfo().getModuleCachePath().empty()) { Diag(diag::note_module_cache_path) << PP.getHeaderSearchInfo().getModuleCachePath(); } } void ASTReader::Error(unsigned DiagID, StringRef Arg1, StringRef Arg2) { if (Diags.isDiagnosticInFlight()) Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2); else Diag(DiagID) << Arg1 << Arg2; } //===----------------------------------------------------------------------===// // Source Manager Deserialization //===----------------------------------------------------------------------===// /// \brief Read the line table in the source manager block. /// \returns true if there was an error. bool ASTReader::ParseLineTable(ModuleFile &F, const RecordData &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (unsigned I = 0; Record[Idx]; ++I) { // Extract the file name auto Filename = ReadPath(F, Record, Idx); FileIDs[I] = LineTable.getLineTableFilenameID(Filename); } ++Idx; // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = Record[Idx++]; assert(FID >= 0 && "Serialized line entries for non-local file."); // Remap FileID from 1-based old view. FID += F.SLocEntryBaseID - 1; // Extract the line entries unsigned NumEntries = Record[Idx++]; assert(NumEntries && "no line entries for file ID"); Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = FileIDs[Record[Idx++]]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FileID::get(FID), Entries); } return false; } /// \brief Read a source manager block bool ASTReader::ReadSourceManagerBlock(ModuleFile &F) { using namespace SrcMgr; BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor; // Set the source-location entry cursor to the current position in // the stream. This cursor will be used to read the contents of the // source manager block initially, and then lazily read // source-location entries as needed. SLocEntryCursor = F.Stream; // The stream itself is going to skip over the source manager block. if (F.Stream.SkipBlock()) { Error("malformed block record in AST file"); return true; } // Enter the source manager block. if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) { Error("malformed source manager block record in AST file"); return true; } RecordData Record; while (true) { llvm::BitstreamEntry E = SLocEntryCursor.advanceSkippingSubblocks(); switch (E.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return true; case llvm::BitstreamEntry::EndBlock: return false; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); StringRef Blob; switch (SLocEntryCursor.readRecord(E.ID, Record, &Blob)) { default: // Default behavior: ignore. break; case SM_SLOC_FILE_ENTRY: case SM_SLOC_BUFFER_ENTRY: case SM_SLOC_EXPANSION_ENTRY: // Once we hit one of the source location entries, we're done. return false; } } } /// \brief If a header file is not found at the path that we expect it to be /// and the PCH file was moved from its original location, try to resolve the /// file by assuming that header+PCH were moved together and the header is in /// the same place relative to the PCH. static std::string resolveFileRelativeToOriginalDir(const std::string &Filename, const std::string &OriginalDir, const std::string &CurrDir) { assert(OriginalDir != CurrDir && "No point trying to resolve the file if the PCH dir didn't change"); using namespace llvm::sys; SmallString<128> filePath(Filename); fs::make_absolute(filePath); assert(path::is_absolute(OriginalDir)); SmallString<128> currPCHPath(CurrDir); path::const_iterator fileDirI = path::begin(path::parent_path(filePath)), fileDirE = path::end(path::parent_path(filePath)); path::const_iterator origDirI = path::begin(OriginalDir), origDirE = path::end(OriginalDir); // Skip the common path components from filePath and OriginalDir. while (fileDirI != fileDirE && origDirI != origDirE && *fileDirI == *origDirI) { ++fileDirI; ++origDirI; } for (; origDirI != origDirE; ++origDirI) path::append(currPCHPath, ".."); path::append(currPCHPath, fileDirI, fileDirE); path::append(currPCHPath, path::filename(Filename)); return currPCHPath.str(); } bool ASTReader::ReadSLocEntry(int ID) { if (ID == 0) return false; if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) { Error("source location entry ID out-of-range for AST file"); return true; } ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second; F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]); BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor; unsigned BaseOffset = F->SLocEntryBaseOffset; ++NumSLocEntriesRead; llvm::BitstreamEntry Entry = SLocEntryCursor.advance(); if (Entry.Kind != llvm::BitstreamEntry::Record) { Error("incorrectly-formatted source location entry in AST file"); return true; } RecordData Record; StringRef Blob; switch (SLocEntryCursor.readRecord(Entry.ID, Record, &Blob)) { default: Error("incorrectly-formatted source location entry in AST file"); return true; case SM_SLOC_FILE_ENTRY: { // We will detect whether a file changed and return 'Failure' for it, but // we will also try to fail gracefully by setting up the SLocEntry. unsigned InputID = Record[4]; InputFile IF = getInputFile(*F, InputID); const FileEntry *File = IF.getFile(); bool OverriddenBuffer = IF.isOverridden(); // Note that we only check if a File was returned. If it was out-of-date // we have complained but we will continue creating a FileID to recover // gracefully. if (!File) return true; SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]); if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) { // This is the module's main file. IncludeLoc = getImportLocation(F); } SrcMgr::CharacteristicKind FileCharacter = (SrcMgr::CharacteristicKind)Record[2]; FileID FID = SourceMgr.createFileID(File, IncludeLoc, FileCharacter, ID, BaseOffset + Record[0]); SrcMgr::FileInfo &FileInfo = const_cast(SourceMgr.getSLocEntry(FID).getFile()); FileInfo.NumCreatedFIDs = Record[5]; if (Record[3]) FileInfo.setHasLineDirectives(); const DeclID *FirstDecl = F->FileSortedDecls + Record[6]; unsigned NumFileDecls = Record[7]; if (NumFileDecls) { assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?"); FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl, NumFileDecls)); } const SrcMgr::ContentCache *ContentCache = SourceMgr.getOrCreateContentCache(File, /*isSystemFile=*/FileCharacter != SrcMgr::C_User); if (OverriddenBuffer && !ContentCache->BufferOverridden && ContentCache->ContentsEntry == ContentCache->OrigEntry && !ContentCache->getRawBuffer()) { unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return true; } std::unique_ptr Buffer = llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), File->getName()); SourceMgr.overrideFileContents(File, std::move(Buffer)); } break; } case SM_SLOC_BUFFER_ENTRY: { const char *Name = Blob.data(); unsigned Offset = Record[0]; SrcMgr::CharacteristicKind FileCharacter = (SrcMgr::CharacteristicKind)Record[2]; SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]); if (IncludeLoc.isInvalid() && (F->Kind == MK_ImplicitModule || F->Kind == MK_ExplicitModule)) { IncludeLoc = getImportLocation(F); } unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return true; } std::unique_ptr Buffer = llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), Name); SourceMgr.createFileID(std::move(Buffer), FileCharacter, ID, BaseOffset + Offset, IncludeLoc); break; } case SM_SLOC_EXPANSION_ENTRY: { SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]); SourceMgr.createExpansionLoc(SpellingLoc, ReadSourceLocation(*F, Record[2]), ReadSourceLocation(*F, Record[3]), Record[4], ID, BaseOffset + Record[0]); break; } } return false; } std::pair ASTReader::getModuleImportLoc(int ID) { if (ID == 0) return std::make_pair(SourceLocation(), ""); if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) { Error("source location entry ID out-of-range for AST file"); return std::make_pair(SourceLocation(), ""); } // Find which module file this entry lands in. ModuleFile *M = GlobalSLocEntryMap.find(-ID)->second; if (M->Kind != MK_ImplicitModule && M->Kind != MK_ExplicitModule) return std::make_pair(SourceLocation(), ""); // FIXME: Can we map this down to a particular submodule? That would be // ideal. return std::make_pair(M->ImportLoc, StringRef(M->ModuleName)); } /// \brief Find the location where the module F is imported. SourceLocation ASTReader::getImportLocation(ModuleFile *F) { if (F->ImportLoc.isValid()) return F->ImportLoc; // Otherwise we have a PCH. It's considered to be "imported" at the first // location of its includer. if (F->ImportedBy.empty() || !F->ImportedBy[0]) { // Main file is the importer. assert(SourceMgr.getMainFileID().isValid() && "missing main file"); return SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); } return F->ImportedBy[0]->FirstLoc; } /// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the /// specified cursor. Read the abbreviations that are at the top of the block /// and then leave the cursor pointing into the block. bool ASTReader::ReadBlockAbbrevs(BitstreamCursor &Cursor, unsigned BlockID) { if (Cursor.EnterSubBlock(BlockID)) return true; while (true) { uint64_t Offset = Cursor.GetCurrentBitNo(); unsigned Code = Cursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) { Cursor.JumpToBit(Offset); return false; } Cursor.ReadAbbrevRecord(); } } Token ASTReader::ReadToken(ModuleFile &F, const RecordDataImpl &Record, unsigned &Idx) { Token Tok; Tok.startToken(); Tok.setLocation(ReadSourceLocation(F, Record, Idx)); Tok.setLength(Record[Idx++]); if (IdentifierInfo *II = getLocalIdentifier(F, Record[Idx++])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[Idx++]); Tok.setFlag((Token::TokenFlags)Record[Idx++]); return Tok; } MacroInfo *ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) { BitstreamCursor &Stream = F.MacroCursor; // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; SmallVector MacroArgs; MacroInfo *Macro = nullptr; while (true) { // Advance to the next record, but if we get to the end of the block, don't // pop it (removing all the abbreviations from the cursor) since we want to // be able to reseek within the block and read entries. unsigned Flags = BitstreamCursor::AF_DontPopBlockAtEnd; llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(Flags); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Macro; case llvm::BitstreamEntry::EndBlock: return Macro; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); PreprocessorRecordTypes RecType = (PreprocessorRecordTypes)Stream.readRecord(Entry.ID, Record); switch (RecType) { case PP_MODULE_MACRO: case PP_MACRO_DIRECTIVE_HISTORY: return Macro; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return Macro; unsigned NextIndex = 1; // Skip identifier ID. SubmoduleID SubModID = getGlobalSubmoduleID(F, Record[NextIndex++]); SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex); MacroInfo *MI = PP.AllocateDeserializedMacroInfo(Loc, SubModID); MI->setDefinitionEndLoc(ReadSourceLocation(F, Record, NextIndex)); MI->setIsUsed(Record[NextIndex++]); MI->setUsedForHeaderGuard(Record[NextIndex++]); if (RecType == PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[NextIndex++]; bool isGNUVarArgs = Record[NextIndex++]; bool hasCommaPasting = Record[NextIndex++]; MacroArgs.clear(); unsigned NumArgs = Record[NextIndex++]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(getLocalIdentifier(F, Record[NextIndex++])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); if (hasCommaPasting) MI->setHasCommaPasting(); MI->setArgumentList(MacroArgs, PP.getPreprocessorAllocator()); } // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() && Record[NextIndex]) { // We have a macro definition. Register the association PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); PreprocessingRecord::PPEntityID PPID = PPRec.getPPEntityID(GlobalID - 1, /*isLoaded=*/true); MacroDefinitionRecord *PPDef = cast_or_null( PPRec.getPreprocessedEntity(PPID)); if (PPDef) PPRec.RegisterMacroDefinition(Macro, PPDef); } ++NumMacrosRead; break; } case PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (!Macro) break; unsigned Idx = 0; Token Tok = ReadToken(F, Record, Idx); Macro->AddTokenToBody(Tok); break; } } } } PreprocessedEntityID ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M, unsigned LocalID) const { ContinuousRangeMap::const_iterator I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS); assert(I != M.PreprocessedEntityRemap.end() && "Invalid index into preprocessed entity index remap"); return LocalID + I->second; } unsigned HeaderFileInfoTrait::ComputeHash(internal_key_ref ikey) { return llvm::hash_combine(ikey.Size, ikey.ModTime); } HeaderFileInfoTrait::internal_key_type HeaderFileInfoTrait::GetInternalKey(const FileEntry *FE) { internal_key_type ikey = {FE->getSize(), M.HasTimestamps ? FE->getModificationTime() : 0, FE->getName(), /*Imported*/ false}; return ikey; } bool HeaderFileInfoTrait::EqualKey(internal_key_ref a, internal_key_ref b) { if (a.Size != b.Size || (a.ModTime && b.ModTime && a.ModTime != b.ModTime)) return false; if (llvm::sys::path::is_absolute(a.Filename) && strcmp(a.Filename, b.Filename) == 0) return true; // Determine whether the actual files are equivalent. FileManager &FileMgr = Reader.getFileManager(); auto GetFile = [&](const internal_key_type &Key) -> const FileEntry* { if (!Key.Imported) return FileMgr.getFile(Key.Filename); std::string Resolved = Key.Filename; Reader.ResolveImportedPath(M, Resolved); return FileMgr.getFile(Resolved); }; const FileEntry *FEA = GetFile(a); const FileEntry *FEB = GetFile(b); return FEA && FEA == FEB; } std::pair HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned KeyLen = (unsigned) endian::readNext(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen, DataLen); } HeaderFileInfoTrait::internal_key_type HeaderFileInfoTrait::ReadKey(const unsigned char *d, unsigned) { using namespace llvm::support; internal_key_type ikey; ikey.Size = off_t(endian::readNext(d)); ikey.ModTime = time_t(endian::readNext(d)); ikey.Filename = (const char *)d; ikey.Imported = true; return ikey; } HeaderFileInfoTrait::data_type HeaderFileInfoTrait::ReadData(internal_key_ref key, const unsigned char *d, unsigned DataLen) { const unsigned char *End = d + DataLen; using namespace llvm::support; HeaderFileInfo HFI; unsigned Flags = *d++; // FIXME: Refactor with mergeHeaderFileInfo in HeaderSearch.cpp. HFI.isImport |= (Flags >> 4) & 0x01; HFI.isPragmaOnce |= (Flags >> 3) & 0x01; HFI.DirInfo = (Flags >> 1) & 0x03; HFI.IndexHeaderMapHeader = Flags & 0x01; // FIXME: Find a better way to handle this. Maybe just store a // "has been included" flag? HFI.NumIncludes = std::max(endian::readNext(d), HFI.NumIncludes); HFI.ControllingMacroID = Reader.getGlobalIdentifierID( M, endian::readNext(d)); if (unsigned FrameworkOffset = endian::readNext(d)) { // The framework offset is 1 greater than the actual offset, // since 0 is used as an indicator for "no framework name". StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1); HFI.Framework = HS->getUniqueFrameworkName(FrameworkName); } assert((End - d) % 4 == 0 && "Wrong data length in HeaderFileInfo deserialization"); while (d != End) { uint32_t LocalSMID = endian::readNext(d); auto HeaderRole = static_cast(LocalSMID & 3); LocalSMID >>= 2; // This header is part of a module. Associate it with the module to enable // implicit module import. SubmoduleID GlobalSMID = Reader.getGlobalSubmoduleID(M, LocalSMID); Module *Mod = Reader.getSubmodule(GlobalSMID); FileManager &FileMgr = Reader.getFileManager(); ModuleMap &ModMap = Reader.getPreprocessor().getHeaderSearchInfo().getModuleMap(); std::string Filename = key.Filename; if (key.Imported) Reader.ResolveImportedPath(M, Filename); // FIXME: This is not always the right filename-as-written, but we're not // going to use this information to rebuild the module, so it doesn't make // a lot of difference. Module::Header H = { key.Filename, FileMgr.getFile(Filename) }; ModMap.addHeader(Mod, H, HeaderRole, /*Imported*/true); HFI.isModuleHeader |= !(HeaderRole & ModuleMap::TextualHeader); } // This HeaderFileInfo was externally loaded. HFI.External = true; HFI.IsValid = true; return HFI; } void ASTReader::addPendingMacro(IdentifierInfo *II, ModuleFile *M, uint64_t MacroDirectivesOffset) { assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard"); PendingMacroIDs[II].push_back(PendingMacroInfo(M, MacroDirectivesOffset)); } void ASTReader::ReadDefinedMacros() { // Note that we are loading defined macros. Deserializing Macros(this); for (auto &I : llvm::reverse(ModuleMgr)) { BitstreamCursor &MacroCursor = I->MacroCursor; // If there was no preprocessor block, skip this file. if (!MacroCursor.getBitStreamReader()) continue; BitstreamCursor Cursor = MacroCursor; Cursor.JumpToBit(I->MacroStartOffset); RecordData Record; while (true) { llvm::BitstreamEntry E = Cursor.advanceSkippingSubblocks(); switch (E.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return; case llvm::BitstreamEntry::EndBlock: goto NextCursor; case llvm::BitstreamEntry::Record: Record.clear(); switch (Cursor.readRecord(E.ID, Record)) { default: // Default behavior: ignore. break; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: getLocalIdentifier(*I, Record[0]); break; case PP_TOKEN: // Ignore tokens. break; } break; } } NextCursor: ; } } namespace { /// \brief Visitor class used to look up identifirs in an AST file. class IdentifierLookupVisitor { StringRef Name; unsigned NameHash; unsigned PriorGeneration; unsigned &NumIdentifierLookups; unsigned &NumIdentifierLookupHits; IdentifierInfo *Found; public: IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration, unsigned &NumIdentifierLookups, unsigned &NumIdentifierLookupHits) : Name(Name), NameHash(ASTIdentifierLookupTrait::ComputeHash(Name)), PriorGeneration(PriorGeneration), NumIdentifierLookups(NumIdentifierLookups), NumIdentifierLookupHits(NumIdentifierLookupHits), Found() { } bool operator()(ModuleFile &M) { // If we've already searched this module file, skip it now. if (M.Generation <= PriorGeneration) return true; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)M.IdentifierLookupTable; if (!IdTable) return false; ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(), M, Found); ++NumIdentifierLookups; ASTIdentifierLookupTable::iterator Pos = IdTable->find_hashed(Name, NameHash, &Trait); if (Pos == IdTable->end()) return false; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. ++NumIdentifierLookupHits; Found = *Pos; return true; } // \brief Retrieve the identifier info found within the module // files. IdentifierInfo *getIdentifierInfo() const { return Found; } }; } void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) { // Note that we are loading an identifier. Deserializing AnIdentifier(this); unsigned PriorGeneration = 0; if (getContext().getLangOpts().Modules) PriorGeneration = IdentifierGeneration[&II]; // If there is a global index, look there first to determine which modules // provably do not have any results for this identifier. GlobalModuleIndex::HitSet Hits; GlobalModuleIndex::HitSet *HitsPtr = nullptr; if (!loadGlobalIndex()) { if (GlobalIndex->lookupIdentifier(II.getName(), Hits)) { HitsPtr = &Hits; } } IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration, NumIdentifierLookups, NumIdentifierLookupHits); ModuleMgr.visit(Visitor, HitsPtr); markIdentifierUpToDate(&II); } void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) { if (!II) return; II->setOutOfDate(false); // Update the generation for this identifier. if (getContext().getLangOpts().Modules) IdentifierGeneration[II] = getGeneration(); } void ASTReader::resolvePendingMacro(IdentifierInfo *II, const PendingMacroInfo &PMInfo) { ModuleFile &M = *PMInfo.M; BitstreamCursor &Cursor = M.MacroCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(PMInfo.MacroDirectivesOffset); struct ModuleMacroRecord { SubmoduleID SubModID; MacroInfo *MI; SmallVector Overrides; }; llvm::SmallVector ModuleMacros; // We expect to see a sequence of PP_MODULE_MACRO records listing exported // macros, followed by a PP_MACRO_DIRECTIVE_HISTORY record with the complete // macro histroy. RecordData Record; while (true) { llvm::BitstreamEntry Entry = Cursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd); if (Entry.Kind != llvm::BitstreamEntry::Record) { Error("malformed block record in AST file"); return; } Record.clear(); switch ((PreprocessorRecordTypes)Cursor.readRecord(Entry.ID, Record)) { case PP_MACRO_DIRECTIVE_HISTORY: break; case PP_MODULE_MACRO: { ModuleMacros.push_back(ModuleMacroRecord()); auto &Info = ModuleMacros.back(); Info.SubModID = getGlobalSubmoduleID(M, Record[0]); Info.MI = getMacro(getGlobalMacroID(M, Record[1])); for (int I = 2, N = Record.size(); I != N; ++I) Info.Overrides.push_back(getGlobalSubmoduleID(M, Record[I])); continue; } default: Error("malformed block record in AST file"); return; } // We found the macro directive history; that's the last record // for this macro. break; } // Module macros are listed in reverse dependency order. { std::reverse(ModuleMacros.begin(), ModuleMacros.end()); llvm::SmallVector Overrides; for (auto &MMR : ModuleMacros) { Overrides.clear(); for (unsigned ModID : MMR.Overrides) { Module *Mod = getSubmodule(ModID); auto *Macro = PP.getModuleMacro(Mod, II); assert(Macro && "missing definition for overridden macro"); Overrides.push_back(Macro); } bool Inserted = false; Module *Owner = getSubmodule(MMR.SubModID); PP.addModuleMacro(Owner, II, MMR.MI, Overrides, Inserted); } } // Don't read the directive history for a module; we don't have anywhere // to put it. if (M.Kind == MK_ImplicitModule || M.Kind == MK_ExplicitModule) return; // Deserialize the macro directives history in reverse source-order. MacroDirective *Latest = nullptr, *Earliest = nullptr; unsigned Idx = 0, N = Record.size(); while (Idx < N) { MacroDirective *MD = nullptr; SourceLocation Loc = ReadSourceLocation(M, Record, Idx); MacroDirective::Kind K = (MacroDirective::Kind)Record[Idx++]; switch (K) { case MacroDirective::MD_Define: { MacroInfo *MI = getMacro(getGlobalMacroID(M, Record[Idx++])); MD = PP.AllocateDefMacroDirective(MI, Loc); break; } case MacroDirective::MD_Undefine: { MD = PP.AllocateUndefMacroDirective(Loc); break; } case MacroDirective::MD_Visibility: bool isPublic = Record[Idx++]; MD = PP.AllocateVisibilityMacroDirective(Loc, isPublic); break; } if (!Latest) Latest = MD; if (Earliest) Earliest->setPrevious(MD); Earliest = MD; } if (Latest) PP.setLoadedMacroDirective(II, Latest); } ASTReader::InputFileInfo ASTReader::readInputFileInfo(ModuleFile &F, unsigned ID) { // Go find this input file. BitstreamCursor &Cursor = F.InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(F.InputFileOffsets[ID-1]); unsigned Code = Cursor.ReadCode(); RecordData Record; StringRef Blob; unsigned Result = Cursor.readRecord(Code, Record, &Blob); assert(static_cast(Result) == INPUT_FILE && "invalid record type for input file"); (void)Result; assert(Record[0] == ID && "Bogus stored ID or offset"); InputFileInfo R; R.StoredSize = static_cast(Record[1]); R.StoredTime = static_cast(Record[2]); R.Overridden = static_cast(Record[3]); R.Transient = static_cast(Record[4]); R.Filename = Blob; ResolveImportedPath(F, R.Filename); return R; } InputFile ASTReader::getInputFile(ModuleFile &F, unsigned ID, bool Complain) { // If this ID is bogus, just return an empty input file. if (ID == 0 || ID > F.InputFilesLoaded.size()) return InputFile(); // If we've already loaded this input file, return it. if (F.InputFilesLoaded[ID-1].getFile()) return F.InputFilesLoaded[ID-1]; if (F.InputFilesLoaded[ID-1].isNotFound()) return InputFile(); // Go find this input file. BitstreamCursor &Cursor = F.InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(F.InputFileOffsets[ID-1]); InputFileInfo FI = readInputFileInfo(F, ID); off_t StoredSize = FI.StoredSize; time_t StoredTime = FI.StoredTime; bool Overridden = FI.Overridden; bool Transient = FI.Transient; StringRef Filename = FI.Filename; const FileEntry *File = FileMgr.getFile(Filename, /*OpenFile=*/false); // If we didn't find the file, resolve it relative to the // original directory from which this AST file was created. if (File == nullptr && !F.OriginalDir.empty() && !CurrentDir.empty() && F.OriginalDir != CurrentDir) { std::string Resolved = resolveFileRelativeToOriginalDir(Filename, F.OriginalDir, CurrentDir); if (!Resolved.empty()) File = FileMgr.getFile(Resolved); } // For an overridden file, create a virtual file with the stored // size/timestamp. if ((Overridden || Transient) && File == nullptr) File = FileMgr.getVirtualFile(Filename, StoredSize, StoredTime); if (File == nullptr) { if (Complain) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by AST file '"; ErrorStr += F.FileName; ErrorStr += "'"; Error(ErrorStr.c_str()); } // Record that we didn't find the file. F.InputFilesLoaded[ID-1] = InputFile::getNotFound(); return InputFile(); } // Check if there was a request to override the contents of the file // that was part of the precompiled header. Overridding such a file // can lead to problems when lexing using the source locations from the // PCH. SourceManager &SM = getSourceManager(); // FIXME: Reject if the overrides are different. if ((!Overridden && !Transient) && SM.isFileOverridden(File)) { if (Complain) Error(diag::err_fe_pch_file_overridden, Filename); // After emitting the diagnostic, recover by disabling the override so // that the original file will be used. // // FIXME: This recovery is just as broken as the original state; there may // be another precompiled module that's using the overridden contents, or // we might be half way through parsing it. Instead, we should treat the // overridden contents as belonging to a separate FileEntry. SM.disableFileContentsOverride(File); // The FileEntry is a virtual file entry with the size of the contents // that would override the original contents. Set it to the original's // size/time. FileMgr.modifyFileEntry(const_cast(File), StoredSize, StoredTime); } bool IsOutOfDate = false; // For an overridden file, there is nothing to validate. if (!Overridden && // (StoredSize != File->getSize() || #if defined(LLVM_ON_WIN32) false #else // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. // // FIXME: This probably also breaks HeaderFileInfo lookups on Windows. (StoredTime && StoredTime != File->getModificationTime() && !DisableValidation) #endif )) { if (Complain) { // Build a list of the PCH imports that got us here (in reverse). SmallVector ImportStack(1, &F); while (ImportStack.back()->ImportedBy.size() > 0) ImportStack.push_back(ImportStack.back()->ImportedBy[0]); // The top-level PCH is stale. StringRef TopLevelPCHName(ImportStack.back()->FileName); Error(diag::err_fe_pch_file_modified, Filename, TopLevelPCHName); // Print the import stack. if (ImportStack.size() > 1 && !Diags.isDiagnosticInFlight()) { Diag(diag::note_pch_required_by) << Filename << ImportStack[0]->FileName; for (unsigned I = 1; I < ImportStack.size(); ++I) Diag(diag::note_pch_required_by) << ImportStack[I-1]->FileName << ImportStack[I]->FileName; } if (!Diags.isDiagnosticInFlight()) Diag(diag::note_pch_rebuild_required) << TopLevelPCHName; } IsOutOfDate = true; } // FIXME: If the file is overridden and we've already opened it, // issue an error (or split it into a separate FileEntry). InputFile IF = InputFile(File, Overridden || Transient, IsOutOfDate); // Note that we've loaded this input file. F.InputFilesLoaded[ID-1] = IF; return IF; } /// \brief If we are loading a relocatable PCH or module file, and the filename /// is not an absolute path, add the system or module root to the beginning of /// the file name. void ASTReader::ResolveImportedPath(ModuleFile &M, std::string &Filename) { // Resolve relative to the base directory, if we have one. if (!M.BaseDirectory.empty()) return ResolveImportedPath(Filename, M.BaseDirectory); } void ASTReader::ResolveImportedPath(std::string &Filename, StringRef Prefix) { if (Filename.empty() || llvm::sys::path::is_absolute(Filename)) return; SmallString<128> Buffer; llvm::sys::path::append(Buffer, Prefix, Filename); Filename.assign(Buffer.begin(), Buffer.end()); } static bool isDiagnosedResult(ASTReader::ASTReadResult ARR, unsigned Caps) { switch (ARR) { case ASTReader::Failure: return true; case ASTReader::Missing: return !(Caps & ASTReader::ARR_Missing); case ASTReader::OutOfDate: return !(Caps & ASTReader::ARR_OutOfDate); case ASTReader::VersionMismatch: return !(Caps & ASTReader::ARR_VersionMismatch); case ASTReader::ConfigurationMismatch: return !(Caps & ASTReader::ARR_ConfigurationMismatch); case ASTReader::HadErrors: return true; case ASTReader::Success: return false; } llvm_unreachable("unknown ASTReadResult"); } ASTReader::ASTReadResult ASTReader::ReadOptionsBlock( BitstreamCursor &Stream, unsigned ClientLoadCapabilities, bool AllowCompatibleConfigurationMismatch, ASTReaderListener &Listener, std::string &SuggestedPredefines) { if (Stream.EnterSubBlock(OPTIONS_BLOCK_ID)) return Failure; // Read all of the records in the options block. RecordData Record; ASTReadResult Result = Success; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: case llvm::BitstreamEntry::SubBlock: return Failure; case llvm::BitstreamEntry::EndBlock: return Result; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read and process a record. Record.clear(); switch ((OptionsRecordTypes)Stream.readRecord(Entry.ID, Record)) { case LANGUAGE_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (ParseLanguageOptions(Record, Complain, Listener, AllowCompatibleConfigurationMismatch)) Result = ConfigurationMismatch; break; } case TARGET_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (ParseTargetOptions(Record, Complain, Listener, AllowCompatibleConfigurationMismatch)) Result = ConfigurationMismatch; break; } case DIAGNOSTIC_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0; if (!AllowCompatibleConfigurationMismatch && ParseDiagnosticOptions(Record, Complain, Listener)) return OutOfDate; break; } case FILE_SYSTEM_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (!AllowCompatibleConfigurationMismatch && ParseFileSystemOptions(Record, Complain, Listener)) Result = ConfigurationMismatch; break; } case HEADER_SEARCH_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (!AllowCompatibleConfigurationMismatch && ParseHeaderSearchOptions(Record, Complain, Listener)) Result = ConfigurationMismatch; break; } case PREPROCESSOR_OPTIONS: bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (!AllowCompatibleConfigurationMismatch && ParsePreprocessorOptions(Record, Complain, Listener, SuggestedPredefines)) Result = ConfigurationMismatch; break; } } } ASTReader::ASTReadResult ASTReader::ReadControlBlock(ModuleFile &F, SmallVectorImpl &Loaded, const ModuleFile *ImportedBy, unsigned ClientLoadCapabilities) { BitstreamCursor &Stream = F.Stream; ASTReadResult Result = Success; if (Stream.EnterSubBlock(CONTROL_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks in the control block. RecordData Record; unsigned NumInputs = 0; unsigned NumUserInputs = 0; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: { // Validate input files. const HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); // All user input files reside at the index range [0, NumUserInputs), and // system input files reside at [NumUserInputs, NumInputs). For explicitly // loaded module files, ignore missing inputs. if (!DisableValidation && F.Kind != MK_ExplicitModule) { bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0; // If we are reading a module, we will create a verification timestamp, // so we verify all input files. Otherwise, verify only user input // files. unsigned N = NumUserInputs; if (ValidateSystemInputs || (HSOpts.ModulesValidateOncePerBuildSession && F.InputFilesValidationTimestamp <= HSOpts.BuildSessionTimestamp && F.Kind == MK_ImplicitModule)) N = NumInputs; for (unsigned I = 0; I < N; ++I) { InputFile IF = getInputFile(F, I+1, Complain); if (!IF.getFile() || IF.isOutOfDate()) return OutOfDate; } } if (Listener) Listener->visitModuleFile(F.FileName, F.Kind); if (Listener && Listener->needsInputFileVisitation()) { unsigned N = Listener->needsSystemInputFileVisitation() ? NumInputs : NumUserInputs; for (unsigned I = 0; I < N; ++I) { bool IsSystem = I >= NumUserInputs; InputFileInfo FI = readInputFileInfo(F, I+1); Listener->visitInputFile(FI.Filename, IsSystem, FI.Overridden, F.Kind == MK_ExplicitModule); } } return Result; } case llvm::BitstreamEntry::SubBlock: switch (Entry.ID) { case INPUT_FILES_BLOCK_ID: F.InputFilesCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor // Read the abbreviations ReadBlockAbbrevs(F.InputFilesCursor, INPUT_FILES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } continue; case OPTIONS_BLOCK_ID: // If we're reading the first module for this group, check its options // are compatible with ours. For modules it imports, no further checking // is required, because we checked them when we built it. if (Listener && !ImportedBy) { // Should we allow the configuration of the module file to differ from // the configuration of the current translation unit in a compatible // way? // // FIXME: Allow this for files explicitly specified with -include-pch. bool AllowCompatibleConfigurationMismatch = F.Kind == MK_ExplicitModule; Result = ReadOptionsBlock(Stream, ClientLoadCapabilities, AllowCompatibleConfigurationMismatch, *Listener, SuggestedPredefines); if (Result == Failure) { Error("malformed block record in AST file"); return Result; } if (DisableValidation || (AllowConfigurationMismatch && Result == ConfigurationMismatch)) Result = Success; // If we've diagnosed a problem, we're done. if (Result != Success && isDiagnosedResult(Result, ClientLoadCapabilities)) return Result; } else if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; } case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read and process a record. Record.clear(); StringRef Blob; switch ((ControlRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) { case METADATA: { if (Record[0] != VERSION_MAJOR && !DisableValidation) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(Record[0] < VERSION_MAJOR? diag::err_pch_version_too_old : diag::err_pch_version_too_new); return VersionMismatch; } bool hasErrors = Record[6]; if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) { Diag(diag::err_pch_with_compiler_errors); return HadErrors; } F.RelocatablePCH = Record[4]; // Relative paths in a relocatable PCH are relative to our sysroot. if (F.RelocatablePCH) F.BaseDirectory = isysroot.empty() ? "/" : isysroot; F.HasTimestamps = Record[5]; const std::string &CurBranch = getClangFullRepositoryVersion(); StringRef ASTBranch = Blob; if (StringRef(CurBranch) != ASTBranch && !DisableValidation) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(diag::err_pch_different_branch) << ASTBranch << CurBranch; return VersionMismatch; } break; } case SIGNATURE: assert((!F.Signature || F.Signature == Record[0]) && "signature changed"); F.Signature = Record[0]; break; case IMPORTS: { // Load each of the imported PCH files. unsigned Idx = 0, N = Record.size(); while (Idx < N) { // Read information about the AST file. ModuleKind ImportedKind = (ModuleKind)Record[Idx++]; // The import location will be the local one for now; we will adjust // all import locations of module imports after the global source // location info are setup. SourceLocation ImportLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); off_t StoredSize = (off_t)Record[Idx++]; time_t StoredModTime = (time_t)Record[Idx++]; ASTFileSignature StoredSignature = Record[Idx++]; auto ImportedFile = ReadPath(F, Record, Idx); // If our client can't cope with us being out of date, we can't cope with // our dependency being missing. unsigned Capabilities = ClientLoadCapabilities; if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Capabilities &= ~ARR_Missing; // Load the AST file. auto Result = ReadASTCore(ImportedFile, ImportedKind, ImportLoc, &F, Loaded, StoredSize, StoredModTime, StoredSignature, Capabilities); // If we diagnosed a problem, produce a backtrace. if (isDiagnosedResult(Result, Capabilities)) Diag(diag::note_module_file_imported_by) << F.FileName << !F.ModuleName.empty() << F.ModuleName; switch (Result) { case Failure: return Failure; // If we have to ignore the dependency, we'll have to ignore this too. case Missing: case OutOfDate: return OutOfDate; case VersionMismatch: return VersionMismatch; case ConfigurationMismatch: return ConfigurationMismatch; case HadErrors: return HadErrors; case Success: break; } } break; } case ORIGINAL_FILE: F.OriginalSourceFileID = FileID::get(Record[0]); F.ActualOriginalSourceFileName = Blob; F.OriginalSourceFileName = F.ActualOriginalSourceFileName; ResolveImportedPath(F, F.OriginalSourceFileName); break; case ORIGINAL_FILE_ID: F.OriginalSourceFileID = FileID::get(Record[0]); break; case ORIGINAL_PCH_DIR: F.OriginalDir = Blob; break; case MODULE_NAME: F.ModuleName = Blob; if (Listener) Listener->ReadModuleName(F.ModuleName); break; case MODULE_DIRECTORY: { assert(!F.ModuleName.empty() && "MODULE_DIRECTORY found before MODULE_NAME"); // If we've already loaded a module map file covering this module, we may // have a better path for it (relative to the current build). Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName); if (M && M->Directory) { // If we're implicitly loading a module, the base directory can't // change between the build and use. if (F.Kind != MK_ExplicitModule) { const DirectoryEntry *BuildDir = PP.getFileManager().getDirectory(Blob); if (!BuildDir || BuildDir != M->Directory) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_imported_module_relocated) << F.ModuleName << Blob << M->Directory->getName(); return OutOfDate; } } F.BaseDirectory = M->Directory->getName(); } else { F.BaseDirectory = Blob; } break; } case MODULE_MAP_FILE: if (ASTReadResult Result = ReadModuleMapFileBlock(Record, F, ImportedBy, ClientLoadCapabilities)) return Result; break; case INPUT_FILE_OFFSETS: NumInputs = Record[0]; NumUserInputs = Record[1]; F.InputFileOffsets = (const llvm::support::unaligned_uint64_t *)Blob.data(); F.InputFilesLoaded.resize(NumInputs); break; } } } ASTReader::ASTReadResult ASTReader::ReadASTBlock(ModuleFile &F, unsigned ClientLoadCapabilities) { BitstreamCursor &Stream = F.Stream; if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks for the AST file. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: Error("error at end of module block in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: { // Outside of C++, we do not store a lookup map for the translation unit. // Instead, mark it as needing a lookup map to be built if this module // contains any declarations lexically within it (which it always does!). // This usually has no cost, since we very rarely need the lookup map for // the translation unit outside C++. DeclContext *DC = Context.getTranslationUnitDecl(); if (DC->hasExternalLexicalStorage() && !getContext().getLangOpts().CPlusPlus) DC->setMustBuildLookupTable(); return Success; } case llvm::BitstreamEntry::SubBlock: switch (Entry.ID) { case DECLTYPES_BLOCK_ID: // We lazily load the decls block, but we want to set up the // DeclsCursor cursor to point into it. Clone our current bitcode // cursor to it, enter the block and read the abbrevs in that block. // With the main cursor, we just skip over it. F.DeclsCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor. // Read the abbrevs. ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } break; case PREPROCESSOR_BLOCK_ID: F.MacroCursor = Stream; if (!PP.getExternalSource()) PP.setExternalSource(this); if (Stream.SkipBlock() || ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo(); break; case PREPROCESSOR_DETAIL_BLOCK_ID: F.PreprocessorDetailCursor = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(F.PreprocessorDetailCursor, PREPROCESSOR_DETAIL_BLOCK_ID)) { Error("malformed preprocessor detail record in AST file"); return Failure; } F.PreprocessorDetailStartOffset = F.PreprocessorDetailCursor.GetCurrentBitNo(); if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); break; case SOURCE_MANAGER_BLOCK_ID: if (ReadSourceManagerBlock(F)) return Failure; break; case SUBMODULE_BLOCK_ID: if (ASTReadResult Result = ReadSubmoduleBlock(F, ClientLoadCapabilities)) return Result; break; case COMMENTS_BLOCK_ID: { BitstreamCursor C = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(C, COMMENTS_BLOCK_ID)) { Error("malformed comments block in AST file"); return Failure; } CommentsCursors.push_back(std::make_pair(C, &F)); break; } default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } continue; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read and process a record. Record.clear(); StringRef Blob; switch ((ASTRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) { default: // Default behavior: ignore. break; case TYPE_OFFSET: { if (F.LocalNumTypes != 0) { Error("duplicate TYPE_OFFSET record in AST file"); return Failure; } F.TypeOffsets = (const uint32_t *)Blob.data(); F.LocalNumTypes = Record[0]; unsigned LocalBaseTypeIndex = Record[1]; F.BaseTypeIndex = getTotalNumTypes(); if (F.LocalNumTypes > 0) { // Introduce the global -> local mapping for types within this module. GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F)); // Introduce the local -> global mapping for types within this module. F.TypeRemap.insertOrReplace( std::make_pair(LocalBaseTypeIndex, F.BaseTypeIndex - LocalBaseTypeIndex)); TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes); } break; } case DECL_OFFSET: { if (F.LocalNumDecls != 0) { Error("duplicate DECL_OFFSET record in AST file"); return Failure; } F.DeclOffsets = (const DeclOffset *)Blob.data(); F.LocalNumDecls = Record[0]; unsigned LocalBaseDeclID = Record[1]; F.BaseDeclID = getTotalNumDecls(); if (F.LocalNumDecls > 0) { // Introduce the global -> local mapping for declarations within this // module. GlobalDeclMap.insert( std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F)); // Introduce the local -> global mapping for declarations within this // module. F.DeclRemap.insertOrReplace( std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID)); // Introduce the global -> local mapping for declarations within this // module. F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID; DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls); } break; } case TU_UPDATE_LEXICAL: { DeclContext *TU = Context.getTranslationUnitDecl(); LexicalContents Contents( reinterpret_cast( Blob.data()), static_cast(Blob.size() / 4)); TULexicalDecls.push_back(std::make_pair(&F, Contents)); TU->setHasExternalLexicalStorage(true); break; } case UPDATE_VISIBLE: { unsigned Idx = 0; serialization::DeclID ID = ReadDeclID(F, Record, Idx); auto *Data = (const unsigned char*)Blob.data(); PendingVisibleUpdates[ID].push_back(PendingVisibleUpdate{&F, Data}); // If we've already loaded the decl, perform the updates when we finish // loading this block. if (Decl *D = GetExistingDecl(ID)) PendingUpdateRecords.push_back(std::make_pair(ID, D)); break; } case IDENTIFIER_TABLE: F.IdentifierTableData = Blob.data(); if (Record[0]) { F.IdentifierLookupTable = ASTIdentifierLookupTable::Create( (const unsigned char *)F.IdentifierTableData + Record[0], (const unsigned char *)F.IdentifierTableData + sizeof(uint32_t), (const unsigned char *)F.IdentifierTableData, ASTIdentifierLookupTrait(*this, F)); PP.getIdentifierTable().setExternalIdentifierLookup(this); } break; case IDENTIFIER_OFFSET: { if (F.LocalNumIdentifiers != 0) { Error("duplicate IDENTIFIER_OFFSET record in AST file"); return Failure; } F.IdentifierOffsets = (const uint32_t *)Blob.data(); F.LocalNumIdentifiers = Record[0]; unsigned LocalBaseIdentifierID = Record[1]; F.BaseIdentifierID = getTotalNumIdentifiers(); if (F.LocalNumIdentifiers > 0) { // Introduce the global -> local mapping for identifiers within this // module. GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1, &F)); // Introduce the local -> global mapping for identifiers within this // module. F.IdentifierRemap.insertOrReplace( std::make_pair(LocalBaseIdentifierID, F.BaseIdentifierID - LocalBaseIdentifierID)); IdentifiersLoaded.resize(IdentifiersLoaded.size() + F.LocalNumIdentifiers); } break; } case INTERESTING_IDENTIFIERS: F.PreloadIdentifierOffsets.assign(Record.begin(), Record.end()); break; case EAGERLY_DESERIALIZED_DECLS: // FIXME: Skip reading this record if our ASTConsumer doesn't care // about "interesting" decls (for instance, if we're building a module). for (unsigned I = 0, N = Record.size(); I != N; ++I) EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I])); break; case SPECIAL_TYPES: if (SpecialTypes.empty()) { for (unsigned I = 0, N = Record.size(); I != N; ++I) SpecialTypes.push_back(getGlobalTypeID(F, Record[I])); break; } if (SpecialTypes.size() != Record.size()) { Error("invalid special-types record"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; ++I) { serialization::TypeID ID = getGlobalTypeID(F, Record[I]); if (!SpecialTypes[I]) SpecialTypes[I] = ID; // FIXME: If ID && SpecialTypes[I] != ID, do we need a separate // merge step? } break; case STATISTICS: TotalNumStatements += Record[0]; TotalNumMacros += Record[1]; TotalLexicalDeclContexts += Record[2]; TotalVisibleDeclContexts += Record[3]; break; case UNUSED_FILESCOPED_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I])); break; case DELEGATING_CTORS: for (unsigned I = 0, N = Record.size(); I != N; ++I) DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case WEAK_UNDECLARED_IDENTIFIERS: if (Record.size() % 4 != 0) { Error("invalid weak identifiers record"); return Failure; } // FIXME: Ignore weak undeclared identifiers from non-original PCH // files. This isn't the way to do it :) WeakUndeclaredIdentifiers.clear(); // Translate the weak, undeclared identifiers into global IDs. for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) { WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); WeakUndeclaredIdentifiers.push_back(Record[I++]); } break; case SELECTOR_OFFSETS: { F.SelectorOffsets = (const uint32_t *)Blob.data(); F.LocalNumSelectors = Record[0]; unsigned LocalBaseSelectorID = Record[1]; F.BaseSelectorID = getTotalNumSelectors(); if (F.LocalNumSelectors > 0) { // Introduce the global -> local mapping for selectors within this // module. GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F)); // Introduce the local -> global mapping for selectors within this // module. F.SelectorRemap.insertOrReplace( std::make_pair(LocalBaseSelectorID, F.BaseSelectorID - LocalBaseSelectorID)); SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors); } break; } case METHOD_POOL: F.SelectorLookupTableData = (const unsigned char *)Blob.data(); if (Record[0]) F.SelectorLookupTable = ASTSelectorLookupTable::Create( F.SelectorLookupTableData + Record[0], F.SelectorLookupTableData, ASTSelectorLookupTrait(*this, F)); TotalNumMethodPoolEntries += Record[1]; break; case REFERENCED_SELECTOR_POOL: if (!Record.empty()) { for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) { ReferencedSelectorsData.push_back(getGlobalSelectorID(F, Record[Idx++])); ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx). getRawEncoding()); } } break; case PP_COUNTER_VALUE: if (!Record.empty() && Listener) Listener->ReadCounter(F, Record[0]); break; case FILE_SORTED_DECLS: F.FileSortedDecls = (const DeclID *)Blob.data(); F.NumFileSortedDecls = Record[0]; break; case SOURCE_LOCATION_OFFSETS: { F.SLocEntryOffsets = (const uint32_t *)Blob.data(); F.LocalNumSLocEntries = Record[0]; unsigned SLocSpaceSize = Record[1]; std::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) = SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries, SLocSpaceSize); if (!F.SLocEntryBaseID) { Error("ran out of source locations"); break; } // Make our entry in the range map. BaseID is negative and growing, so // we invert it. Because we invert it, though, we need the other end of // the range. unsigned RangeStart = unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1; GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F)); F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset); // SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing. assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0); GlobalSLocOffsetMap.insert( std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset - SLocSpaceSize,&F)); // Initialize the remapping table. // Invalid stays invalid. F.SLocRemap.insertOrReplace(std::make_pair(0U, 0)); // This module. Base was 2 when being compiled. F.SLocRemap.insertOrReplace(std::make_pair(2U, static_cast(F.SLocEntryBaseOffset - 2))); TotalNumSLocEntries += F.LocalNumSLocEntries; break; } case MODULE_OFFSET_MAP: { // Additional remapping information. const unsigned char *Data = (const unsigned char*)Blob.data(); const unsigned char *DataEnd = Data + Blob.size(); // If we see this entry before SOURCE_LOCATION_OFFSETS, add placeholders. if (F.SLocRemap.find(0) == F.SLocRemap.end()) { F.SLocRemap.insert(std::make_pair(0U, 0)); F.SLocRemap.insert(std::make_pair(2U, 1)); } // Continuous range maps we may be updating in our module. typedef ContinuousRangeMap::Builder RemapBuilder; RemapBuilder SLocRemap(F.SLocRemap); RemapBuilder IdentifierRemap(F.IdentifierRemap); RemapBuilder MacroRemap(F.MacroRemap); RemapBuilder PreprocessedEntityRemap(F.PreprocessedEntityRemap); RemapBuilder SubmoduleRemap(F.SubmoduleRemap); RemapBuilder SelectorRemap(F.SelectorRemap); RemapBuilder DeclRemap(F.DeclRemap); RemapBuilder TypeRemap(F.TypeRemap); while (Data < DataEnd) { using namespace llvm::support; uint16_t Len = endian::readNext(Data); StringRef Name = StringRef((const char*)Data, Len); Data += Len; ModuleFile *OM = ModuleMgr.lookup(Name); if (!OM) { Error("SourceLocation remap refers to unknown module"); return Failure; } uint32_t SLocOffset = endian::readNext(Data); uint32_t IdentifierIDOffset = endian::readNext(Data); uint32_t MacroIDOffset = endian::readNext(Data); uint32_t PreprocessedEntityIDOffset = endian::readNext(Data); uint32_t SubmoduleIDOffset = endian::readNext(Data); uint32_t SelectorIDOffset = endian::readNext(Data); uint32_t DeclIDOffset = endian::readNext(Data); uint32_t TypeIndexOffset = endian::readNext(Data); uint32_t None = std::numeric_limits::max(); auto mapOffset = [&](uint32_t Offset, uint32_t BaseOffset, RemapBuilder &Remap) { if (Offset != None) Remap.insert(std::make_pair(Offset, static_cast(BaseOffset - Offset))); }; mapOffset(SLocOffset, OM->SLocEntryBaseOffset, SLocRemap); mapOffset(IdentifierIDOffset, OM->BaseIdentifierID, IdentifierRemap); mapOffset(MacroIDOffset, OM->BaseMacroID, MacroRemap); mapOffset(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID, PreprocessedEntityRemap); mapOffset(SubmoduleIDOffset, OM->BaseSubmoduleID, SubmoduleRemap); mapOffset(SelectorIDOffset, OM->BaseSelectorID, SelectorRemap); mapOffset(DeclIDOffset, OM->BaseDeclID, DeclRemap); mapOffset(TypeIndexOffset, OM->BaseTypeIndex, TypeRemap); // Global -> local mappings. F.GlobalToLocalDeclIDs[OM] = DeclIDOffset; } break; } case SOURCE_MANAGER_LINE_TABLE: if (ParseLineTable(F, Record)) return Failure; break; case SOURCE_LOCATION_PRELOADS: { // Need to transform from the local view (1-based IDs) to the global view, // which is based off F.SLocEntryBaseID. if (!F.PreloadSLocEntries.empty()) { Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file"); return Failure; } F.PreloadSLocEntries.swap(Record); break; } case EXT_VECTOR_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case VTABLE_USES: if (Record.size() % 3 != 0) { Error("Invalid VTABLE_USES record"); return Failure; } // Later tables overwrite earlier ones. // FIXME: Modules will have some trouble with this. This is clearly not // the right way to do this. VTableUses.clear(); for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) { VTableUses.push_back(getGlobalDeclID(F, Record[Idx++])); VTableUses.push_back( ReadSourceLocation(F, Record, Idx).getRawEncoding()); VTableUses.push_back(Record[Idx++]); } break; case PENDING_IMPLICIT_INSTANTIATIONS: if (PendingInstantiations.size() % 2 != 0) { Error("Invalid existing PendingInstantiations"); return Failure; } if (Record.size() % 2 != 0) { Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) { PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++])); PendingInstantiations.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); } break; case SEMA_DECL_REFS: if (Record.size() != 2) { Error("Invalid SEMA_DECL_REFS block"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; ++I) SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case PPD_ENTITIES_OFFSETS: { F.PreprocessedEntityOffsets = (const PPEntityOffset *)Blob.data(); assert(Blob.size() % sizeof(PPEntityOffset) == 0); F.NumPreprocessedEntities = Blob.size() / sizeof(PPEntityOffset); unsigned LocalBasePreprocessedEntityID = Record[0]; unsigned StartingID; if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); StartingID = PP.getPreprocessingRecord() ->allocateLoadedEntities(F.NumPreprocessedEntities); F.BasePreprocessedEntityID = StartingID; if (F.NumPreprocessedEntities > 0) { // Introduce the global -> local mapping for preprocessed entities in // this module. GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F)); // Introduce the local -> global mapping for preprocessed entities in // this module. F.PreprocessedEntityRemap.insertOrReplace( std::make_pair(LocalBasePreprocessedEntityID, F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID)); } break; } case DECL_UPDATE_OFFSETS: { if (Record.size() % 2 != 0) { Error("invalid DECL_UPDATE_OFFSETS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 2) { GlobalDeclID ID = getGlobalDeclID(F, Record[I]); DeclUpdateOffsets[ID].push_back(std::make_pair(&F, Record[I + 1])); // If we've already loaded the decl, perform the updates when we finish // loading this block. if (Decl *D = GetExistingDecl(ID)) PendingUpdateRecords.push_back(std::make_pair(ID, D)); } break; } case DECL_REPLACEMENTS: { if (Record.size() % 3 != 0) { Error("invalid DECL_REPLACEMENTS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 3) ReplacedDecls[getGlobalDeclID(F, Record[I])] = ReplacedDeclInfo(&F, Record[I+1], Record[I+2]); break; } case OBJC_CATEGORIES_MAP: { if (F.LocalNumObjCCategoriesInMap != 0) { Error("duplicate OBJC_CATEGORIES_MAP record in AST file"); return Failure; } F.LocalNumObjCCategoriesInMap = Record[0]; F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)Blob.data(); break; } case OBJC_CATEGORIES: F.ObjCCategories.swap(Record); break; case CXX_BASE_SPECIFIER_OFFSETS: { if (F.LocalNumCXXBaseSpecifiers != 0) { Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file"); return Failure; } F.LocalNumCXXBaseSpecifiers = Record[0]; F.CXXBaseSpecifiersOffsets = (const uint32_t *)Blob.data(); break; } case CXX_CTOR_INITIALIZERS_OFFSETS: { if (F.LocalNumCXXCtorInitializers != 0) { Error("duplicate CXX_CTOR_INITIALIZERS_OFFSETS record in AST file"); return Failure; } F.LocalNumCXXCtorInitializers = Record[0]; F.CXXCtorInitializersOffsets = (const uint32_t *)Blob.data(); break; } case DIAG_PRAGMA_MAPPINGS: if (F.PragmaDiagMappings.empty()) F.PragmaDiagMappings.swap(Record); else F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(), Record.begin(), Record.end()); break; case CUDA_SPECIAL_DECL_REFS: // Later tables overwrite earlier ones. // FIXME: Modules will have trouble with this. CUDASpecialDeclRefs.clear(); for (unsigned I = 0, N = Record.size(); I != N; ++I) CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case HEADER_SEARCH_TABLE: { F.HeaderFileInfoTableData = Blob.data(); F.LocalNumHeaderFileInfos = Record[1]; if (Record[0]) { F.HeaderFileInfoTable = HeaderFileInfoLookupTable::Create( (const unsigned char *)F.HeaderFileInfoTableData + Record[0], (const unsigned char *)F.HeaderFileInfoTableData, HeaderFileInfoTrait(*this, F, &PP.getHeaderSearchInfo(), Blob.data() + Record[2])); PP.getHeaderSearchInfo().SetExternalSource(this); if (!PP.getHeaderSearchInfo().getExternalLookup()) PP.getHeaderSearchInfo().SetExternalLookup(this); } break; } case FP_PRAGMA_OPTIONS: // Later tables overwrite earlier ones. FPPragmaOptions.swap(Record); break; case OPENCL_EXTENSIONS: // Later tables overwrite earlier ones. OpenCLExtensions.swap(Record); break; case TENTATIVE_DEFINITIONS: for (unsigned I = 0, N = Record.size(); I != N; ++I) TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I])); break; case KNOWN_NAMESPACES: for (unsigned I = 0, N = Record.size(); I != N; ++I) KnownNamespaces.push_back(getGlobalDeclID(F, Record[I])); break; case UNDEFINED_BUT_USED: if (UndefinedButUsed.size() % 2 != 0) { Error("Invalid existing UndefinedButUsed"); return Failure; } if (Record.size() % 2 != 0) { Error("invalid undefined-but-used record"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) { UndefinedButUsed.push_back(getGlobalDeclID(F, Record[I++])); UndefinedButUsed.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); } break; case DELETE_EXPRS_TO_ANALYZE: for (unsigned I = 0, N = Record.size(); I != N;) { DelayedDeleteExprs.push_back(getGlobalDeclID(F, Record[I++])); const uint64_t Count = Record[I++]; DelayedDeleteExprs.push_back(Count); for (uint64_t C = 0; C < Count; ++C) { DelayedDeleteExprs.push_back(ReadSourceLocation(F, Record, I).getRawEncoding()); bool IsArrayForm = Record[I++] == 1; DelayedDeleteExprs.push_back(IsArrayForm); } } break; case IMPORTED_MODULES: { if (F.Kind != MK_ImplicitModule && F.Kind != MK_ExplicitModule) { // If we aren't loading a module (which has its own exports), make // all of the imported modules visible. // FIXME: Deal with macros-only imports. for (unsigned I = 0, N = Record.size(); I != N; /**/) { unsigned GlobalID = getGlobalSubmoduleID(F, Record[I++]); SourceLocation Loc = ReadSourceLocation(F, Record, I); if (GlobalID) ImportedModules.push_back(ImportedSubmodule(GlobalID, Loc)); } } break; } case MACRO_OFFSET: { if (F.LocalNumMacros != 0) { Error("duplicate MACRO_OFFSET record in AST file"); return Failure; } F.MacroOffsets = (const uint32_t *)Blob.data(); F.LocalNumMacros = Record[0]; unsigned LocalBaseMacroID = Record[1]; F.BaseMacroID = getTotalNumMacros(); if (F.LocalNumMacros > 0) { // Introduce the global -> local mapping for macros within this module. GlobalMacroMap.insert(std::make_pair(getTotalNumMacros() + 1, &F)); // Introduce the local -> global mapping for macros within this module. F.MacroRemap.insertOrReplace( std::make_pair(LocalBaseMacroID, F.BaseMacroID - LocalBaseMacroID)); MacrosLoaded.resize(MacrosLoaded.size() + F.LocalNumMacros); } break; } case LATE_PARSED_TEMPLATE: { LateParsedTemplates.append(Record.begin(), Record.end()); break; } case OPTIMIZE_PRAGMA_OPTIONS: if (Record.size() != 1) { Error("invalid pragma optimize record"); return Failure; } OptimizeOffPragmaLocation = ReadSourceLocation(F, Record[0]); break; case UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES: for (unsigned I = 0, N = Record.size(); I != N; ++I) UnusedLocalTypedefNameCandidates.push_back( getGlobalDeclID(F, Record[I])); break; } } } ASTReader::ASTReadResult ASTReader::ReadModuleMapFileBlock(RecordData &Record, ModuleFile &F, const ModuleFile *ImportedBy, unsigned ClientLoadCapabilities) { unsigned Idx = 0; F.ModuleMapPath = ReadPath(F, Record, Idx); if (F.Kind == MK_ExplicitModule) { // For an explicitly-loaded module, we don't care whether the original // module map file exists or matches. return Success; } // Try to resolve ModuleName in the current header search context and // verify that it is found in the same module map file as we saved. If the // top-level AST file is a main file, skip this check because there is no // usable header search context. assert(!F.ModuleName.empty() && "MODULE_NAME should come before MODULE_MAP_FILE"); if (F.Kind == MK_ImplicitModule && (*ModuleMgr.begin())->Kind != MK_MainFile) { // An implicitly-loaded module file should have its module listed in some // module map file that we've already loaded. Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName); auto &Map = PP.getHeaderSearchInfo().getModuleMap(); const FileEntry *ModMap = M ? Map.getModuleMapFileForUniquing(M) : nullptr; if (!ModMap) { assert(ImportedBy && "top-level import should be verified"); if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) { if (auto *ASTFE = M ? M->getASTFile() : nullptr) // This module was defined by an imported (explicit) module. Diag(diag::err_module_file_conflict) << F.ModuleName << F.FileName << ASTFE->getName(); else // This module was built with a different module map. Diag(diag::err_imported_module_not_found) << F.ModuleName << F.FileName << ImportedBy->FileName << F.ModuleMapPath; } return OutOfDate; } assert(M->Name == F.ModuleName && "found module with different name"); // Check the primary module map file. const FileEntry *StoredModMap = FileMgr.getFile(F.ModuleMapPath); if (StoredModMap == nullptr || StoredModMap != ModMap) { assert(ModMap && "found module is missing module map file"); assert(ImportedBy && "top-level import should be verified"); if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_imported_module_modmap_changed) << F.ModuleName << ImportedBy->FileName << ModMap->getName() << F.ModuleMapPath; return OutOfDate; } llvm::SmallPtrSet AdditionalStoredMaps; for (unsigned I = 0, N = Record[Idx++]; I < N; ++I) { // FIXME: we should use input files rather than storing names. std::string Filename = ReadPath(F, Record, Idx); const FileEntry *F = FileMgr.getFile(Filename, false, false); if (F == nullptr) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Error("could not find file '" + Filename +"' referenced by AST file"); return OutOfDate; } AdditionalStoredMaps.insert(F); } // Check any additional module map files (e.g. module.private.modulemap) // that are not in the pcm. if (auto *AdditionalModuleMaps = Map.getAdditionalModuleMapFiles(M)) { for (const FileEntry *ModMap : *AdditionalModuleMaps) { // Remove files that match // Note: SmallPtrSet::erase is really remove if (!AdditionalStoredMaps.erase(ModMap)) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_module_different_modmap) << F.ModuleName << /*new*/0 << ModMap->getName(); return OutOfDate; } } } // Check any additional module map files that are in the pcm, but not // found in header search. Cases that match are already removed. for (const FileEntry *ModMap : AdditionalStoredMaps) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_module_different_modmap) << F.ModuleName << /*not new*/1 << ModMap->getName(); return OutOfDate; } } if (Listener) Listener->ReadModuleMapFile(F.ModuleMapPath); return Success; } /// \brief Move the given method to the back of the global list of methods. static void moveMethodToBackOfGlobalList(Sema &S, ObjCMethodDecl *Method) { // Find the entry for this selector in the method pool. Sema::GlobalMethodPool::iterator Known = S.MethodPool.find(Method->getSelector()); if (Known == S.MethodPool.end()) return; // Retrieve the appropriate method list. ObjCMethodList &Start = Method->isInstanceMethod()? Known->second.first : Known->second.second; bool Found = false; for (ObjCMethodList *List = &Start; List; List = List->getNext()) { if (!Found) { if (List->getMethod() == Method) { Found = true; } else { // Keep searching. continue; } } if (List->getNext()) List->setMethod(List->getNext()->getMethod()); else List->setMethod(Method); } } void ASTReader::makeNamesVisible(const HiddenNames &Names, Module *Owner) { assert(Owner->NameVisibility != Module::Hidden && "nothing to make visible?"); for (Decl *D : Names) { bool wasHidden = D->Hidden; D->Hidden = false; if (wasHidden && SemaObj) { if (ObjCMethodDecl *Method = dyn_cast(D)) { moveMethodToBackOfGlobalList(*SemaObj, Method); } } } } void ASTReader::makeModuleVisible(Module *Mod, Module::NameVisibilityKind NameVisibility, SourceLocation ImportLoc) { llvm::SmallPtrSet Visited; SmallVector Stack; Stack.push_back(Mod); while (!Stack.empty()) { Mod = Stack.pop_back_val(); if (NameVisibility <= Mod->NameVisibility) { // This module already has this level of visibility (or greater), so // there is nothing more to do. continue; } if (!Mod->isAvailable()) { // Modules that aren't available cannot be made visible. continue; } // Update the module's name visibility. Mod->NameVisibility = NameVisibility; // If we've already deserialized any names from this module, // mark them as visible. HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod); if (Hidden != HiddenNamesMap.end()) { auto HiddenNames = std::move(*Hidden); HiddenNamesMap.erase(Hidden); makeNamesVisible(HiddenNames.second, HiddenNames.first); assert(HiddenNamesMap.find(Mod) == HiddenNamesMap.end() && "making names visible added hidden names"); } // Push any exported modules onto the stack to be marked as visible. SmallVector Exports; Mod->getExportedModules(Exports); for (SmallVectorImpl::iterator I = Exports.begin(), E = Exports.end(); I != E; ++I) { Module *Exported = *I; if (Visited.insert(Exported).second) Stack.push_back(Exported); } } } bool ASTReader::loadGlobalIndex() { if (GlobalIndex) return false; if (TriedLoadingGlobalIndex || !UseGlobalIndex || !Context.getLangOpts().Modules) return true; // Try to load the global index. TriedLoadingGlobalIndex = true; StringRef ModuleCachePath = getPreprocessor().getHeaderSearchInfo().getModuleCachePath(); std::pair Result = GlobalModuleIndex::readIndex(ModuleCachePath); if (!Result.first) return true; GlobalIndex.reset(Result.first); ModuleMgr.setGlobalIndex(GlobalIndex.get()); return false; } bool ASTReader::isGlobalIndexUnavailable() const { return Context.getLangOpts().Modules && UseGlobalIndex && !hasGlobalIndex() && TriedLoadingGlobalIndex; } static void updateModuleTimestamp(ModuleFile &MF) { // Overwrite the timestamp file contents so that file's mtime changes. std::string TimestampFilename = MF.getTimestampFilename(); std::error_code EC; llvm::raw_fd_ostream OS(TimestampFilename, EC, llvm::sys::fs::F_Text); if (EC) return; OS << "Timestamp file\n"; } /// \brief Given a cursor at the start of an AST file, scan ahead and drop the /// cursor into the start of the given block ID, returning false on success and /// true on failure. static bool SkipCursorToBlock(BitstreamCursor &Cursor, unsigned BlockID) { while (1) { llvm::BitstreamEntry Entry = Cursor.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: case llvm::BitstreamEntry::EndBlock: return true; case llvm::BitstreamEntry::Record: // Ignore top-level records. Cursor.skipRecord(Entry.ID); break; case llvm::BitstreamEntry::SubBlock: if (Entry.ID == BlockID) { if (Cursor.EnterSubBlock(BlockID)) return true; // Found it! return false; } if (Cursor.SkipBlock()) return true; } } } ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName, ModuleKind Type, SourceLocation ImportLoc, unsigned ClientLoadCapabilities) { llvm::SaveAndRestore SetCurImportLocRAII(CurrentImportLoc, ImportLoc); // Defer any pending actions until we get to the end of reading the AST file. Deserializing AnASTFile(this); // Bump the generation number. unsigned PreviousGeneration = incrementGeneration(Context); unsigned NumModules = ModuleMgr.size(); SmallVector Loaded; switch(ASTReadResult ReadResult = ReadASTCore(FileName, Type, ImportLoc, /*ImportedBy=*/nullptr, Loaded, 0, 0, 0, ClientLoadCapabilities)) { case Failure: case Missing: case OutOfDate: case VersionMismatch: case ConfigurationMismatch: case HadErrors: { llvm::SmallPtrSet LoadedSet; for (const ImportedModule &IM : Loaded) LoadedSet.insert(IM.Mod); ModuleMgr.removeModules(ModuleMgr.begin() + NumModules, ModuleMgr.end(), LoadedSet, Context.getLangOpts().Modules ? &PP.getHeaderSearchInfo().getModuleMap() : nullptr); // If we find that any modules are unusable, the global index is going // to be out-of-date. Just remove it. GlobalIndex.reset(); ModuleMgr.setGlobalIndex(nullptr); return ReadResult; } case Success: break; } // Here comes stuff that we only do once the entire chain is loaded. // Load the AST blocks of all of the modules that we loaded. for (SmallVectorImpl::iterator M = Loaded.begin(), MEnd = Loaded.end(); M != MEnd; ++M) { ModuleFile &F = *M->Mod; // Read the AST block. if (ASTReadResult Result = ReadASTBlock(F, ClientLoadCapabilities)) return Result; // Read the extension blocks. while (!SkipCursorToBlock(F.Stream, EXTENSION_BLOCK_ID)) { if (ASTReadResult Result = ReadExtensionBlock(F)) return Result; } // Once read, set the ModuleFile bit base offset and update the size in // bits of all files we've seen. F.GlobalBitOffset = TotalModulesSizeInBits; TotalModulesSizeInBits += F.SizeInBits; GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F)); // Preload SLocEntries. for (unsigned I = 0, N = F.PreloadSLocEntries.size(); I != N; ++I) { int Index = int(F.PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID; // Load it through the SourceManager and don't call ReadSLocEntry() // directly because the entry may have already been loaded in which case // calling ReadSLocEntry() directly would trigger an assertion in // SourceManager. SourceMgr.getLoadedSLocEntryByID(Index); } // Preload all the pending interesting identifiers by marking them out of // date. for (auto Offset : F.PreloadIdentifierOffsets) { const unsigned char *Data = reinterpret_cast( F.IdentifierTableData + Offset); ASTIdentifierLookupTrait Trait(*this, F); auto KeyDataLen = Trait.ReadKeyDataLength(Data); auto Key = Trait.ReadKey(Data, KeyDataLen.first); auto &II = PP.getIdentifierTable().getOwn(Key); II.setOutOfDate(true); // Mark this identifier as being from an AST file so that we can track // whether we need to serialize it. if (!II.isFromAST()) { II.setIsFromAST(); bool IsModule = PP.getCurrentModule() != nullptr; if (isInterestingIdentifier(*this, II, IsModule)) II.setChangedSinceDeserialization(); } // Associate the ID with the identifier so that the writer can reuse it. auto ID = Trait.ReadIdentifierID(Data + KeyDataLen.first); SetIdentifierInfo(ID, &II); } } // Setup the import locations and notify the module manager that we've // committed to these module files. for (SmallVectorImpl::iterator M = Loaded.begin(), MEnd = Loaded.end(); M != MEnd; ++M) { ModuleFile &F = *M->Mod; ModuleMgr.moduleFileAccepted(&F); // Set the import location. F.DirectImportLoc = ImportLoc; if (!M->ImportedBy) F.ImportLoc = M->ImportLoc; else F.ImportLoc = ReadSourceLocation(*M->ImportedBy, M->ImportLoc.getRawEncoding()); } if (!Context.getLangOpts().CPlusPlus || (Type != MK_ImplicitModule && Type != MK_ExplicitModule)) { // Mark all of the identifiers in the identifier table as being out of date, // so that various accessors know to check the loaded modules when the // identifier is used. // // For C++ modules, we don't need information on many identifiers (just // those that provide macros or are poisoned), so we mark all of // the interesting ones via PreloadIdentifierOffsets. for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(), IdEnd = PP.getIdentifierTable().end(); Id != IdEnd; ++Id) Id->second->setOutOfDate(true); } // Resolve any unresolved module exports. for (unsigned I = 0, N = UnresolvedModuleRefs.size(); I != N; ++I) { UnresolvedModuleRef &Unresolved = UnresolvedModuleRefs[I]; SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID); Module *ResolvedMod = getSubmodule(GlobalID); switch (Unresolved.Kind) { case UnresolvedModuleRef::Conflict: if (ResolvedMod) { Module::Conflict Conflict; Conflict.Other = ResolvedMod; Conflict.Message = Unresolved.String.str(); Unresolved.Mod->Conflicts.push_back(Conflict); } continue; case UnresolvedModuleRef::Import: if (ResolvedMod) Unresolved.Mod->Imports.insert(ResolvedMod); continue; case UnresolvedModuleRef::Export: if (ResolvedMod || Unresolved.IsWildcard) Unresolved.Mod->Exports.push_back( Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard)); continue; } } UnresolvedModuleRefs.clear(); // FIXME: How do we load the 'use'd modules? They may not be submodules. // Might be unnecessary as use declarations are only used to build the // module itself. InitializeContext(); if (SemaObj) UpdateSema(); if (DeserializationListener) DeserializationListener->ReaderInitialized(this); ModuleFile &PrimaryModule = ModuleMgr.getPrimaryModule(); if (PrimaryModule.OriginalSourceFileID.isValid()) { PrimaryModule.OriginalSourceFileID = FileID::get(PrimaryModule.SLocEntryBaseID + PrimaryModule.OriginalSourceFileID.getOpaqueValue() - 1); // If this AST file is a precompiled preamble, then set the // preamble file ID of the source manager to the file source file // from which the preamble was built. if (Type == MK_Preamble) { SourceMgr.setPreambleFileID(PrimaryModule.OriginalSourceFileID); } else if (Type == MK_MainFile) { SourceMgr.setMainFileID(PrimaryModule.OriginalSourceFileID); } } // For any Objective-C class definitions we have already loaded, make sure // that we load any additional categories. for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) { loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(), ObjCClassesLoaded[I], PreviousGeneration); } if (PP.getHeaderSearchInfo() .getHeaderSearchOpts() .ModulesValidateOncePerBuildSession) { // Now we are certain that the module and all modules it depends on are // up to date. Create or update timestamp files for modules that are // located in the module cache (not for PCH files that could be anywhere // in the filesystem). for (unsigned I = 0, N = Loaded.size(); I != N; ++I) { ImportedModule &M = Loaded[I]; if (M.Mod->Kind == MK_ImplicitModule) { updateModuleTimestamp(*M.Mod); } } } return Success; } static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile); /// \brief Whether \p Stream starts with the AST/PCH file magic number 'CPCH'. static bool startsWithASTFileMagic(BitstreamCursor &Stream) { return Stream.Read(8) == 'C' && Stream.Read(8) == 'P' && Stream.Read(8) == 'C' && Stream.Read(8) == 'H'; } static unsigned moduleKindForDiagnostic(ModuleKind Kind) { switch (Kind) { case MK_PCH: return 0; // PCH case MK_ImplicitModule: case MK_ExplicitModule: return 1; // module case MK_MainFile: case MK_Preamble: return 2; // main source file } llvm_unreachable("unknown module kind"); } ASTReader::ASTReadResult ASTReader::ReadASTCore(StringRef FileName, ModuleKind Type, SourceLocation ImportLoc, ModuleFile *ImportedBy, SmallVectorImpl &Loaded, off_t ExpectedSize, time_t ExpectedModTime, ASTFileSignature ExpectedSignature, unsigned ClientLoadCapabilities) { ModuleFile *M; std::string ErrorStr; ModuleManager::AddModuleResult AddResult = ModuleMgr.addModule(FileName, Type, ImportLoc, ImportedBy, getGeneration(), ExpectedSize, ExpectedModTime, ExpectedSignature, readASTFileSignature, M, ErrorStr); switch (AddResult) { case ModuleManager::AlreadyLoaded: return Success; case ModuleManager::NewlyLoaded: // Load module file below. break; case ModuleManager::Missing: // The module file was missing; if the client can handle that, return // it. if (ClientLoadCapabilities & ARR_Missing) return Missing; // Otherwise, return an error. Diag(diag::err_module_file_not_found) << moduleKindForDiagnostic(Type) << FileName << ErrorStr.empty() << ErrorStr; return Failure; case ModuleManager::OutOfDate: // We couldn't load the module file because it is out-of-date. If the // client can handle out-of-date, return it. if (ClientLoadCapabilities & ARR_OutOfDate) return OutOfDate; // Otherwise, return an error. Diag(diag::err_module_file_out_of_date) << moduleKindForDiagnostic(Type) << FileName << ErrorStr.empty() << ErrorStr; return Failure; } assert(M && "Missing module file"); // FIXME: This seems rather a hack. Should CurrentDir be part of the // module? if (FileName != "-") { CurrentDir = llvm::sys::path::parent_path(FileName); if (CurrentDir.empty()) CurrentDir = "."; } ModuleFile &F = *M; BitstreamCursor &Stream = F.Stream; PCHContainerRdr.ExtractPCH(F.Buffer->getMemBufferRef(), F.StreamFile); Stream.init(&F.StreamFile); F.SizeInBits = F.Buffer->getBufferSize() * 8; // Sniff for the signature. if (!startsWithASTFileMagic(Stream)) { Diag(diag::err_module_file_invalid) << moduleKindForDiagnostic(Type) << FileName; return Failure; } // This is used for compatibility with older PCH formats. bool HaveReadControlBlock = false; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: case llvm::BitstreamEntry::Record: case llvm::BitstreamEntry::EndBlock: Error("invalid record at top-level of AST file"); return Failure; case llvm::BitstreamEntry::SubBlock: break; } switch (Entry.ID) { case CONTROL_BLOCK_ID: HaveReadControlBlock = true; switch (ReadControlBlock(F, Loaded, ImportedBy, ClientLoadCapabilities)) { case Success: // Check that we didn't try to load a non-module AST file as a module. // // FIXME: Should we also perform the converse check? Loading a module as // a PCH file sort of works, but it's a bit wonky. if ((Type == MK_ImplicitModule || Type == MK_ExplicitModule) && F.ModuleName.empty()) { auto Result = (Type == MK_ImplicitModule) ? OutOfDate : Failure; if (Result != OutOfDate || (ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_module_file_not_module) << FileName; return Result; } break; case Failure: return Failure; case Missing: return Missing; case OutOfDate: return OutOfDate; case VersionMismatch: return VersionMismatch; case ConfigurationMismatch: return ConfigurationMismatch; case HadErrors: return HadErrors; } break; case AST_BLOCK_ID: if (!HaveReadControlBlock) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(diag::err_pch_version_too_old); return VersionMismatch; } // Record that we've loaded this module. Loaded.push_back(ImportedModule(M, ImportedBy, ImportLoc)); return Success; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } } return Success; } /// Parse a record and blob containing module file extension metadata. static bool parseModuleFileExtensionMetadata( const SmallVectorImpl &Record, StringRef Blob, ModuleFileExtensionMetadata &Metadata) { if (Record.size() < 4) return true; Metadata.MajorVersion = Record[0]; Metadata.MinorVersion = Record[1]; unsigned BlockNameLen = Record[2]; unsigned UserInfoLen = Record[3]; if (BlockNameLen + UserInfoLen > Blob.size()) return true; Metadata.BlockName = std::string(Blob.data(), Blob.data() + BlockNameLen); Metadata.UserInfo = std::string(Blob.data() + BlockNameLen, Blob.data() + BlockNameLen + UserInfoLen); return false; } ASTReader::ASTReadResult ASTReader::ReadExtensionBlock(ModuleFile &F) { BitstreamCursor &Stream = F.Stream; RecordData Record; while (true) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: if (Stream.SkipBlock()) return Failure; continue; case llvm::BitstreamEntry::EndBlock: return Success; case llvm::BitstreamEntry::Error: return HadErrors; case llvm::BitstreamEntry::Record: break; } Record.clear(); StringRef Blob; unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob); switch (RecCode) { case EXTENSION_METADATA: { ModuleFileExtensionMetadata Metadata; if (parseModuleFileExtensionMetadata(Record, Blob, Metadata)) return Failure; // Find a module file extension with this block name. auto Known = ModuleFileExtensions.find(Metadata.BlockName); if (Known == ModuleFileExtensions.end()) break; // Form a reader. if (auto Reader = Known->second->createExtensionReader(Metadata, *this, F, Stream)) { F.ExtensionReaders.push_back(std::move(Reader)); } break; } } } return Success; } void ASTReader::InitializeContext() { // If there's a listener, notify them that we "read" the translation unit. if (DeserializationListener) DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID, Context.getTranslationUnitDecl()); // FIXME: Find a better way to deal with collisions between these // built-in types. Right now, we just ignore the problem. // Load the special types. if (SpecialTypes.size() >= NumSpecialTypeIDs) { if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) { if (!Context.CFConstantStringTypeDecl) Context.setCFConstantStringType(GetType(String)); } if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) { QualType FileType = GetType(File); if (FileType.isNull()) { Error("FILE type is NULL"); return; } if (!Context.FILEDecl) { if (const TypedefType *Typedef = FileType->getAs()) Context.setFILEDecl(Typedef->getDecl()); else { const TagType *Tag = FileType->getAs(); if (!Tag) { Error("Invalid FILE type in AST file"); return; } Context.setFILEDecl(Tag->getDecl()); } } } if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) { QualType Jmp_bufType = GetType(Jmp_buf); if (Jmp_bufType.isNull()) { Error("jmp_buf type is NULL"); return; } if (!Context.jmp_bufDecl) { if (const TypedefType *Typedef = Jmp_bufType->getAs()) Context.setjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Jmp_bufType->getAs(); if (!Tag) { Error("Invalid jmp_buf type in AST file"); return; } Context.setjmp_bufDecl(Tag->getDecl()); } } } if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) { QualType Sigjmp_bufType = GetType(Sigjmp_buf); if (Sigjmp_bufType.isNull()) { Error("sigjmp_buf type is NULL"); return; } if (!Context.sigjmp_bufDecl) { if (const TypedefType *Typedef = Sigjmp_bufType->getAs()) Context.setsigjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Sigjmp_bufType->getAs(); assert(Tag && "Invalid sigjmp_buf type in AST file"); Context.setsigjmp_bufDecl(Tag->getDecl()); } } } if (unsigned ObjCIdRedef = SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) { if (Context.ObjCIdRedefinitionType.isNull()) Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef); } if (unsigned ObjCClassRedef = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) { if (Context.ObjCClassRedefinitionType.isNull()) Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef); } if (unsigned ObjCSelRedef = SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) { if (Context.ObjCSelRedefinitionType.isNull()) Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef); } if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) { QualType Ucontext_tType = GetType(Ucontext_t); if (Ucontext_tType.isNull()) { Error("ucontext_t type is NULL"); return; } if (!Context.ucontext_tDecl) { if (const TypedefType *Typedef = Ucontext_tType->getAs()) Context.setucontext_tDecl(Typedef->getDecl()); else { const TagType *Tag = Ucontext_tType->getAs(); assert(Tag && "Invalid ucontext_t type in AST file"); Context.setucontext_tDecl(Tag->getDecl()); } } } } ReadPragmaDiagnosticMappings(Context.getDiagnostics()); // If there were any CUDA special declarations, deserialize them. if (!CUDASpecialDeclRefs.empty()) { assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!"); Context.setcudaConfigureCallDecl( cast(GetDecl(CUDASpecialDeclRefs[0]))); } // Re-export any modules that were imported by a non-module AST file. // FIXME: This does not make macro-only imports visible again. for (auto &Import : ImportedModules) { if (Module *Imported = getSubmodule(Import.ID)) { makeModuleVisible(Imported, Module::AllVisible, /*ImportLoc=*/Import.ImportLoc); PP.makeModuleVisible(Imported, Import.ImportLoc); } } ImportedModules.clear(); } void ASTReader::finalizeForWriting() { // Nothing to do for now. } /// \brief Reads and return the signature record from \p StreamFile's control /// block, or else returns 0. static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile){ BitstreamCursor Stream(StreamFile); if (!startsWithASTFileMagic(Stream)) return 0; // Scan for the CONTROL_BLOCK_ID block. if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) return 0; // Scan for SIGNATURE inside the control block. ASTReader::RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); if (Entry.Kind == llvm::BitstreamEntry::EndBlock || Entry.Kind != llvm::BitstreamEntry::Record) return 0; Record.clear(); StringRef Blob; if (SIGNATURE == Stream.readRecord(Entry.ID, Record, &Blob)) return Record[0]; } } /// \brief Retrieve the name of the original source file name /// directly from the AST file, without actually loading the AST /// file. std::string ASTReader::getOriginalSourceFile( const std::string &ASTFileName, FileManager &FileMgr, const PCHContainerReader &PCHContainerRdr, DiagnosticsEngine &Diags) { // Open the AST file. auto Buffer = FileMgr.getBufferForFile(ASTFileName); if (!Buffer) { Diags.Report(diag::err_fe_unable_to_read_pch_file) << ASTFileName << Buffer.getError().message(); return std::string(); } // Initialize the stream llvm::BitstreamReader StreamFile; PCHContainerRdr.ExtractPCH((*Buffer)->getMemBufferRef(), StreamFile); BitstreamCursor Stream(StreamFile); // Sniff for the signature. if (!startsWithASTFileMagic(Stream)) { Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName; return std::string(); } // Scan for the CONTROL_BLOCK_ID block. if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } // Scan for ORIGINAL_FILE inside the control block. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); if (Entry.Kind == llvm::BitstreamEntry::EndBlock) return std::string(); if (Entry.Kind != llvm::BitstreamEntry::Record) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } Record.clear(); StringRef Blob; if (Stream.readRecord(Entry.ID, Record, &Blob) == ORIGINAL_FILE) return Blob.str(); } } namespace { class SimplePCHValidator : public ASTReaderListener { const LangOptions &ExistingLangOpts; const TargetOptions &ExistingTargetOpts; const PreprocessorOptions &ExistingPPOpts; std::string ExistingModuleCachePath; FileManager &FileMgr; public: SimplePCHValidator(const LangOptions &ExistingLangOpts, const TargetOptions &ExistingTargetOpts, const PreprocessorOptions &ExistingPPOpts, StringRef ExistingModuleCachePath, FileManager &FileMgr) : ExistingLangOpts(ExistingLangOpts), ExistingTargetOpts(ExistingTargetOpts), ExistingPPOpts(ExistingPPOpts), ExistingModuleCachePath(ExistingModuleCachePath), FileMgr(FileMgr) { } bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain, bool AllowCompatibleDifferences) override { return checkLanguageOptions(ExistingLangOpts, LangOpts, nullptr, AllowCompatibleDifferences); } bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain, bool AllowCompatibleDifferences) override { return checkTargetOptions(ExistingTargetOpts, TargetOpts, nullptr, AllowCompatibleDifferences); } bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, bool Complain) override { return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath, ExistingModuleCachePath, nullptr, ExistingLangOpts); } bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) override { return checkPreprocessorOptions(ExistingPPOpts, PPOpts, nullptr, FileMgr, SuggestedPredefines, ExistingLangOpts); } }; } bool ASTReader::readASTFileControlBlock( StringRef Filename, FileManager &FileMgr, const PCHContainerReader &PCHContainerRdr, bool FindModuleFileExtensions, ASTReaderListener &Listener) { // Open the AST file. // FIXME: This allows use of the VFS; we do not allow use of the // VFS when actually loading a module. auto Buffer = FileMgr.getBufferForFile(Filename); if (!Buffer) { return true; } // Initialize the stream llvm::BitstreamReader StreamFile; PCHContainerRdr.ExtractPCH((*Buffer)->getMemBufferRef(), StreamFile); BitstreamCursor Stream(StreamFile); // Sniff for the signature. if (!startsWithASTFileMagic(Stream)) return true; // Scan for the CONTROL_BLOCK_ID block. if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) return true; bool NeedsInputFiles = Listener.needsInputFileVisitation(); bool NeedsSystemInputFiles = Listener.needsSystemInputFileVisitation(); bool NeedsImports = Listener.needsImportVisitation(); BitstreamCursor InputFilesCursor; RecordData Record; std::string ModuleDir; bool DoneWithControlBlock = false; while (!DoneWithControlBlock) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: { switch (Entry.ID) { case OPTIONS_BLOCK_ID: { std::string IgnoredSuggestedPredefines; if (ReadOptionsBlock(Stream, ARR_ConfigurationMismatch | ARR_OutOfDate, /*AllowCompatibleConfigurationMismatch*/ false, Listener, IgnoredSuggestedPredefines) != Success) return true; break; } case INPUT_FILES_BLOCK_ID: InputFilesCursor = Stream; if (Stream.SkipBlock() || (NeedsInputFiles && ReadBlockAbbrevs(InputFilesCursor, INPUT_FILES_BLOCK_ID))) return true; break; default: if (Stream.SkipBlock()) return true; break; } continue; } case llvm::BitstreamEntry::EndBlock: DoneWithControlBlock = true; break; case llvm::BitstreamEntry::Error: return true; case llvm::BitstreamEntry::Record: break; } if (DoneWithControlBlock) break; Record.clear(); StringRef Blob; unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob); switch ((ControlRecordTypes)RecCode) { case METADATA: { if (Record[0] != VERSION_MAJOR) return true; if (Listener.ReadFullVersionInformation(Blob)) return true; break; } case MODULE_NAME: Listener.ReadModuleName(Blob); break; case MODULE_DIRECTORY: ModuleDir = Blob; break; case MODULE_MAP_FILE: { unsigned Idx = 0; auto Path = ReadString(Record, Idx); ResolveImportedPath(Path, ModuleDir); Listener.ReadModuleMapFile(Path); break; } case INPUT_FILE_OFFSETS: { if (!NeedsInputFiles) break; unsigned NumInputFiles = Record[0]; unsigned NumUserFiles = Record[1]; const uint64_t *InputFileOffs = (const uint64_t *)Blob.data(); for (unsigned I = 0; I != NumInputFiles; ++I) { // Go find this input file. bool isSystemFile = I >= NumUserFiles; if (isSystemFile && !NeedsSystemInputFiles) break; // the rest are system input files BitstreamCursor &Cursor = InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(InputFileOffs[I]); unsigned Code = Cursor.ReadCode(); RecordData Record; StringRef Blob; bool shouldContinue = false; switch ((InputFileRecordTypes)Cursor.readRecord(Code, Record, &Blob)) { case INPUT_FILE: bool Overridden = static_cast(Record[3]); std::string Filename = Blob; ResolveImportedPath(Filename, ModuleDir); shouldContinue = Listener.visitInputFile( Filename, isSystemFile, Overridden, /*IsExplicitModule*/false); break; } if (!shouldContinue) break; } break; } case IMPORTS: { if (!NeedsImports) break; unsigned Idx = 0, N = Record.size(); while (Idx < N) { // Read information about the AST file. Idx += 5; // ImportLoc, Size, ModTime, Signature std::string Filename = ReadString(Record, Idx); ResolveImportedPath(Filename, ModuleDir); Listener.visitImport(Filename); } break; } default: // No other validation to perform. break; } } // Look for module file extension blocks, if requested. if (FindModuleFileExtensions) { while (!SkipCursorToBlock(Stream, EXTENSION_BLOCK_ID)) { bool DoneWithExtensionBlock = false; while (!DoneWithExtensionBlock) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: if (Stream.SkipBlock()) return true; continue; case llvm::BitstreamEntry::EndBlock: DoneWithExtensionBlock = true; continue; case llvm::BitstreamEntry::Error: return true; case llvm::BitstreamEntry::Record: break; } Record.clear(); StringRef Blob; unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob); switch (RecCode) { case EXTENSION_METADATA: { ModuleFileExtensionMetadata Metadata; if (parseModuleFileExtensionMetadata(Record, Blob, Metadata)) return true; Listener.readModuleFileExtension(Metadata); break; } } } } } return false; } bool ASTReader::isAcceptableASTFile( StringRef Filename, FileManager &FileMgr, const PCHContainerReader &PCHContainerRdr, const LangOptions &LangOpts, const TargetOptions &TargetOpts, const PreprocessorOptions &PPOpts, std::string ExistingModuleCachePath) { SimplePCHValidator validator(LangOpts, TargetOpts, PPOpts, ExistingModuleCachePath, FileMgr); return !readASTFileControlBlock(Filename, FileMgr, PCHContainerRdr, /*FindModuleFileExtensions=*/false, validator); } ASTReader::ASTReadResult ASTReader::ReadSubmoduleBlock(ModuleFile &F, unsigned ClientLoadCapabilities) { // Enter the submodule block. if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) { Error("malformed submodule block record in AST file"); return Failure; } ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); bool First = true; Module *CurrentModule = nullptr; RecordData Record; while (true) { llvm::BitstreamEntry Entry = F.Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: return Success; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. StringRef Blob; Record.clear(); auto Kind = F.Stream.readRecord(Entry.ID, Record, &Blob); if ((Kind == SUBMODULE_METADATA) != First) { Error("submodule metadata record should be at beginning of block"); return Failure; } First = false; // Submodule information is only valid if we have a current module. // FIXME: Should we error on these cases? if (!CurrentModule && Kind != SUBMODULE_METADATA && Kind != SUBMODULE_DEFINITION) continue; switch (Kind) { default: // Default behavior: ignore. break; case SUBMODULE_DEFINITION: { if (Record.size() < 8) { Error("malformed module definition"); return Failure; } StringRef Name = Blob; unsigned Idx = 0; SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[Idx++]); SubmoduleID Parent = getGlobalSubmoduleID(F, Record[Idx++]); bool IsFramework = Record[Idx++]; bool IsExplicit = Record[Idx++]; bool IsSystem = Record[Idx++]; bool IsExternC = Record[Idx++]; bool InferSubmodules = Record[Idx++]; bool InferExplicitSubmodules = Record[Idx++]; bool InferExportWildcard = Record[Idx++]; bool ConfigMacrosExhaustive = Record[Idx++]; Module *ParentModule = nullptr; if (Parent) ParentModule = getSubmodule(Parent); // Retrieve this (sub)module from the module map, creating it if // necessary. CurrentModule = ModMap.findOrCreateModule(Name, ParentModule, IsFramework, IsExplicit).first; // FIXME: set the definition loc for CurrentModule, or call // ModMap.setInferredModuleAllowedBy() SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS; if (GlobalIndex >= SubmodulesLoaded.size() || SubmodulesLoaded[GlobalIndex]) { Error("too many submodules"); return Failure; } if (!ParentModule) { if (const FileEntry *CurFile = CurrentModule->getASTFile()) { if (CurFile != F.File) { if (!Diags.isDiagnosticInFlight()) { Diag(diag::err_module_file_conflict) << CurrentModule->getTopLevelModuleName() << CurFile->getName() << F.File->getName(); } return Failure; } } CurrentModule->setASTFile(F.File); } CurrentModule->Signature = F.Signature; CurrentModule->IsFromModuleFile = true; CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem; CurrentModule->IsExternC = IsExternC; CurrentModule->InferSubmodules = InferSubmodules; CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules; CurrentModule->InferExportWildcard = InferExportWildcard; CurrentModule->ConfigMacrosExhaustive = ConfigMacrosExhaustive; if (DeserializationListener) DeserializationListener->ModuleRead(GlobalID, CurrentModule); SubmodulesLoaded[GlobalIndex] = CurrentModule; // Clear out data that will be replaced by what is the module file. CurrentModule->LinkLibraries.clear(); CurrentModule->ConfigMacros.clear(); CurrentModule->UnresolvedConflicts.clear(); CurrentModule->Conflicts.clear(); break; } case SUBMODULE_UMBRELLA_HEADER: { std::string Filename = Blob; ResolveImportedPath(F, Filename); if (auto *Umbrella = PP.getFileManager().getFile(Filename)) { if (!CurrentModule->getUmbrellaHeader()) ModMap.setUmbrellaHeader(CurrentModule, Umbrella, Blob); else if (CurrentModule->getUmbrellaHeader().Entry != Umbrella) { // This can be a spurious difference caused by changing the VFS to // point to a different copy of the file, and it is too late to // to rebuild safely. // FIXME: If we wrote the virtual paths instead of the 'real' paths, // after input file validation only real problems would remain and we // could just error. For now, assume it's okay. break; } } break; } case SUBMODULE_HEADER: case SUBMODULE_EXCLUDED_HEADER: case SUBMODULE_PRIVATE_HEADER: // We lazily associate headers with their modules via the HeaderInfo table. // FIXME: Re-evaluate this section; maybe only store InputFile IDs instead // of complete filenames or remove it entirely. break; case SUBMODULE_TEXTUAL_HEADER: case SUBMODULE_PRIVATE_TEXTUAL_HEADER: // FIXME: Textual headers are not marked in the HeaderInfo table. Load // them here. break; case SUBMODULE_TOPHEADER: { CurrentModule->addTopHeaderFilename(Blob); break; } case SUBMODULE_UMBRELLA_DIR: { std::string Dirname = Blob; ResolveImportedPath(F, Dirname); if (auto *Umbrella = PP.getFileManager().getDirectory(Dirname)) { if (!CurrentModule->getUmbrellaDir()) ModMap.setUmbrellaDir(CurrentModule, Umbrella, Blob); else if (CurrentModule->getUmbrellaDir().Entry != Umbrella) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Error("mismatched umbrella directories in submodule"); return OutOfDate; } } break; } case SUBMODULE_METADATA: { F.BaseSubmoduleID = getTotalNumSubmodules(); F.LocalNumSubmodules = Record[0]; unsigned LocalBaseSubmoduleID = Record[1]; if (F.LocalNumSubmodules > 0) { // Introduce the global -> local mapping for submodules within this // module. GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F)); // Introduce the local -> global mapping for submodules within this // module. F.SubmoduleRemap.insertOrReplace( std::make_pair(LocalBaseSubmoduleID, F.BaseSubmoduleID - LocalBaseSubmoduleID)); SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules); } break; } case SUBMODULE_IMPORTS: { for (unsigned Idx = 0; Idx != Record.size(); ++Idx) { UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.Kind = UnresolvedModuleRef::Import; Unresolved.IsWildcard = false; UnresolvedModuleRefs.push_back(Unresolved); } break; } case SUBMODULE_EXPORTS: { for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) { UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.Kind = UnresolvedModuleRef::Export; Unresolved.IsWildcard = Record[Idx + 1]; UnresolvedModuleRefs.push_back(Unresolved); } // Once we've loaded the set of exports, there's no reason to keep // the parsed, unresolved exports around. CurrentModule->UnresolvedExports.clear(); break; } case SUBMODULE_REQUIRES: { CurrentModule->addRequirement(Blob, Record[0], Context.getLangOpts(), Context.getTargetInfo()); break; } case SUBMODULE_LINK_LIBRARY: CurrentModule->LinkLibraries.push_back( Module::LinkLibrary(Blob, Record[0])); break; case SUBMODULE_CONFIG_MACRO: CurrentModule->ConfigMacros.push_back(Blob.str()); break; case SUBMODULE_CONFLICT: { UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[0]; Unresolved.Kind = UnresolvedModuleRef::Conflict; Unresolved.IsWildcard = false; Unresolved.String = Blob; UnresolvedModuleRefs.push_back(Unresolved); break; } } } } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine parses the language options from the AST file and then gives /// them to the AST listener if one is set. /// /// \returns true if the listener deems the file unacceptable, false otherwise. bool ASTReader::ParseLanguageOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener, bool AllowCompatibleDifferences) { LangOptions LangOpts; unsigned Idx = 0; #define LANGOPT(Name, Bits, Default, Description) \ LangOpts.Name = Record[Idx++]; #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ LangOpts.set##Name(static_cast(Record[Idx++])); #include "clang/Basic/LangOptions.def" #define SANITIZER(NAME, ID) \ LangOpts.Sanitize.set(SanitizerKind::ID, Record[Idx++]); #include "clang/Basic/Sanitizers.def" for (unsigned N = Record[Idx++]; N; --N) LangOpts.ModuleFeatures.push_back(ReadString(Record, Idx)); ObjCRuntime::Kind runtimeKind = (ObjCRuntime::Kind) Record[Idx++]; VersionTuple runtimeVersion = ReadVersionTuple(Record, Idx); LangOpts.ObjCRuntime = ObjCRuntime(runtimeKind, runtimeVersion); LangOpts.CurrentModule = ReadString(Record, Idx); // Comment options. for (unsigned N = Record[Idx++]; N; --N) { LangOpts.CommentOpts.BlockCommandNames.push_back( ReadString(Record, Idx)); } LangOpts.CommentOpts.ParseAllComments = Record[Idx++]; return Listener.ReadLanguageOptions(LangOpts, Complain, AllowCompatibleDifferences); } bool ASTReader::ParseTargetOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener, bool AllowCompatibleDifferences) { unsigned Idx = 0; TargetOptions TargetOpts; TargetOpts.Triple = ReadString(Record, Idx); TargetOpts.CPU = ReadString(Record, Idx); TargetOpts.ABI = ReadString(Record, Idx); for (unsigned N = Record[Idx++]; N; --N) { TargetOpts.FeaturesAsWritten.push_back(ReadString(Record, Idx)); } for (unsigned N = Record[Idx++]; N; --N) { TargetOpts.Features.push_back(ReadString(Record, Idx)); } return Listener.ReadTargetOptions(TargetOpts, Complain, AllowCompatibleDifferences); } bool ASTReader::ParseDiagnosticOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { IntrusiveRefCntPtr DiagOpts(new DiagnosticOptions); unsigned Idx = 0; #define DIAGOPT(Name, Bits, Default) DiagOpts->Name = Record[Idx++]; #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ DiagOpts->set##Name(static_cast(Record[Idx++])); #include "clang/Basic/DiagnosticOptions.def" for (unsigned N = Record[Idx++]; N; --N) DiagOpts->Warnings.push_back(ReadString(Record, Idx)); for (unsigned N = Record[Idx++]; N; --N) DiagOpts->Remarks.push_back(ReadString(Record, Idx)); return Listener.ReadDiagnosticOptions(DiagOpts, Complain); } bool ASTReader::ParseFileSystemOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { FileSystemOptions FSOpts; unsigned Idx = 0; FSOpts.WorkingDir = ReadString(Record, Idx); return Listener.ReadFileSystemOptions(FSOpts, Complain); } bool ASTReader::ParseHeaderSearchOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { HeaderSearchOptions HSOpts; unsigned Idx = 0; HSOpts.Sysroot = ReadString(Record, Idx); // Include entries. for (unsigned N = Record[Idx++]; N; --N) { std::string Path = ReadString(Record, Idx); frontend::IncludeDirGroup Group = static_cast(Record[Idx++]); bool IsFramework = Record[Idx++]; bool IgnoreSysRoot = Record[Idx++]; HSOpts.UserEntries.emplace_back(std::move(Path), Group, IsFramework, IgnoreSysRoot); } // System header prefixes. for (unsigned N = Record[Idx++]; N; --N) { std::string Prefix = ReadString(Record, Idx); bool IsSystemHeader = Record[Idx++]; HSOpts.SystemHeaderPrefixes.emplace_back(std::move(Prefix), IsSystemHeader); } HSOpts.ResourceDir = ReadString(Record, Idx); HSOpts.ModuleCachePath = ReadString(Record, Idx); HSOpts.ModuleUserBuildPath = ReadString(Record, Idx); HSOpts.DisableModuleHash = Record[Idx++]; HSOpts.UseBuiltinIncludes = Record[Idx++]; HSOpts.UseStandardSystemIncludes = Record[Idx++]; HSOpts.UseStandardCXXIncludes = Record[Idx++]; HSOpts.UseLibcxx = Record[Idx++]; std::string SpecificModuleCachePath = ReadString(Record, Idx); return Listener.ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath, Complain); } bool ASTReader::ParsePreprocessorOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener, std::string &SuggestedPredefines) { PreprocessorOptions PPOpts; unsigned Idx = 0; // Macro definitions/undefs for (unsigned N = Record[Idx++]; N; --N) { std::string Macro = ReadString(Record, Idx); bool IsUndef = Record[Idx++]; PPOpts.Macros.push_back(std::make_pair(Macro, IsUndef)); } // Includes for (unsigned N = Record[Idx++]; N; --N) { PPOpts.Includes.push_back(ReadString(Record, Idx)); } // Macro Includes for (unsigned N = Record[Idx++]; N; --N) { PPOpts.MacroIncludes.push_back(ReadString(Record, Idx)); } PPOpts.UsePredefines = Record[Idx++]; PPOpts.DetailedRecord = Record[Idx++]; PPOpts.ImplicitPCHInclude = ReadString(Record, Idx); PPOpts.ImplicitPTHInclude = ReadString(Record, Idx); PPOpts.ObjCXXARCStandardLibrary = static_cast(Record[Idx++]); SuggestedPredefines.clear(); return Listener.ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines); } std::pair ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) { GlobalPreprocessedEntityMapType::iterator I = GlobalPreprocessedEntityMap.find(GlobalIndex); assert(I != GlobalPreprocessedEntityMap.end() && "Corrupted global preprocessed entity map"); ModuleFile *M = I->second; unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID; return std::make_pair(M, LocalIndex); } llvm::iterator_range ASTReader::getModulePreprocessedEntities(ModuleFile &Mod) const { if (PreprocessingRecord *PPRec = PP.getPreprocessingRecord()) return PPRec->getIteratorsForLoadedRange(Mod.BasePreprocessedEntityID, Mod.NumPreprocessedEntities); return llvm::make_range(PreprocessingRecord::iterator(), PreprocessingRecord::iterator()); } llvm::iterator_range ASTReader::getModuleFileLevelDecls(ModuleFile &Mod) { return llvm::make_range( ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls), ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls + Mod.NumFileSortedDecls)); } PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) { PreprocessedEntityID PPID = Index+1; std::pair PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; if (!PP.getPreprocessingRecord()) { Error("no preprocessing record"); return nullptr; } SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor); M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset); llvm::BitstreamEntry Entry = M.PreprocessorDetailCursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd); if (Entry.Kind != llvm::BitstreamEntry::Record) return nullptr; // Read the record. SourceRange Range(ReadSourceLocation(M, PPOffs.Begin), ReadSourceLocation(M, PPOffs.End)); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); StringRef Blob; RecordData Record; PreprocessorDetailRecordTypes RecType = (PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.readRecord( Entry.ID, Record, &Blob); switch (RecType) { case PPD_MACRO_EXPANSION: { bool isBuiltin = Record[0]; IdentifierInfo *Name = nullptr; MacroDefinitionRecord *Def = nullptr; if (isBuiltin) Name = getLocalIdentifier(M, Record[1]); else { PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(M, Record[1]); Def = cast( PPRec.getLoadedPreprocessedEntity(GlobalID - 1)); } MacroExpansion *ME; if (isBuiltin) ME = new (PPRec) MacroExpansion(Name, Range); else ME = new (PPRec) MacroExpansion(Def, Range); return ME; } case PPD_MACRO_DEFINITION: { // Decode the identifier info and then check again; if the macro is // still defined and associated with the identifier, IdentifierInfo *II = getLocalIdentifier(M, Record[0]); MacroDefinitionRecord *MD = new (PPRec) MacroDefinitionRecord(II, Range); if (DeserializationListener) DeserializationListener->MacroDefinitionRead(PPID, MD); return MD; } case PPD_INCLUSION_DIRECTIVE: { const char *FullFileNameStart = Blob.data() + Record[0]; StringRef FullFileName(FullFileNameStart, Blob.size() - Record[0]); const FileEntry *File = nullptr; if (!FullFileName.empty()) File = PP.getFileManager().getFile(FullFileName); // FIXME: Stable encoding InclusionDirective::InclusionKind Kind = static_cast(Record[2]); InclusionDirective *ID = new (PPRec) InclusionDirective(PPRec, Kind, StringRef(Blob.data(), Record[0]), Record[1], Record[3], File, Range); return ID; } } llvm_unreachable("Invalid PreprocessorDetailRecordTypes"); } /// \brief \arg SLocMapI points at a chunk of a module that contains no /// preprocessed entities or the entities it contains are not the ones we are /// looking for. Find the next module that contains entities and return the ID /// of the first entry. PreprocessedEntityID ASTReader::findNextPreprocessedEntity( GlobalSLocOffsetMapType::const_iterator SLocMapI) const { ++SLocMapI; for (GlobalSLocOffsetMapType::const_iterator EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) { ModuleFile &M = *SLocMapI->second; if (M.NumPreprocessedEntities) return M.BasePreprocessedEntityID; } return getTotalNumPreprocessedEntities(); } namespace { template struct PPEntityComp { const ASTReader &Reader; ModuleFile &M; PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) { } bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const { SourceLocation LHS = getLoc(L); SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(const PPEntityOffset &L, SourceLocation RHS) const { SourceLocation LHS = getLoc(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, const PPEntityOffset &R) const { SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLoc(const PPEntityOffset &PPE) const { return Reader.ReadSourceLocation(M, PPE.*PPLoc); } }; } PreprocessedEntityID ASTReader::findPreprocessedEntity(SourceLocation Loc, bool EndsAfter) const { if (SourceMgr.isLocalSourceLocation(Loc)) return getTotalNumPreprocessedEntities(); GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find( SourceManager::MaxLoadedOffset - Loc.getOffset() - 1); assert(SLocMapI != GlobalSLocOffsetMap.end() && "Corrupted global sloc offset map"); if (SLocMapI->second->NumPreprocessedEntities == 0) return findNextPreprocessedEntity(SLocMapI); ModuleFile &M = *SLocMapI->second; typedef const PPEntityOffset *pp_iterator; pp_iterator pp_begin = M.PreprocessedEntityOffsets; pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities; size_t Count = M.NumPreprocessedEntities; size_t Half; pp_iterator First = pp_begin; pp_iterator PPI; if (EndsAfter) { PPI = std::upper_bound(pp_begin, pp_end, Loc, PPEntityComp<&PPEntityOffset::Begin>(*this, M)); } else { // Do a binary search manually instead of using std::lower_bound because // The end locations of entities may be unordered (when a macro expansion // is inside another macro argument), but for this case it is not important // whether we get the first macro expansion or its containing macro. while (Count > 0) { Half = Count / 2; PPI = First; std::advance(PPI, Half); if (SourceMgr.isBeforeInTranslationUnit(ReadSourceLocation(M, PPI->End), Loc)) { First = PPI; ++First; Count = Count - Half - 1; } else Count = Half; } } if (PPI == pp_end) return findNextPreprocessedEntity(SLocMapI); return M.BasePreprocessedEntityID + (PPI - pp_begin); } /// \brief Returns a pair of [Begin, End) indices of preallocated /// preprocessed entities that \arg Range encompasses. std::pair ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) { if (Range.isInvalid()) return std::make_pair(0,0); assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin())); PreprocessedEntityID BeginID = findPreprocessedEntity(Range.getBegin(), false); PreprocessedEntityID EndID = findPreprocessedEntity(Range.getEnd(), true); return std::make_pair(BeginID, EndID); } /// \brief Optionally returns true or false if the preallocated preprocessed /// entity with index \arg Index came from file \arg FID. Optional ASTReader::isPreprocessedEntityInFileID(unsigned Index, FileID FID) { if (FID.isInvalid()) return false; std::pair PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; SourceLocation Loc = ReadSourceLocation(M, PPOffs.Begin); if (Loc.isInvalid()) return false; if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID)) return true; else return false; } namespace { /// \brief Visitor used to search for information about a header file. class HeaderFileInfoVisitor { const FileEntry *FE; Optional HFI; public: explicit HeaderFileInfoVisitor(const FileEntry *FE) : FE(FE) { } bool operator()(ModuleFile &M) { HeaderFileInfoLookupTable *Table = static_cast(M.HeaderFileInfoTable); if (!Table) return false; // Look in the on-disk hash table for an entry for this file name. HeaderFileInfoLookupTable::iterator Pos = Table->find(FE); if (Pos == Table->end()) return false; HFI = *Pos; return true; } Optional getHeaderFileInfo() const { return HFI; } }; } HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) { HeaderFileInfoVisitor Visitor(FE); ModuleMgr.visit(Visitor); if (Optional HFI = Visitor.getHeaderFileInfo()) return *HFI; return HeaderFileInfo(); } void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) { // FIXME: Make it work properly with modules. SmallVector DiagStates; for (ModuleIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { ModuleFile &F = *(*I); unsigned Idx = 0; DiagStates.clear(); assert(!Diag.DiagStates.empty()); DiagStates.push_back(&Diag.DiagStates.front()); // the command-line one. while (Idx < F.PragmaDiagMappings.size()) { SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]); unsigned DiagStateID = F.PragmaDiagMappings[Idx++]; if (DiagStateID != 0) { Diag.DiagStatePoints.push_back( DiagnosticsEngine::DiagStatePoint(DiagStates[DiagStateID-1], FullSourceLoc(Loc, SourceMgr))); continue; } assert(DiagStateID == 0); // A new DiagState was created here. Diag.DiagStates.push_back(*Diag.GetCurDiagState()); DiagnosticsEngine::DiagState *NewState = &Diag.DiagStates.back(); DiagStates.push_back(NewState); Diag.DiagStatePoints.push_back( DiagnosticsEngine::DiagStatePoint(NewState, FullSourceLoc(Loc, SourceMgr))); while (1) { assert(Idx < F.PragmaDiagMappings.size() && "Invalid data, didn't find '-1' marking end of diag/map pairs"); if (Idx >= F.PragmaDiagMappings.size()) { break; // Something is messed up but at least avoid infinite loop in // release build. } unsigned DiagID = F.PragmaDiagMappings[Idx++]; if (DiagID == (unsigned)-1) { break; // no more diag/map pairs for this location. } diag::Severity Map = (diag::Severity)F.PragmaDiagMappings[Idx++]; DiagnosticMapping Mapping = Diag.makeUserMapping(Map, Loc); Diag.GetCurDiagState()->setMapping(DiagID, Mapping); } } } } /// \brief Get the correct cursor and offset for loading a type. ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) { GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index); assert(I != GlobalTypeMap.end() && "Corrupted global type map"); ModuleFile *M = I->second; return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]); } /// \brief Read and return the type with the given index.. /// /// The index is the type ID, shifted and minus the number of predefs. This /// routine actually reads the record corresponding to the type at the given /// location. It is a helper routine for GetType, which deals with reading type /// IDs. QualType ASTReader::readTypeRecord(unsigned Index) { RecordLocation Loc = TypeCursorForIndex(Index); BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Type, *this); // Note that we are loading a type record. Deserializing AType(this); unsigned Idx = 0; DeclsCursor.JumpToBit(Loc.Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); switch ((TypeCode)DeclsCursor.readRecord(Code, Record)) { case TYPE_EXT_QUAL: { if (Record.size() != 2) { Error("Incorrect encoding of extended qualifier type"); return QualType(); } QualType Base = readType(*Loc.F, Record, Idx); Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]); return Context.getQualifiedType(Base, Quals); } case TYPE_COMPLEX: { if (Record.size() != 1) { Error("Incorrect encoding of complex type"); return QualType(); } QualType ElemType = readType(*Loc.F, Record, Idx); return Context.getComplexType(ElemType); } case TYPE_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getPointerType(PointeeType); } case TYPE_DECAYED: { if (Record.size() != 1) { Error("Incorrect encoding of decayed type"); return QualType(); } QualType OriginalType = readType(*Loc.F, Record, Idx); QualType DT = Context.getAdjustedParameterType(OriginalType); if (!isa(DT)) Error("Decayed type does not decay"); return DT; } case TYPE_ADJUSTED: { if (Record.size() != 2) { Error("Incorrect encoding of adjusted type"); return QualType(); } QualType OriginalTy = readType(*Loc.F, Record, Idx); QualType AdjustedTy = readType(*Loc.F, Record, Idx); return Context.getAdjustedType(OriginalTy, AdjustedTy); } case TYPE_BLOCK_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of block pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getBlockPointerType(PointeeType); } case TYPE_LVALUE_REFERENCE: { if (Record.size() != 2) { Error("Incorrect encoding of lvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getLValueReferenceType(PointeeType, Record[1]); } case TYPE_RVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of rvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getRValueReferenceType(PointeeType); } case TYPE_MEMBER_POINTER: { if (Record.size() != 2) { Error("Incorrect encoding of member pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); QualType ClassType = readType(*Loc.F, Record, Idx); if (PointeeType.isNull() || ClassType.isNull()) return QualType(); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case TYPE_CONSTANT_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case TYPE_INCOMPLETE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case TYPE_VARIABLE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]); SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]); return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F), ASM, IndexTypeQuals, SourceRange(LBLoc, RBLoc)); } case TYPE_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; unsigned VecKind = Record[2]; return Context.getVectorType(ElementType, NumElements, (VectorType::VectorKind)VecKind); } case TYPE_EXT_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of extended vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; return Context.getExtVectorType(ElementType, NumElements); } case TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 6) { Error("incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = readType(*Loc.F, Record, Idx); FunctionType::ExtInfo Info(Record[1], Record[2], Record[3], (CallingConv)Record[4], Record[5]); return Context.getFunctionNoProtoType(ResultType, Info); } case TYPE_FUNCTION_PROTO: { QualType ResultType = readType(*Loc.F, Record, Idx); FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1], /*hasregparm*/ Record[2], /*regparm*/ Record[3], static_cast(Record[4]), /*produces*/ Record[5]); unsigned Idx = 6; EPI.Variadic = Record[Idx++]; EPI.HasTrailingReturn = Record[Idx++]; EPI.TypeQuals = Record[Idx++]; EPI.RefQualifier = static_cast(Record[Idx++]); SmallVector ExceptionStorage; readExceptionSpec(*Loc.F, ExceptionStorage, EPI.ExceptionSpec, Record, Idx); unsigned NumParams = Record[Idx++]; SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(readType(*Loc.F, Record, Idx)); return Context.getFunctionType(ResultType, ParamTypes, EPI); } case TYPE_UNRESOLVED_USING: { unsigned Idx = 0; return Context.getTypeDeclType( ReadDeclAs(*Loc.F, Record, Idx)); } case TYPE_TYPEDEF: { if (Record.size() != 2) { Error("incorrect encoding of typedef type"); return QualType(); } unsigned Idx = 0; TypedefNameDecl *Decl = ReadDeclAs(*Loc.F, Record, Idx); QualType Canonical = readType(*Loc.F, Record, Idx); if (!Canonical.isNull()) Canonical = Context.getCanonicalType(Canonical); return Context.getTypedefType(Decl, Canonical); } case TYPE_TYPEOF_EXPR: return Context.getTypeOfExprType(ReadExpr(*Loc.F)); case TYPE_TYPEOF: { if (Record.size() != 1) { Error("incorrect encoding of typeof(type) in AST file"); return QualType(); } QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getTypeOfType(UnderlyingType); } case TYPE_DECLTYPE: { QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType); } case TYPE_UNARY_TRANSFORM: { QualType BaseType = readType(*Loc.F, Record, Idx); QualType UnderlyingType = readType(*Loc.F, Record, Idx); UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2]; return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind); } case TYPE_AUTO: { QualType Deduced = readType(*Loc.F, Record, Idx); AutoTypeKeyword Keyword = (AutoTypeKeyword)Record[Idx++]; bool IsDependent = Deduced.isNull() ? Record[Idx++] : false; return Context.getAutoType(Deduced, Keyword, IsDependent); } case TYPE_RECORD: { if (Record.size() != 2) { Error("incorrect encoding of record type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; RecordDecl *RD = ReadDeclAs(*Loc.F, Record, Idx); RD = cast_or_null(RD->getCanonicalDecl()); QualType T = Context.getRecordType(RD); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ENUM: { if (Record.size() != 2) { Error("incorrect encoding of enum type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; QualType T = Context.getEnumType(ReadDeclAs(*Loc.F, Record, Idx)); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATTRIBUTED: { if (Record.size() != 3) { Error("incorrect encoding of attributed type"); return QualType(); } QualType modifiedType = readType(*Loc.F, Record, Idx); QualType equivalentType = readType(*Loc.F, Record, Idx); AttributedType::Kind kind = static_cast(Record[2]); return Context.getAttributedType(kind, modifiedType, equivalentType); } case TYPE_PAREN: { if (Record.size() != 1) { Error("incorrect encoding of paren type"); return QualType(); } QualType InnerType = readType(*Loc.F, Record, Idx); return Context.getParenType(InnerType); } case TYPE_PACK_EXPANSION: { if (Record.size() != 2) { Error("incorrect encoding of pack expansion type"); return QualType(); } QualType Pattern = readType(*Loc.F, Record, Idx); if (Pattern.isNull()) return QualType(); Optional NumExpansions; if (Record[1]) NumExpansions = Record[1] - 1; return Context.getPackExpansionType(Pattern, NumExpansions); } case TYPE_ELABORATED: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); QualType NamedType = readType(*Loc.F, Record, Idx); return Context.getElaboratedType(Keyword, NNS, NamedType); } case TYPE_OBJC_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = ReadDeclAs(*Loc.F, Record, Idx); return Context.getObjCInterfaceType(ItfD->getCanonicalDecl()); } case TYPE_OBJC_OBJECT: { unsigned Idx = 0; QualType Base = readType(*Loc.F, Record, Idx); unsigned NumTypeArgs = Record[Idx++]; SmallVector TypeArgs; for (unsigned I = 0; I != NumTypeArgs; ++I) TypeArgs.push_back(readType(*Loc.F, Record, Idx)); unsigned NumProtos = Record[Idx++]; SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(ReadDeclAs(*Loc.F, Record, Idx)); bool IsKindOf = Record[Idx++]; return Context.getObjCObjectType(Base, TypeArgs, Protos, IsKindOf); } case TYPE_OBJC_OBJECT_POINTER: { unsigned Idx = 0; QualType Pointee = readType(*Loc.F, Record, Idx); return Context.getObjCObjectPointerType(Pointee); } case TYPE_SUBST_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); QualType Replacement = readType(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmType( cast(Parm), Context.getCanonicalType(Replacement)); } case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmPackType( cast(Parm), ArgPack); } case TYPE_INJECTED_CLASS_NAME: { CXXRecordDecl *D = ReadDeclAs(*Loc.F, Record, Idx); QualType TST = readType(*Loc.F, Record, Idx); // probably derivable // FIXME: ASTContext::getInjectedClassNameType is not currently suitable // for AST reading, too much interdependencies. const Type *T = nullptr; for (auto *DI = D; DI; DI = DI->getPreviousDecl()) { if (const Type *Existing = DI->getTypeForDecl()) { T = Existing; break; } } if (!T) { T = new (Context, TypeAlignment) InjectedClassNameType(D, TST); for (auto *DI = D; DI; DI = DI->getPreviousDecl()) DI->setTypeForDecl(T); } return QualType(T, 0); } case TYPE_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; unsigned Depth = Record[Idx++]; unsigned Index = Record[Idx++]; bool Pack = Record[Idx++]; TemplateTypeParmDecl *D = ReadDeclAs(*Loc.F, Record, Idx); return Context.getTemplateTypeParmType(Depth, Index, Pack, D); } case TYPE_DEPENDENT_NAME: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = GetIdentifierInfo(*Loc.F, Record, Idx); QualType Canon = readType(*Loc.F, Record, Idx); if (!Canon.isNull()) Canon = Context.getCanonicalType(Canon); return Context.getDependentNameType(Keyword, NNS, Name, Canon); } case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = GetIdentifierInfo(*Loc.F, Record, Idx); unsigned NumArgs = Record[Idx++]; SmallVector Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx)); return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name, Args.size(), Args.data()); } case TYPE_DEPENDENT_SIZED_ARRAY: { unsigned Idx = 0; // ArrayType QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[Idx++]; unsigned IndexTypeQuals = Record[Idx++]; // DependentSizedArrayType Expr *NumElts = ReadExpr(*Loc.F); SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx); return Context.getDependentSizedArrayType(ElementType, NumElts, ASM, IndexTypeQuals, Brackets); } case TYPE_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; bool IsDependent = Record[Idx++]; TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx); SmallVector Args; ReadTemplateArgumentList(Args, *Loc.F, Record, Idx); QualType Underlying = readType(*Loc.F, Record, Idx); QualType T; if (Underlying.isNull()) T = Context.getCanonicalTemplateSpecializationType(Name, Args.data(), Args.size()); else T = Context.getTemplateSpecializationType(Name, Args.data(), Args.size(), Underlying); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATOMIC: { if (Record.size() != 1) { Error("Incorrect encoding of atomic type"); return QualType(); } QualType ValueType = readType(*Loc.F, Record, Idx); return Context.getAtomicType(ValueType); } } llvm_unreachable("Invalid TypeCode!"); } void ASTReader::readExceptionSpec(ModuleFile &ModuleFile, SmallVectorImpl &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI, const RecordData &Record, unsigned &Idx) { ExceptionSpecificationType EST = static_cast(Record[Idx++]); ESI.Type = EST; if (EST == EST_Dynamic) { for (unsigned I = 0, N = Record[Idx++]; I != N; ++I) Exceptions.push_back(readType(ModuleFile, Record, Idx)); ESI.Exceptions = Exceptions; } else if (EST == EST_ComputedNoexcept) { ESI.NoexceptExpr = ReadExpr(ModuleFile); } else if (EST == EST_Uninstantiated) { ESI.SourceDecl = ReadDeclAs(ModuleFile, Record, Idx); ESI.SourceTemplate = ReadDeclAs(ModuleFile, Record, Idx); } else if (EST == EST_Unevaluated) { ESI.SourceDecl = ReadDeclAs(ModuleFile, Record, Idx); } } class clang::TypeLocReader : public TypeLocVisitor { ASTReader &Reader; ModuleFile &F; const ASTReader::RecordData &Record; unsigned &Idx; SourceLocation ReadSourceLocation(const ASTReader::RecordData &R, unsigned &I) { return Reader.ReadSourceLocation(F, R, I); } template T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) { return Reader.ReadDeclAs(F, Record, Idx); } public: TypeLocReader(ASTReader &Reader, ModuleFile &F, const ASTReader::RecordData &Record, unsigned &Idx) : Reader(Reader), F(F), Record(Record), Idx(Idx) { } // We want compile-time assurance that we've enumerated all of // these, so unfortunately we have to declare them first, then // define them out-of-line. #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitFunctionTypeLoc(FunctionTypeLoc); void VisitArrayTypeLoc(ArrayTypeLoc); }; void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { TL.setBuiltinLoc(ReadSourceLocation(Record, Idx)); if (TL.needsExtraLocalData()) { TL.setWrittenTypeSpec(static_cast(Record[Idx++])); TL.setWrittenSignSpec(static_cast(Record[Idx++])); TL.setWrittenWidthSpec(static_cast(Record[Idx++])); TL.setModeAttr(Record[Idx++]); } } void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDecayedTypeLoc(DecayedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { TL.setCaretLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { TL.setAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) { TL.setLBracketLoc(ReadSourceLocation(Record, Idx)); TL.setRBracketLoc(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) TL.setSizeExpr(Reader.ReadExpr(F)); else TL.setSizeExpr(nullptr); } void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) { TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) { TL.setParam(i, ReadDeclAs(Record, Idx)); } } void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) { TL.setAttrNameLoc(ReadSourceLocation(Record, Idx)); if (TL.hasAttrOperand()) { SourceRange range; range.setBegin(ReadSourceLocation(Record, Idx)); range.setEnd(ReadSourceLocation(Record, Idx)); TL.setAttrOperandParensRange(range); } if (TL.hasAttrExprOperand()) { if (Record[Idx++]) TL.setAttrExprOperand(Reader.ReadExpr(F)); else TL.setAttrExprOperand(nullptr); } else if (TL.hasAttrEnumOperand()) TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) TL.setArgLocInfo(i, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(i).getKind(), Record, Idx)); } void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) { TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); } void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) TL.setArgLocInfo(I, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(I).getKind(), Record, Idx)); } void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { TL.setEllipsisLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { TL.setHasBaseTypeAsWritten(Record[Idx++]); TL.setTypeArgsLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setTypeArgsRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i) TL.setTypeArgTInfo(i, Reader.GetTypeSourceInfo(F, Record, Idx)); TL.setProtocolLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setProtocolRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } TypeSourceInfo *ASTReader::GetTypeSourceInfo(ModuleFile &F, const RecordData &Record, unsigned &Idx) { QualType InfoTy = readType(F, Record, Idx); if (InfoTy.isNull()) return nullptr; TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy); TypeLocReader TLR(*this, F, Record, Idx); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLR.Visit(TL); return TInfo; } QualType ASTReader::GetType(TypeID ID) { unsigned FastQuals = ID & Qualifiers::FastMask; unsigned Index = ID >> Qualifiers::FastWidth; if (Index < NUM_PREDEF_TYPE_IDS) { QualType T; switch ((PredefinedTypeIDs)Index) { case PREDEF_TYPE_NULL_ID: return QualType(); case PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case PREDEF_TYPE_CHAR_U_ID: case PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case PREDEF_TYPE_UINT128_ID: T = Context.UnsignedInt128Ty; break; case PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case PREDEF_TYPE_INT128_ID: T = Context.Int128Ty; break; case PREDEF_TYPE_HALF_ID: T = Context.HalfTy; break; case PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case PREDEF_TYPE_BOUND_MEMBER: T = Context.BoundMemberTy; break; case PREDEF_TYPE_PSEUDO_OBJECT: T = Context.PseudoObjectTy; break; case PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; case PREDEF_TYPE_UNKNOWN_ANY: T = Context.UnknownAnyTy; break; case PREDEF_TYPE_NULLPTR_ID: T = Context.NullPtrTy; break; case PREDEF_TYPE_CHAR16_ID: T = Context.Char16Ty; break; case PREDEF_TYPE_CHAR32_ID: T = Context.Char32Ty; break; case PREDEF_TYPE_OBJC_ID: T = Context.ObjCBuiltinIdTy; break; case PREDEF_TYPE_OBJC_CLASS: T = Context.ObjCBuiltinClassTy; break; case PREDEF_TYPE_OBJC_SEL: T = Context.ObjCBuiltinSelTy; break; case PREDEF_TYPE_IMAGE1D_ID: T = Context.OCLImage1dTy; break; case PREDEF_TYPE_IMAGE1D_ARR_ID: T = Context.OCLImage1dArrayTy; break; case PREDEF_TYPE_IMAGE1D_BUFF_ID: T = Context.OCLImage1dBufferTy; break; case PREDEF_TYPE_IMAGE2D_ID: T = Context.OCLImage2dTy; break; case PREDEF_TYPE_IMAGE2D_ARR_ID: T = Context.OCLImage2dArrayTy; break; case PREDEF_TYPE_IMAGE2D_DEP_ID: T = Context.OCLImage2dDepthTy; break; case PREDEF_TYPE_IMAGE2D_ARR_DEP_ID: T = Context.OCLImage2dArrayDepthTy; break; case PREDEF_TYPE_IMAGE2D_MSAA_ID: T = Context.OCLImage2dMSAATy; break; case PREDEF_TYPE_IMAGE2D_ARR_MSAA_ID: T = Context.OCLImage2dArrayMSAATy; break; case PREDEF_TYPE_IMAGE2D_MSAA_DEP_ID: T = Context.OCLImage2dMSAADepthTy; break; case PREDEF_TYPE_IMAGE2D_ARR_MSAA_DEPTH_ID: T = Context.OCLImage2dArrayMSAADepthTy; break; case PREDEF_TYPE_IMAGE3D_ID: T = Context.OCLImage3dTy; break; case PREDEF_TYPE_SAMPLER_ID: T = Context.OCLSamplerTy; break; case PREDEF_TYPE_EVENT_ID: T = Context.OCLEventTy; break; case PREDEF_TYPE_CLK_EVENT_ID: T = Context.OCLClkEventTy; break; case PREDEF_TYPE_QUEUE_ID: T = Context.OCLQueueTy; break; case PREDEF_TYPE_NDRANGE_ID: T = Context.OCLNDRangeTy; break; case PREDEF_TYPE_RESERVE_ID_ID: T = Context.OCLReserveIDTy; break; case PREDEF_TYPE_AUTO_DEDUCT: T = Context.getAutoDeductType(); break; case PREDEF_TYPE_AUTO_RREF_DEDUCT: T = Context.getAutoRRefDeductType(); break; case PREDEF_TYPE_ARC_UNBRIDGED_CAST: T = Context.ARCUnbridgedCastTy; break; case PREDEF_TYPE_BUILTIN_FN: T = Context.BuiltinFnTy; break; case PREDEF_TYPE_OMP_ARRAY_SECTION: T = Context.OMPArraySectionTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.withFastQualifiers(FastQuals); } Index -= NUM_PREDEF_TYPE_IDS; assert(Index < TypesLoaded.size() && "Type index out-of-range"); if (TypesLoaded[Index].isNull()) { TypesLoaded[Index] = readTypeRecord(Index); if (TypesLoaded[Index].isNull()) return QualType(); TypesLoaded[Index]->setFromAST(); if (DeserializationListener) DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID), TypesLoaded[Index]); } return TypesLoaded[Index].withFastQualifiers(FastQuals); } QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) { return GetType(getGlobalTypeID(F, LocalID)); } serialization::TypeID ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const { unsigned FastQuals = LocalID & Qualifiers::FastMask; unsigned LocalIndex = LocalID >> Qualifiers::FastWidth; if (LocalIndex < NUM_PREDEF_TYPE_IDS) return LocalID; ContinuousRangeMap::iterator I = F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS); assert(I != F.TypeRemap.end() && "Invalid index into type index remap"); unsigned GlobalIndex = LocalIndex + I->second; return (GlobalIndex << Qualifiers::FastWidth) | FastQuals; } TemplateArgumentLocInfo ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F, TemplateArgument::ArgKind Kind, const RecordData &Record, unsigned &Index) { switch (Kind) { case TemplateArgument::Expression: return ReadExpr(F); case TemplateArgument::Type: return GetTypeSourceInfo(F, Record, Index); case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, SourceLocation()); } case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, EllipsisLoc); } case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: case TemplateArgument::Pack: // FIXME: Is this right? return TemplateArgumentLocInfo(); } llvm_unreachable("unexpected template argument loc"); } TemplateArgumentLoc ASTReader::ReadTemplateArgumentLoc(ModuleFile &F, const RecordData &Record, unsigned &Index) { TemplateArgument Arg = ReadTemplateArgument(F, Record, Index); if (Arg.getKind() == TemplateArgument::Expression) { if (Record[Index++]) // bool InfoHasSameExpr. return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr())); } return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(), Record, Index)); } const ASTTemplateArgumentListInfo* ASTReader::ReadASTTemplateArgumentListInfo(ModuleFile &F, const RecordData &Record, unsigned &Index) { SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Index); SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Index); unsigned NumArgsAsWritten = Record[Index++]; TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc); for (unsigned i = 0; i != NumArgsAsWritten; ++i) TemplArgsInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Index)); return ASTTemplateArgumentListInfo::Create(getContext(), TemplArgsInfo); } Decl *ASTReader::GetExternalDecl(uint32_t ID) { return GetDecl(ID); } template static void completeRedeclChainForTemplateSpecialization(Decl *D) { if (auto *TSD = dyn_cast(D)) TSD->getSpecializedTemplate()->LoadLazySpecializations(); } void ASTReader::CompleteRedeclChain(const Decl *D) { if (NumCurrentElementsDeserializing) { // We arrange to not care about the complete redeclaration chain while we're // deserializing. Just remember that the AST has marked this one as complete // but that it's not actually complete yet, so we know we still need to // complete it later. PendingIncompleteDeclChains.push_back(const_cast(D)); return; } const DeclContext *DC = D->getDeclContext()->getRedeclContext(); // If this is a named declaration, complete it by looking it up // within its context. // // FIXME: Merging a function definition should merge // all mergeable entities within it. if (isa(DC) || isa(DC) || isa(DC) || isa(DC)) { if (DeclarationName Name = cast(D)->getDeclName()) { if (!getContext().getLangOpts().CPlusPlus && isa(DC)) { // Outside of C++, we don't have a lookup table for the TU, so update // the identifier instead. (For C++ modules, we don't store decls // in the serialized identifier table, so we do the lookup in the TU.) auto *II = Name.getAsIdentifierInfo(); assert(II && "non-identifier name in C?"); if (II->isOutOfDate()) updateOutOfDateIdentifier(*II); } else DC->lookup(Name); } else if (needsAnonymousDeclarationNumber(cast(D))) { // Find all declarations of this kind from the relevant context. for (auto *DCDecl : cast(D->getLexicalDeclContext())->redecls()) { auto *DC = cast(DCDecl); SmallVector Decls; FindExternalLexicalDecls( DC, [&](Decl::Kind K) { return K == D->getKind(); }, Decls); } } } if (auto *CTSD = dyn_cast(D)) CTSD->getSpecializedTemplate()->LoadLazySpecializations(); if (auto *VTSD = dyn_cast(D)) VTSD->getSpecializedTemplate()->LoadLazySpecializations(); if (auto *FD = dyn_cast(D)) { if (auto *Template = FD->getPrimaryTemplate()) Template->LoadLazySpecializations(); } } uint64_t ASTReader::ReadCXXCtorInitializersRef(ModuleFile &M, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXCtorInitializers) { Error("malformed AST file: missing C++ ctor initializers"); return 0; } unsigned LocalID = Record[Idx++]; return getGlobalBitOffset(M, M.CXXCtorInitializersOffsets[LocalID - 1]); } CXXCtorInitializer ** ASTReader::GetExternalCXXCtorInitializers(uint64_t Offset) { RecordLocation Loc = getLocalBitOffset(Offset); BitstreamCursor &Cursor = Loc.F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Loc.Offset); ReadingKindTracker ReadingKind(Read_Decl, *this); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record); if (RecCode != DECL_CXX_CTOR_INITIALIZERS) { Error("malformed AST file: missing C++ ctor initializers"); return nullptr; } unsigned Idx = 0; return ReadCXXCtorInitializers(*Loc.F, Record, Idx); } uint64_t ASTReader::readCXXBaseSpecifiers(ModuleFile &M, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXBaseSpecifiers) { Error("malformed AST file: missing C++ base specifier"); return 0; } unsigned LocalID = Record[Idx++]; return getGlobalBitOffset(M, M.CXXBaseSpecifiersOffsets[LocalID - 1]); } CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) { RecordLocation Loc = getLocalBitOffset(Offset); BitstreamCursor &Cursor = Loc.F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Loc.Offset); ReadingKindTracker ReadingKind(Read_Decl, *this); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record); if (RecCode != DECL_CXX_BASE_SPECIFIERS) { Error("malformed AST file: missing C++ base specifiers"); return nullptr; } unsigned Idx = 0; unsigned NumBases = Record[Idx++]; void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases); CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases]; for (unsigned I = 0; I != NumBases; ++I) Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx); return Bases; } serialization::DeclID ASTReader::getGlobalDeclID(ModuleFile &F, LocalDeclID LocalID) const { if (LocalID < NUM_PREDEF_DECL_IDS) return LocalID; ContinuousRangeMap::iterator I = F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS); assert(I != F.DeclRemap.end() && "Invalid index into decl index remap"); return LocalID + I->second; } bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID, ModuleFile &M) const { // Predefined decls aren't from any module. if (ID < NUM_PREDEF_DECL_IDS) return false; return ID - NUM_PREDEF_DECL_IDS >= M.BaseDeclID && ID - NUM_PREDEF_DECL_IDS < M.BaseDeclID + M.LocalNumDecls; } ModuleFile *ASTReader::getOwningModuleFile(const Decl *D) { if (!D->isFromASTFile()) return nullptr; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID()); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); return I->second; } SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) return SourceLocation(); unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index > DeclsLoaded.size()) { Error("declaration ID out-of-range for AST file"); return SourceLocation(); } if (Decl *D = DeclsLoaded[Index]) return D->getLocation(); unsigned RawLocation = 0; RecordLocation Rec = DeclCursorForID(ID, RawLocation); return ReadSourceLocation(*Rec.F, RawLocation); } static Decl *getPredefinedDecl(ASTContext &Context, PredefinedDeclIDs ID) { switch (ID) { case PREDEF_DECL_NULL_ID: return nullptr; case PREDEF_DECL_TRANSLATION_UNIT_ID: return Context.getTranslationUnitDecl(); case PREDEF_DECL_OBJC_ID_ID: return Context.getObjCIdDecl(); case PREDEF_DECL_OBJC_SEL_ID: return Context.getObjCSelDecl(); case PREDEF_DECL_OBJC_CLASS_ID: return Context.getObjCClassDecl(); case PREDEF_DECL_OBJC_PROTOCOL_ID: return Context.getObjCProtocolDecl(); case PREDEF_DECL_INT_128_ID: return Context.getInt128Decl(); case PREDEF_DECL_UNSIGNED_INT_128_ID: return Context.getUInt128Decl(); case PREDEF_DECL_OBJC_INSTANCETYPE_ID: return Context.getObjCInstanceTypeDecl(); case PREDEF_DECL_BUILTIN_VA_LIST_ID: return Context.getBuiltinVaListDecl(); case PREDEF_DECL_VA_LIST_TAG: return Context.getVaListTagDecl(); case PREDEF_DECL_BUILTIN_MS_VA_LIST_ID: return Context.getBuiltinMSVaListDecl(); case PREDEF_DECL_EXTERN_C_CONTEXT_ID: return Context.getExternCContextDecl(); case PREDEF_DECL_MAKE_INTEGER_SEQ_ID: return Context.getMakeIntegerSeqDecl(); } llvm_unreachable("PredefinedDeclIDs unknown enum value"); } Decl *ASTReader::GetExistingDecl(DeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) { Decl *D = getPredefinedDecl(Context, (PredefinedDeclIDs)ID); if (D) { // Track that we have merged the declaration with ID \p ID into the // pre-existing predefined declaration \p D. auto &Merged = KeyDecls[D->getCanonicalDecl()]; if (Merged.empty()) Merged.push_back(ID); } return D; } unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index >= DeclsLoaded.size()) { assert(0 && "declaration ID out-of-range for AST file"); Error("declaration ID out-of-range for AST file"); return nullptr; } return DeclsLoaded[Index]; } Decl *ASTReader::GetDecl(DeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) return GetExistingDecl(ID); unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index >= DeclsLoaded.size()) { assert(0 && "declaration ID out-of-range for AST file"); Error("declaration ID out-of-range for AST file"); return nullptr; } if (!DeclsLoaded[Index]) { ReadDeclRecord(ID); if (DeserializationListener) DeserializationListener->DeclRead(ID, DeclsLoaded[Index]); } return DeclsLoaded[Index]; } DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M, DeclID GlobalID) { if (GlobalID < NUM_PREDEF_DECL_IDS) return GlobalID; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); ModuleFile *Owner = I->second; llvm::DenseMap::iterator Pos = M.GlobalToLocalDeclIDs.find(Owner); if (Pos == M.GlobalToLocalDeclIDs.end()) return 0; return GlobalID - Owner->BaseDeclID + Pos->second; } serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size()) { Error("Corrupted AST file"); return 0; } return getGlobalDeclID(F, Record[Idx++]); } /// \brief Resolve the offset of a statement into a statement. /// /// This operation will read a new statement from the external /// source each time it is called, and is meant to be used via a /// LazyOffsetPtr (which is used by Decls for the body of functions, etc). Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) { // Switch case IDs are per Decl. ClearSwitchCaseIDs(); // Offset here is a global offset across the entire chain. RecordLocation Loc = getLocalBitOffset(Offset); Loc.F->DeclsCursor.JumpToBit(Loc.Offset); return ReadStmtFromStream(*Loc.F); } void ASTReader::FindExternalLexicalDecls( const DeclContext *DC, llvm::function_ref IsKindWeWant, SmallVectorImpl &Decls) { bool PredefsVisited[NUM_PREDEF_DECL_IDS] = {}; auto Visit = [&] (ModuleFile *M, LexicalContents LexicalDecls) { assert(LexicalDecls.size() % 2 == 0 && "expected an even number of entries"); for (int I = 0, N = LexicalDecls.size(); I != N; I += 2) { auto K = (Decl::Kind)+LexicalDecls[I]; if (!IsKindWeWant(K)) continue; auto ID = (serialization::DeclID)+LexicalDecls[I + 1]; // Don't add predefined declarations to the lexical context more // than once. if (ID < NUM_PREDEF_DECL_IDS) { if (PredefsVisited[ID]) continue; PredefsVisited[ID] = true; } if (Decl *D = GetLocalDecl(*M, ID)) { assert(D->getKind() == K && "wrong kind for lexical decl"); if (!DC->isDeclInLexicalTraversal(D)) Decls.push_back(D); } } }; if (isa(DC)) { for (auto Lexical : TULexicalDecls) Visit(Lexical.first, Lexical.second); } else { auto I = LexicalDecls.find(DC); if (I != LexicalDecls.end()) Visit(I->second.first, I->second.second); } ++NumLexicalDeclContextsRead; } namespace { class DeclIDComp { ASTReader &Reader; ModuleFile &Mod; public: DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {} bool operator()(LocalDeclID L, LocalDeclID R) const { SourceLocation LHS = getLocation(L); SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, LocalDeclID R) const { SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(LocalDeclID L, SourceLocation RHS) const { SourceLocation LHS = getLocation(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLocation(LocalDeclID ID) const { return Reader.getSourceManager().getFileLoc( Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID))); } }; } void ASTReader::FindFileRegionDecls(FileID File, unsigned Offset, unsigned Length, SmallVectorImpl &Decls) { SourceManager &SM = getSourceManager(); llvm::DenseMap::iterator I = FileDeclIDs.find(File); if (I == FileDeclIDs.end()) return; FileDeclsInfo &DInfo = I->second; if (DInfo.Decls.empty()) return; SourceLocation BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset); SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length); DeclIDComp DIDComp(*this, *DInfo.Mod); ArrayRef::iterator BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(), BeginLoc, DIDComp); if (BeginIt != DInfo.Decls.begin()) --BeginIt; // If we are pointing at a top-level decl inside an objc container, we need // to backtrack until we find it otherwise we will fail to report that the // region overlaps with an objc container. while (BeginIt != DInfo.Decls.begin() && GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt)) ->isTopLevelDeclInObjCContainer()) --BeginIt; ArrayRef::iterator EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(), EndLoc, DIDComp); if (EndIt != DInfo.Decls.end()) ++EndIt; for (ArrayRef::iterator DIt = BeginIt; DIt != EndIt; ++DIt) Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt))); } bool ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) { assert(DC->hasExternalVisibleStorage() && DC == DC->getPrimaryContext() && "DeclContext has no visible decls in storage"); if (!Name) return false; auto It = Lookups.find(DC); if (It == Lookups.end()) return false; Deserializing LookupResults(this); // Load the list of declarations. SmallVector Decls; for (DeclID ID : It->second.Table.find(Name)) { NamedDecl *ND = cast(GetDecl(ID)); if (ND->getDeclName() == Name) Decls.push_back(ND); } ++NumVisibleDeclContextsRead; SetExternalVisibleDeclsForName(DC, Name, Decls); return !Decls.empty(); } void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) { if (!DC->hasExternalVisibleStorage()) return; auto It = Lookups.find(DC); assert(It != Lookups.end() && "have external visible storage but no lookup tables"); DeclsMap Decls; for (DeclID ID : It->second.Table.findAll()) { NamedDecl *ND = cast(GetDecl(ID)); Decls[ND->getDeclName()].push_back(ND); } ++NumVisibleDeclContextsRead; for (DeclsMap::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { SetExternalVisibleDeclsForName(DC, I->first, I->second); } const_cast(DC)->setHasExternalVisibleStorage(false); } const serialization::reader::DeclContextLookupTable * ASTReader::getLoadedLookupTables(DeclContext *Primary) const { auto I = Lookups.find(Primary); return I == Lookups.end() ? nullptr : &I->second; } /// \brief Under non-PCH compilation the consumer receives the objc methods /// before receiving the implementation, and codegen depends on this. /// We simulate this by deserializing and passing to consumer the methods of the /// implementation before passing the deserialized implementation decl. static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD, ASTConsumer *Consumer) { assert(ImplD && Consumer); for (auto *I : ImplD->methods()) Consumer->HandleInterestingDecl(DeclGroupRef(I)); Consumer->HandleInterestingDecl(DeclGroupRef(ImplD)); } void ASTReader::PassInterestingDeclsToConsumer() { assert(Consumer); if (PassingDeclsToConsumer) return; // Guard variable to avoid recursively redoing the process of passing // decls to consumer. SaveAndRestore GuardPassingDeclsToConsumer(PassingDeclsToConsumer, true); // Ensure that we've loaded all potentially-interesting declarations // that need to be eagerly loaded. for (auto ID : EagerlyDeserializedDecls) GetDecl(ID); EagerlyDeserializedDecls.clear(); while (!InterestingDecls.empty()) { Decl *D = InterestingDecls.front(); InterestingDecls.pop_front(); PassInterestingDeclToConsumer(D); } } void ASTReader::PassInterestingDeclToConsumer(Decl *D) { if (ObjCImplDecl *ImplD = dyn_cast(D)) PassObjCImplDeclToConsumer(ImplD, Consumer); else Consumer->HandleInterestingDecl(DeclGroupRef(D)); } void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (Consumer) PassInterestingDeclsToConsumer(); if (DeserializationListener) DeserializationListener->ReaderInitialized(this); } void ASTReader::PrintStats() { std::fprintf(stderr, "*** AST File Statistics:\n"); unsigned NumTypesLoaded = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(), QualType()); unsigned NumDeclsLoaded = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(), (Decl *)nullptr); unsigned NumIdentifiersLoaded = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(), IdentifiersLoaded.end(), (IdentifierInfo *)nullptr); unsigned NumMacrosLoaded = MacrosLoaded.size() - std::count(MacrosLoaded.begin(), MacrosLoaded.end(), (MacroInfo *)nullptr); unsigned NumSelectorsLoaded = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(), SelectorsLoaded.end(), Selector()); if (unsigned TotalNumSLocEntries = getTotalNumSLocs()) std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n", NumSLocEntriesRead, TotalNumSLocEntries, ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100)); if (!TypesLoaded.empty()) std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypesLoaded.size(), ((float)NumTypesLoaded/TypesLoaded.size() * 100)); if (!DeclsLoaded.empty()) std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclsLoaded.size(), ((float)NumDeclsLoaded/DeclsLoaded.size() * 100)); if (!IdentifiersLoaded.empty()) std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(), ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100)); if (!MacrosLoaded.empty()) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosLoaded, (unsigned)MacrosLoaded.size(), ((float)NumMacrosLoaded/MacrosLoaded.size() * 100)); if (!SelectorsLoaded.empty()) std::fprintf(stderr, " %u/%u selectors read (%f%%)\n", NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(), ((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100)); if (TotalNumStatements) std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); if (TotalNumMacros) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); if (TotalLexicalDeclContexts) std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n", NumLexicalDeclContextsRead, TotalLexicalDeclContexts, ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts * 100)); if (TotalVisibleDeclContexts) std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n", NumVisibleDeclContextsRead, TotalVisibleDeclContexts, ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts * 100)); if (TotalNumMethodPoolEntries) { std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n", NumMethodPoolEntriesRead, TotalNumMethodPoolEntries, ((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries * 100)); } if (NumMethodPoolLookups) { std::fprintf(stderr, " %u/%u method pool lookups succeeded (%f%%)\n", NumMethodPoolHits, NumMethodPoolLookups, ((float)NumMethodPoolHits/NumMethodPoolLookups * 100.0)); } if (NumMethodPoolTableLookups) { std::fprintf(stderr, " %u/%u method pool table lookups succeeded (%f%%)\n", NumMethodPoolTableHits, NumMethodPoolTableLookups, ((float)NumMethodPoolTableHits/NumMethodPoolTableLookups * 100.0)); } if (NumIdentifierLookupHits) { std::fprintf(stderr, " %u / %u identifier table lookups succeeded (%f%%)\n", NumIdentifierLookupHits, NumIdentifierLookups, (double)NumIdentifierLookupHits*100.0/NumIdentifierLookups); } if (GlobalIndex) { std::fprintf(stderr, "\n"); GlobalIndex->printStats(); } std::fprintf(stderr, "\n"); dump(); std::fprintf(stderr, "\n"); } template static void dumpModuleIDMap(StringRef Name, const ContinuousRangeMap &Map) { if (Map.begin() == Map.end()) return; typedef ContinuousRangeMap MapType; llvm::errs() << Name << ":\n"; for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end(); I != IEnd; ++I) { llvm::errs() << " " << I->first << " -> " << I->second->FileName << "\n"; } } void ASTReader::dump() { llvm::errs() << "*** PCH/ModuleFile Remappings:\n"; dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap); dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap); dumpModuleIDMap("Global type map", GlobalTypeMap); dumpModuleIDMap("Global declaration map", GlobalDeclMap); dumpModuleIDMap("Global identifier map", GlobalIdentifierMap); dumpModuleIDMap("Global macro map", GlobalMacroMap); dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap); dumpModuleIDMap("Global selector map", GlobalSelectorMap); dumpModuleIDMap("Global preprocessed entity map", GlobalPreprocessedEntityMap); llvm::errs() << "\n*** PCH/Modules Loaded:"; for (ModuleManager::ModuleConstIterator M = ModuleMgr.begin(), MEnd = ModuleMgr.end(); M != MEnd; ++M) (*M)->dump(); } /// Return the amount of memory used by memory buffers, breaking down /// by heap-backed versus mmap'ed memory. void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const { for (ModuleConstIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { if (llvm::MemoryBuffer *buf = (*I)->Buffer.get()) { size_t bytes = buf->getBufferSize(); switch (buf->getBufferKind()) { case llvm::MemoryBuffer::MemoryBuffer_Malloc: sizes.malloc_bytes += bytes; break; case llvm::MemoryBuffer::MemoryBuffer_MMap: sizes.mmap_bytes += bytes; break; } } } } void ASTReader::InitializeSema(Sema &S) { SemaObj = &S; S.addExternalSource(this); // Makes sure any declarations that were deserialized "too early" // still get added to the identifier's declaration chains. for (uint64_t ID : PreloadedDeclIDs) { NamedDecl *D = cast(GetDecl(ID)); pushExternalDeclIntoScope(D, D->getDeclName()); } PreloadedDeclIDs.clear(); // FIXME: What happens if these are changed by a module import? if (!FPPragmaOptions.empty()) { assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS"); SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0]; } // FIXME: What happens if these are changed by a module import? if (!OpenCLExtensions.empty()) { unsigned I = 0; #define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++]; #include "clang/Basic/OpenCLExtensions.def" assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS"); } UpdateSema(); } void ASTReader::UpdateSema() { assert(SemaObj && "no Sema to update"); // Load the offsets of the declarations that Sema references. // They will be lazily deserialized when needed. if (!SemaDeclRefs.empty()) { assert(SemaDeclRefs.size() % 2 == 0); for (unsigned I = 0; I != SemaDeclRefs.size(); I += 2) { if (!SemaObj->StdNamespace) SemaObj->StdNamespace = SemaDeclRefs[I]; if (!SemaObj->StdBadAlloc) SemaObj->StdBadAlloc = SemaDeclRefs[I+1]; } SemaDeclRefs.clear(); } // Update the state of 'pragma clang optimize'. Use the same API as if we had // encountered the pragma in the source. if(OptimizeOffPragmaLocation.isValid()) SemaObj->ActOnPragmaOptimize(/* IsOn = */ false, OptimizeOffPragmaLocation); } IdentifierInfo *ASTReader::get(StringRef Name) { // Note that we are loading an identifier. Deserializing AnIdentifier(this); IdentifierLookupVisitor Visitor(Name, /*PriorGeneration=*/0, NumIdentifierLookups, NumIdentifierLookupHits); // We don't need to do identifier table lookups in C++ modules (we preload // all interesting declarations, and don't need to use the scope for name // lookups). Perform the lookup in PCH files, though, since we don't build // a complete initial identifier table if we're carrying on from a PCH. if (Context.getLangOpts().CPlusPlus) { for (auto F : ModuleMgr.pch_modules()) if (Visitor(*F)) break; } else { // If there is a global index, look there first to determine which modules // provably do not have any results for this identifier. GlobalModuleIndex::HitSet Hits; GlobalModuleIndex::HitSet *HitsPtr = nullptr; if (!loadGlobalIndex()) { if (GlobalIndex->lookupIdentifier(Name, Hits)) { HitsPtr = &Hits; } } ModuleMgr.visit(Visitor, HitsPtr); } IdentifierInfo *II = Visitor.getIdentifierInfo(); markIdentifierUpToDate(II); return II; } namespace clang { /// \brief An identifier-lookup iterator that enumerates all of the /// identifiers stored within a set of AST files. class ASTIdentifierIterator : public IdentifierIterator { /// \brief The AST reader whose identifiers are being enumerated. const ASTReader &Reader; /// \brief The current index into the chain of AST files stored in /// the AST reader. unsigned Index; /// \brief The current position within the identifier lookup table /// of the current AST file. ASTIdentifierLookupTable::key_iterator Current; /// \brief The end position within the identifier lookup table of /// the current AST file. ASTIdentifierLookupTable::key_iterator End; public: explicit ASTIdentifierIterator(const ASTReader &Reader); StringRef Next() override; }; } ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader) : Reader(Reader), Index(Reader.ModuleMgr.size() - 1) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } StringRef ASTIdentifierIterator::Next() { while (Current == End) { // If we have exhausted all of our AST files, we're done. if (Index == 0) return StringRef(); --Index; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index]. IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } // We have any identifiers remaining in the current AST file; return // the next one. StringRef Result = *Current; ++Current; return Result; } IdentifierIterator *ASTReader::getIdentifiers() { if (!loadGlobalIndex()) return GlobalIndex->createIdentifierIterator(); return new ASTIdentifierIterator(*this); } namespace clang { namespace serialization { class ReadMethodPoolVisitor { ASTReader &Reader; Selector Sel; unsigned PriorGeneration; unsigned InstanceBits; unsigned FactoryBits; bool InstanceHasMoreThanOneDecl; bool FactoryHasMoreThanOneDecl; SmallVector InstanceMethods; SmallVector FactoryMethods; public: ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel, unsigned PriorGeneration) : Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration), InstanceBits(0), FactoryBits(0), InstanceHasMoreThanOneDecl(false), FactoryHasMoreThanOneDecl(false) {} bool operator()(ModuleFile &M) { if (!M.SelectorLookupTable) return false; // If we've already searched this module file, skip it now. if (M.Generation <= PriorGeneration) return true; ++Reader.NumMethodPoolTableLookups; ASTSelectorLookupTable *PoolTable = (ASTSelectorLookupTable*)M.SelectorLookupTable; ASTSelectorLookupTable::iterator Pos = PoolTable->find(Sel); if (Pos == PoolTable->end()) return false; ++Reader.NumMethodPoolTableHits; ++Reader.NumSelectorsRead; // FIXME: Not quite happy with the statistics here. We probably should // disable this tracking when called via LoadSelector. // Also, should entries without methods count as misses? ++Reader.NumMethodPoolEntriesRead; ASTSelectorLookupTrait::data_type Data = *Pos; if (Reader.DeserializationListener) Reader.DeserializationListener->SelectorRead(Data.ID, Sel); InstanceMethods.append(Data.Instance.begin(), Data.Instance.end()); FactoryMethods.append(Data.Factory.begin(), Data.Factory.end()); InstanceBits = Data.InstanceBits; FactoryBits = Data.FactoryBits; InstanceHasMoreThanOneDecl = Data.InstanceHasMoreThanOneDecl; FactoryHasMoreThanOneDecl = Data.FactoryHasMoreThanOneDecl; return true; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef getInstanceMethods() const { return InstanceMethods; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef getFactoryMethods() const { return FactoryMethods; } unsigned getInstanceBits() const { return InstanceBits; } unsigned getFactoryBits() const { return FactoryBits; } bool instanceHasMoreThanOneDecl() const { return InstanceHasMoreThanOneDecl; } bool factoryHasMoreThanOneDecl() const { return FactoryHasMoreThanOneDecl; } }; } } // end namespace clang::serialization /// \brief Add the given set of methods to the method list. static void addMethodsToPool(Sema &S, ArrayRef Methods, ObjCMethodList &List) { for (unsigned I = 0, N = Methods.size(); I != N; ++I) { S.addMethodToGlobalList(&List, Methods[I]); } } void ASTReader::ReadMethodPool(Selector Sel) { // Get the selector generation and update it to the current generation. unsigned &Generation = SelectorGeneration[Sel]; unsigned PriorGeneration = Generation; Generation = getGeneration(); // Search for methods defined with this selector. ++NumMethodPoolLookups; ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration); ModuleMgr.visit(Visitor); if (Visitor.getInstanceMethods().empty() && Visitor.getFactoryMethods().empty()) return; ++NumMethodPoolHits; if (!getSema()) return; Sema &S = *getSema(); Sema::GlobalMethodPool::iterator Pos = S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first; Pos->second.first.setBits(Visitor.getInstanceBits()); Pos->second.first.setHasMoreThanOneDecl(Visitor.instanceHasMoreThanOneDecl()); Pos->second.second.setBits(Visitor.getFactoryBits()); Pos->second.second.setHasMoreThanOneDecl(Visitor.factoryHasMoreThanOneDecl()); // Add methods to the global pool *after* setting hasMoreThanOneDecl, since // when building a module we keep every method individually and may need to // update hasMoreThanOneDecl as we add the methods. addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first); addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second); } void ASTReader::ReadKnownNamespaces( SmallVectorImpl &Namespaces) { Namespaces.clear(); for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) { if (NamespaceDecl *Namespace = dyn_cast_or_null(GetDecl(KnownNamespaces[I]))) Namespaces.push_back(Namespace); } } void ASTReader::ReadUndefinedButUsed( llvm::DenseMap &Undefined) { for (unsigned Idx = 0, N = UndefinedButUsed.size(); Idx != N;) { NamedDecl *D = cast(GetDecl(UndefinedButUsed[Idx++])); SourceLocation Loc = SourceLocation::getFromRawEncoding(UndefinedButUsed[Idx++]); Undefined.insert(std::make_pair(D, Loc)); } } void ASTReader::ReadMismatchingDeleteExpressions(llvm::MapVector< FieldDecl *, llvm::SmallVector, 4>> & Exprs) { for (unsigned Idx = 0, N = DelayedDeleteExprs.size(); Idx != N;) { FieldDecl *FD = cast(GetDecl(DelayedDeleteExprs[Idx++])); uint64_t Count = DelayedDeleteExprs[Idx++]; for (uint64_t C = 0; C < Count; ++C) { SourceLocation DeleteLoc = SourceLocation::getFromRawEncoding(DelayedDeleteExprs[Idx++]); const bool IsArrayForm = DelayedDeleteExprs[Idx++]; Exprs[FD].push_back(std::make_pair(DeleteLoc, IsArrayForm)); } } } void ASTReader::ReadTentativeDefinitions( SmallVectorImpl &TentativeDefs) { for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) { VarDecl *Var = dyn_cast_or_null(GetDecl(TentativeDefinitions[I])); if (Var) TentativeDefs.push_back(Var); } TentativeDefinitions.clear(); } void ASTReader::ReadUnusedFileScopedDecls( SmallVectorImpl &Decls) { for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) { DeclaratorDecl *D = dyn_cast_or_null(GetDecl(UnusedFileScopedDecls[I])); if (D) Decls.push_back(D); } UnusedFileScopedDecls.clear(); } void ASTReader::ReadDelegatingConstructors( SmallVectorImpl &Decls) { for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) { CXXConstructorDecl *D = dyn_cast_or_null(GetDecl(DelegatingCtorDecls[I])); if (D) Decls.push_back(D); } DelegatingCtorDecls.clear(); } void ASTReader::ReadExtVectorDecls(SmallVectorImpl &Decls) { for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) { TypedefNameDecl *D = dyn_cast_or_null(GetDecl(ExtVectorDecls[I])); if (D) Decls.push_back(D); } ExtVectorDecls.clear(); } void ASTReader::ReadUnusedLocalTypedefNameCandidates( llvm::SmallSetVector &Decls) { for (unsigned I = 0, N = UnusedLocalTypedefNameCandidates.size(); I != N; ++I) { TypedefNameDecl *D = dyn_cast_or_null( GetDecl(UnusedLocalTypedefNameCandidates[I])); if (D) Decls.insert(D); } UnusedLocalTypedefNameCandidates.clear(); } void ASTReader::ReadReferencedSelectors( SmallVectorImpl > &Sels) { if (ReferencedSelectorsData.empty()) return; // If there are @selector references added them to its pool. This is for // implementation of -Wselector. unsigned int DataSize = ReferencedSelectorsData.size()-1; unsigned I = 0; while (I < DataSize) { Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]); SourceLocation SelLoc = SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]); Sels.push_back(std::make_pair(Sel, SelLoc)); } ReferencedSelectorsData.clear(); } void ASTReader::ReadWeakUndeclaredIdentifiers( SmallVectorImpl > &WeakIDs) { if (WeakUndeclaredIdentifiers.empty()) return; for (unsigned I = 0, N = WeakUndeclaredIdentifiers.size(); I < N; /*none*/) { IdentifierInfo *WeakId = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]); IdentifierInfo *AliasId = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]); SourceLocation Loc = SourceLocation::getFromRawEncoding(WeakUndeclaredIdentifiers[I++]); bool Used = WeakUndeclaredIdentifiers[I++]; WeakInfo WI(AliasId, Loc); WI.setUsed(Used); WeakIDs.push_back(std::make_pair(WeakId, WI)); } WeakUndeclaredIdentifiers.clear(); } void ASTReader::ReadUsedVTables(SmallVectorImpl &VTables) { for (unsigned Idx = 0, N = VTableUses.size(); Idx < N; /* In loop */) { ExternalVTableUse VT; VT.Record = dyn_cast_or_null(GetDecl(VTableUses[Idx++])); VT.Location = SourceLocation::getFromRawEncoding(VTableUses[Idx++]); VT.DefinitionRequired = VTableUses[Idx++]; VTables.push_back(VT); } VTableUses.clear(); } void ASTReader::ReadPendingInstantiations( SmallVectorImpl > &Pending) { for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) { ValueDecl *D = cast(GetDecl(PendingInstantiations[Idx++])); SourceLocation Loc = SourceLocation::getFromRawEncoding(PendingInstantiations[Idx++]); Pending.push_back(std::make_pair(D, Loc)); } PendingInstantiations.clear(); } void ASTReader::ReadLateParsedTemplates( llvm::MapVector &LPTMap) { for (unsigned Idx = 0, N = LateParsedTemplates.size(); Idx < N; /* In loop */) { FunctionDecl *FD = cast(GetDecl(LateParsedTemplates[Idx++])); LateParsedTemplate *LT = new LateParsedTemplate; LT->D = GetDecl(LateParsedTemplates[Idx++]); ModuleFile *F = getOwningModuleFile(LT->D); assert(F && "No module"); unsigned TokN = LateParsedTemplates[Idx++]; LT->Toks.reserve(TokN); for (unsigned T = 0; T < TokN; ++T) LT->Toks.push_back(ReadToken(*F, LateParsedTemplates, Idx)); LPTMap.insert(std::make_pair(FD, LT)); } LateParsedTemplates.clear(); } void ASTReader::LoadSelector(Selector Sel) { // It would be complicated to avoid reading the methods anyway. So don't. ReadMethodPool(Sel); } void ASTReader::SetIdentifierInfo(IdentifierID ID, IdentifierInfo *II) { assert(ID && "Non-zero identifier ID required"); assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range"); IdentifiersLoaded[ID - 1] = II; if (DeserializationListener) DeserializationListener->IdentifierRead(ID, II); } /// \brief Set the globally-visible declarations associated with the given /// identifier. /// /// If the AST reader is currently in a state where the given declaration IDs /// cannot safely be resolved, they are queued until it is safe to resolve /// them. /// /// \param II an IdentifierInfo that refers to one or more globally-visible /// declarations. /// /// \param DeclIDs the set of declaration IDs with the name @p II that are /// visible at global scope. /// /// \param Decls if non-null, this vector will be populated with the set of /// deserialized declarations. These declarations will not be pushed into /// scope. void ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II, const SmallVectorImpl &DeclIDs, SmallVectorImpl *Decls) { if (NumCurrentElementsDeserializing && !Decls) { PendingIdentifierInfos[II].append(DeclIDs.begin(), DeclIDs.end()); return; } for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) { if (!SemaObj) { // Queue this declaration so that it will be added to the // translation unit scope and identifier's declaration chain // once a Sema object is known. PreloadedDeclIDs.push_back(DeclIDs[I]); continue; } NamedDecl *D = cast(GetDecl(DeclIDs[I])); // If we're simply supposed to record the declarations, do so now. if (Decls) { Decls->push_back(D); continue; } // Introduce this declaration into the translation-unit scope // and add it to the declaration chain for this identifier, so // that (unqualified) name lookup will find it. pushExternalDeclIntoScope(D, II); } } IdentifierInfo *ASTReader::DecodeIdentifierInfo(IdentifierID ID) { if (ID == 0) return nullptr; if (IdentifiersLoaded.empty()) { Error("no identifier table in AST file"); return nullptr; } ID -= 1; if (!IdentifiersLoaded[ID]) { GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1); assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map"); ModuleFile *M = I->second; unsigned Index = ID - M->BaseIdentifierID; const char *Str = M->IdentifierTableData + M->IdentifierOffsets[Index]; // All of the strings in the AST file are preceded by a 16-bit length. // Extract that 16-bit length to avoid having to execute strlen(). // NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as // unsigned integers. This is important to avoid integer overflow when // we cast them to 'unsigned'. const unsigned char *StrLenPtr = (const unsigned char*) Str - 2; unsigned StrLen = (((unsigned) StrLenPtr[0]) | (((unsigned) StrLenPtr[1]) << 8)) - 1; IdentifiersLoaded[ID] = &PP.getIdentifierTable().get(StringRef(Str, StrLen)); if (DeserializationListener) DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]); } return IdentifiersLoaded[ID]; } IdentifierInfo *ASTReader::getLocalIdentifier(ModuleFile &M, unsigned LocalID) { return DecodeIdentifierInfo(getGlobalIdentifierID(M, LocalID)); } IdentifierID ASTReader::getGlobalIdentifierID(ModuleFile &M, unsigned LocalID) { if (LocalID < NUM_PREDEF_IDENT_IDS) return LocalID; ContinuousRangeMap::iterator I = M.IdentifierRemap.find(LocalID - NUM_PREDEF_IDENT_IDS); assert(I != M.IdentifierRemap.end() && "Invalid index into identifier index remap"); return LocalID + I->second; } MacroInfo *ASTReader::getMacro(MacroID ID) { if (ID == 0) return nullptr; if (MacrosLoaded.empty()) { Error("no macro table in AST file"); return nullptr; } ID -= NUM_PREDEF_MACRO_IDS; if (!MacrosLoaded[ID]) { GlobalMacroMapType::iterator I = GlobalMacroMap.find(ID + NUM_PREDEF_MACRO_IDS); assert(I != GlobalMacroMap.end() && "Corrupted global macro map"); ModuleFile *M = I->second; unsigned Index = ID - M->BaseMacroID; MacrosLoaded[ID] = ReadMacroRecord(*M, M->MacroOffsets[Index]); if (DeserializationListener) DeserializationListener->MacroRead(ID + NUM_PREDEF_MACRO_IDS, MacrosLoaded[ID]); } return MacrosLoaded[ID]; } MacroID ASTReader::getGlobalMacroID(ModuleFile &M, unsigned LocalID) { if (LocalID < NUM_PREDEF_MACRO_IDS) return LocalID; ContinuousRangeMap::iterator I = M.MacroRemap.find(LocalID - NUM_PREDEF_MACRO_IDS); assert(I != M.MacroRemap.end() && "Invalid index into macro index remap"); return LocalID + I->second; } serialization::SubmoduleID ASTReader::getGlobalSubmoduleID(ModuleFile &M, unsigned LocalID) { if (LocalID < NUM_PREDEF_SUBMODULE_IDS) return LocalID; ContinuousRangeMap::iterator I = M.SubmoduleRemap.find(LocalID - NUM_PREDEF_SUBMODULE_IDS); assert(I != M.SubmoduleRemap.end() && "Invalid index into submodule index remap"); return LocalID + I->second; } Module *ASTReader::getSubmodule(SubmoduleID GlobalID) { if (GlobalID < NUM_PREDEF_SUBMODULE_IDS) { assert(GlobalID == 0 && "Unhandled global submodule ID"); return nullptr; } if (GlobalID > SubmodulesLoaded.size()) { Error("submodule ID out of range in AST file"); return nullptr; } return SubmodulesLoaded[GlobalID - NUM_PREDEF_SUBMODULE_IDS]; } Module *ASTReader::getModule(unsigned ID) { return getSubmodule(ID); } ModuleFile *ASTReader::getLocalModuleFile(ModuleFile &F, unsigned ID) { if (ID & 1) { // It's a module, look it up by submodule ID. auto I = GlobalSubmoduleMap.find(getGlobalSubmoduleID(F, ID >> 1)); return I == GlobalSubmoduleMap.end() ? nullptr : I->second; } else { // It's a prefix (preamble, PCH, ...). Look it up by index. unsigned IndexFromEnd = ID >> 1; assert(IndexFromEnd && "got reference to unknown module file"); return getModuleManager().pch_modules().end()[-IndexFromEnd]; } } unsigned ASTReader::getModuleFileID(ModuleFile *F) { if (!F) return 1; // For a file representing a module, use the submodule ID of the top-level // module as the file ID. For any other kind of file, the number of such // files loaded beforehand will be the same on reload. // FIXME: Is this true even if we have an explicit module file and a PCH? if (F->isModule()) return ((F->BaseSubmoduleID + NUM_PREDEF_SUBMODULE_IDS) << 1) | 1; auto PCHModules = getModuleManager().pch_modules(); auto I = std::find(PCHModules.begin(), PCHModules.end(), F); assert(I != PCHModules.end() && "emitting reference to unknown file"); return (I - PCHModules.end()) << 1; } llvm::Optional ASTReader::getSourceDescriptor(unsigned ID) { if (const Module *M = getSubmodule(ID)) return ExternalASTSource::ASTSourceDescriptor(*M); // If there is only a single PCH, return it instead. // Chained PCH are not suported. if (ModuleMgr.size() == 1) { ModuleFile &MF = ModuleMgr.getPrimaryModule(); return ASTReader::ASTSourceDescriptor( MF.OriginalSourceFileName, MF.OriginalDir, MF.FileName, MF.Signature); } return None; } Selector ASTReader::getLocalSelector(ModuleFile &M, unsigned LocalID) { return DecodeSelector(getGlobalSelectorID(M, LocalID)); } Selector ASTReader::DecodeSelector(serialization::SelectorID ID) { if (ID == 0) return Selector(); if (ID > SelectorsLoaded.size()) { Error("selector ID out of range in AST file"); return Selector(); } if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == nullptr) { // Load this selector from the selector table. GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID); assert(I != GlobalSelectorMap.end() && "Corrupted global selector map"); ModuleFile &M = *I->second; ASTSelectorLookupTrait Trait(*this, M); unsigned Idx = ID - M.BaseSelectorID - NUM_PREDEF_SELECTOR_IDS; SelectorsLoaded[ID - 1] = Trait.ReadKey(M.SelectorLookupTableData + M.SelectorOffsets[Idx], 0); if (DeserializationListener) DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]); } return SelectorsLoaded[ID - 1]; } Selector ASTReader::GetExternalSelector(serialization::SelectorID ID) { return DecodeSelector(ID); } uint32_t ASTReader::GetNumExternalSelectors() { // ID 0 (the null selector) is considered an external selector. return getTotalNumSelectors() + 1; } serialization::SelectorID ASTReader::getGlobalSelectorID(ModuleFile &M, unsigned LocalID) const { if (LocalID < NUM_PREDEF_SELECTOR_IDS) return LocalID; ContinuousRangeMap::iterator I = M.SelectorRemap.find(LocalID - NUM_PREDEF_SELECTOR_IDS); assert(I != M.SelectorRemap.end() && "Invalid index into selector index remap"); return LocalID + I->second; } DeclarationName ASTReader::ReadDeclarationName(ModuleFile &F, const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(F, Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return DeclarationName(ReadSelector(F, Record, Idx)); case DeclarationName::CXXConstructorName: return Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXDestructorName: return Context.DeclarationNames.getCXXDestructorName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXConversionFunctionName: return Context.DeclarationNames.getCXXConversionFunctionName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXOperatorName: return Context.DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXLiteralOperatorName: return Context.DeclarationNames.getCXXLiteralOperatorName( GetIdentifierInfo(F, Record, Idx)); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } llvm_unreachable("Invalid NameKind!"); } void ASTReader::ReadDeclarationNameLoc(ModuleFile &F, DeclarationNameLoc &DNLoc, DeclarationName Name, const RecordData &Record, unsigned &Idx) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx); break; case DeclarationName::CXXOperatorName: DNLoc.CXXOperatorName.BeginOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); DNLoc.CXXOperatorName.EndOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::CXXLiteralOperatorName: DNLoc.CXXLiteralOperatorName.OpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: break; } } void ASTReader::ReadDeclarationNameInfo(ModuleFile &F, DeclarationNameInfo &NameInfo, const RecordData &Record, unsigned &Idx) { NameInfo.setName(ReadDeclarationName(F, Record, Idx)); NameInfo.setLoc(ReadSourceLocation(F, Record, Idx)); DeclarationNameLoc DNLoc; ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx); NameInfo.setInfo(DNLoc); } void ASTReader::ReadQualifierInfo(ModuleFile &F, QualifierInfo &Info, const RecordData &Record, unsigned &Idx) { Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx); unsigned NumTPLists = Record[Idx++]; Info.NumTemplParamLists = NumTPLists; if (NumTPLists) { Info.TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; for (unsigned i=0; i != NumTPLists; ++i) Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx); } } TemplateName ASTReader::ReadTemplateName(ModuleFile &F, const RecordData &Record, unsigned &Idx) { TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++]; switch (Kind) { case TemplateName::Template: return TemplateName(ReadDeclAs(F, Record, Idx)); case TemplateName::OverloadedTemplate: { unsigned size = Record[Idx++]; UnresolvedSet<8> Decls; while (size--) Decls.addDecl(ReadDeclAs(F, Record, Idx)); return Context.getOverloadedTemplateName(Decls.begin(), Decls.end()); } case TemplateName::QualifiedTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx); bool hasTemplKeyword = Record[Idx++]; TemplateDecl *Template = ReadDeclAs(F, Record, Idx); return Context.getQualifiedTemplateName(NNS, hasTemplKeyword, Template); } case TemplateName::DependentTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx); if (Record[Idx++]) // isIdentifier return Context.getDependentTemplateName(NNS, GetIdentifierInfo(F, Record, Idx)); return Context.getDependentTemplateName(NNS, (OverloadedOperatorKind)Record[Idx++]); } case TemplateName::SubstTemplateTemplateParm: { TemplateTemplateParmDecl *param = ReadDeclAs(F, Record, Idx); if (!param) return TemplateName(); TemplateName replacement = ReadTemplateName(F, Record, Idx); return Context.getSubstTemplateTemplateParm(param, replacement); } case TemplateName::SubstTemplateTemplateParmPack: { TemplateTemplateParmDecl *Param = ReadDeclAs(F, Record, Idx); if (!Param) return TemplateName(); TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx); if (ArgPack.getKind() != TemplateArgument::Pack) return TemplateName(); return Context.getSubstTemplateTemplateParmPack(Param, ArgPack); } } llvm_unreachable("Unhandled template name kind!"); } TemplateArgument ASTReader::ReadTemplateArgument(ModuleFile &F, const RecordData &Record, unsigned &Idx, bool Canonicalize) { if (Canonicalize) { // The caller wants a canonical template argument. Sometimes the AST only // wants template arguments in canonical form (particularly as the template // argument lists of template specializations) so ensure we preserve that // canonical form across serialization. TemplateArgument Arg = ReadTemplateArgument(F, Record, Idx, false); return Context.getCanonicalTemplateArgument(Arg); } TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++]; switch (Kind) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: return TemplateArgument(readType(F, Record, Idx)); case TemplateArgument::Declaration: { ValueDecl *D = ReadDeclAs(F, Record, Idx); return TemplateArgument(D, readType(F, Record, Idx)); } case TemplateArgument::NullPtr: return TemplateArgument(readType(F, Record, Idx), /*isNullPtr*/true); case TemplateArgument::Integral: { llvm::APSInt Value = ReadAPSInt(Record, Idx); QualType T = readType(F, Record, Idx); return TemplateArgument(Context, Value, T); } case TemplateArgument::Template: return TemplateArgument(ReadTemplateName(F, Record, Idx)); case TemplateArgument::TemplateExpansion: { TemplateName Name = ReadTemplateName(F, Record, Idx); Optional NumTemplateExpansions; if (unsigned NumExpansions = Record[Idx++]) NumTemplateExpansions = NumExpansions - 1; return TemplateArgument(Name, NumTemplateExpansions); } case TemplateArgument::Expression: return TemplateArgument(ReadExpr(F)); case TemplateArgument::Pack: { unsigned NumArgs = Record[Idx++]; TemplateArgument *Args = new (Context) TemplateArgument[NumArgs]; for (unsigned I = 0; I != NumArgs; ++I) Args[I] = ReadTemplateArgument(F, Record, Idx); return TemplateArgument(llvm::makeArrayRef(Args, NumArgs)); } } llvm_unreachable("Unhandled template argument kind!"); } TemplateParameterList * ASTReader::ReadTemplateParameterList(ModuleFile &F, const RecordData &Record, unsigned &Idx) { SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx); SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx); unsigned NumParams = Record[Idx++]; SmallVector Params; Params.reserve(NumParams); while (NumParams--) Params.push_back(ReadDeclAs(F, Record, Idx)); TemplateParameterList* TemplateParams = TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, Params.data(), Params.size(), RAngleLoc); return TemplateParams; } void ASTReader:: ReadTemplateArgumentList(SmallVectorImpl &TemplArgs, ModuleFile &F, const RecordData &Record, unsigned &Idx, bool Canonicalize) { unsigned NumTemplateArgs = Record[Idx++]; TemplArgs.reserve(NumTemplateArgs); while (NumTemplateArgs--) TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx, Canonicalize)); } /// \brief Read a UnresolvedSet structure. void ASTReader::ReadUnresolvedSet(ModuleFile &F, LazyASTUnresolvedSet &Set, const RecordData &Record, unsigned &Idx) { unsigned NumDecls = Record[Idx++]; Set.reserve(Context, NumDecls); while (NumDecls--) { DeclID ID = ReadDeclID(F, Record, Idx); AccessSpecifier AS = (AccessSpecifier)Record[Idx++]; Set.addLazyDecl(Context, ID, AS); } } CXXBaseSpecifier ASTReader::ReadCXXBaseSpecifier(ModuleFile &F, const RecordData &Record, unsigned &Idx) { bool isVirtual = static_cast(Record[Idx++]); bool isBaseOfClass = static_cast(Record[Idx++]); AccessSpecifier AS = static_cast(Record[Idx++]); bool inheritConstructors = static_cast(Record[Idx++]); TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx); CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo, EllipsisLoc); Result.setInheritConstructors(inheritConstructors); return Result; } CXXCtorInitializer ** ASTReader::ReadCXXCtorInitializers(ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned NumInitializers = Record[Idx++]; assert(NumInitializers && "wrote ctor initializers but have no inits"); auto **CtorInitializers = new (Context) CXXCtorInitializer*[NumInitializers]; for (unsigned i = 0; i != NumInitializers; ++i) { TypeSourceInfo *TInfo = nullptr; bool IsBaseVirtual = false; FieldDecl *Member = nullptr; IndirectFieldDecl *IndirectMember = nullptr; CtorInitializerType Type = (CtorInitializerType)Record[Idx++]; switch (Type) { case CTOR_INITIALIZER_BASE: TInfo = GetTypeSourceInfo(F, Record, Idx); IsBaseVirtual = Record[Idx++]; break; case CTOR_INITIALIZER_DELEGATING: TInfo = GetTypeSourceInfo(F, Record, Idx); break; case CTOR_INITIALIZER_MEMBER: Member = ReadDeclAs(F, Record, Idx); break; case CTOR_INITIALIZER_INDIRECT_MEMBER: IndirectMember = ReadDeclAs(F, Record, Idx); break; } SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx); Expr *Init = ReadExpr(F); SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx); bool IsWritten = Record[Idx++]; unsigned SourceOrderOrNumArrayIndices; SmallVector Indices; if (IsWritten) { SourceOrderOrNumArrayIndices = Record[Idx++]; } else { SourceOrderOrNumArrayIndices = Record[Idx++]; Indices.reserve(SourceOrderOrNumArrayIndices); for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i) Indices.push_back(ReadDeclAs(F, Record, Idx)); } CXXCtorInitializer *BOMInit; if (Type == CTOR_INITIALIZER_BASE) { BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, IsBaseVirtual, LParenLoc, Init, RParenLoc, MemberOrEllipsisLoc); } else if (Type == CTOR_INITIALIZER_DELEGATING) { BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, LParenLoc, Init, RParenLoc); } else if (IsWritten) { if (Member) BOMInit = new (Context) CXXCtorInitializer( Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); else BOMInit = new (Context) CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); } else { if (IndirectMember) { assert(Indices.empty() && "Indirect field improperly initialized"); BOMInit = new (Context) CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); } else { BOMInit = CXXCtorInitializer::Create( Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc, Indices.data(), Indices.size()); } } if (IsWritten) BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices); CtorInitializers[i] = BOMInit; } return CtorInitializers; } NestedNameSpecifier * ASTReader::ReadNestedNameSpecifier(ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifier *NNS = nullptr, *Prev = nullptr; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, II); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = ReadDeclAs(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, NS); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias =ReadDeclAs(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, Alias); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *T = readType(F, Record, Idx).getTypePtrOrNull(); if (!T) return nullptr; bool Template = Record[Idx++]; NNS = NestedNameSpecifier::Create(Context, Prev, Template, T); break; } case NestedNameSpecifier::Global: { NNS = NestedNameSpecifier::GlobalSpecifier(Context); // No associated value, and there can't be a prefix. break; } case NestedNameSpecifier::Super: { CXXRecordDecl *RD = ReadDeclAs(F, Record, Idx); NNS = NestedNameSpecifier::SuperSpecifier(Context, RD); break; } } Prev = NNS; } return NNS; } NestedNameSpecifierLoc ASTReader::ReadNestedNameSpecifierLoc(ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifierLocBuilder Builder; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, II, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = ReadDeclAs(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, NS, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias =ReadDeclAs(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, Alias, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { bool Template = Record[Idx++]; TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx); if (!T) return NestedNameSpecifierLoc(); SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); // FIXME: 'template' keyword location not saved anywhere, so we fake it. Builder.Extend(Context, Template? T->getTypeLoc().getBeginLoc() : SourceLocation(), T->getTypeLoc(), ColonColonLoc); break; } case NestedNameSpecifier::Global: { SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); Builder.MakeGlobal(Context, ColonColonLoc); break; } case NestedNameSpecifier::Super: { CXXRecordDecl *RD = ReadDeclAs(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.MakeSuper(Context, RD, Range.getBegin(), Range.getEnd()); break; } } } return Builder.getWithLocInContext(Context); } SourceRange ASTReader::ReadSourceRange(ModuleFile &F, const RecordData &Record, unsigned &Idx) { SourceLocation beg = ReadSourceLocation(F, Record, Idx); SourceLocation end = ReadSourceLocation(F, Record, Idx); return SourceRange(beg, end); } /// \brief Read an integral value llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record, const llvm::fltSemantics &Sem, unsigned &Idx) { return llvm::APFloat(Sem, ReadAPInt(Record, Idx)); } // \brief Read a string std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(Record.data() + Idx, Record.data() + Idx + Len); Idx += Len; return Result; } std::string ASTReader::ReadPath(ModuleFile &F, const RecordData &Record, unsigned &Idx) { std::string Filename = ReadString(Record, Idx); ResolveImportedPath(F, Filename); return Filename; } VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record, unsigned &Idx) { unsigned Major = Record[Idx++]; unsigned Minor = Record[Idx++]; unsigned Subminor = Record[Idx++]; if (Minor == 0) return VersionTuple(Major); if (Subminor == 0) return VersionTuple(Major, Minor - 1); return VersionTuple(Major, Minor - 1, Subminor - 1); } CXXTemporary *ASTReader::ReadCXXTemporary(ModuleFile &F, const RecordData &Record, unsigned &Idx) { CXXDestructorDecl *Decl = ReadDeclAs(F, Record, Idx); return CXXTemporary::Create(Context, Decl); } DiagnosticBuilder ASTReader::Diag(unsigned DiagID) { return Diag(CurrentImportLoc, DiagID); } DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } /// \brief Retrieve the identifier table associated with the /// preprocessor. IdentifierTable &ASTReader::getIdentifierTable() { return PP.getIdentifierTable(); } /// \brief Record that the given ID maps to the given switch-case /// statement. void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) { assert((*CurrSwitchCaseStmts)[ID] == nullptr && "Already have a SwitchCase with this ID"); (*CurrSwitchCaseStmts)[ID] = SC; } /// \brief Retrieve the switch-case statement with the given ID. SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) { assert((*CurrSwitchCaseStmts)[ID] != nullptr && "No SwitchCase with this ID"); return (*CurrSwitchCaseStmts)[ID]; } void ASTReader::ClearSwitchCaseIDs() { CurrSwitchCaseStmts->clear(); } void ASTReader::ReadComments() { std::vector Comments; for (SmallVectorImpl >::iterator I = CommentsCursors.begin(), E = CommentsCursors.end(); I != E; ++I) { Comments.clear(); BitstreamCursor &Cursor = I->first; serialization::ModuleFile &F = *I->second; SavedStreamPosition SavedPosition(Cursor); RecordData Record; while (true) { llvm::BitstreamEntry Entry = Cursor.advanceSkippingSubblocks(BitstreamCursor::AF_DontPopBlockAtEnd); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return; case llvm::BitstreamEntry::EndBlock: goto NextCursor; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch ((CommentRecordTypes)Cursor.readRecord(Entry.ID, Record)) { case COMMENTS_RAW_COMMENT: { unsigned Idx = 0; SourceRange SR = ReadSourceRange(F, Record, Idx); RawComment::CommentKind Kind = (RawComment::CommentKind) Record[Idx++]; bool IsTrailingComment = Record[Idx++]; bool IsAlmostTrailingComment = Record[Idx++]; Comments.push_back(new (Context) RawComment( SR, Kind, IsTrailingComment, IsAlmostTrailingComment, Context.getLangOpts().CommentOpts.ParseAllComments)); break; } } } NextCursor: Context.Comments.addDeserializedComments(Comments); } } std::string ASTReader::getOwningModuleNameForDiagnostic(const Decl *D) { // If we know the owning module, use it. if (Module *M = D->getImportedOwningModule()) return M->getFullModuleName(); // Otherwise, use the name of the top-level module the decl is within. if (ModuleFile *M = getOwningModuleFile(D)) return M->ModuleName; // Not from a module. return ""; } void ASTReader::finishPendingActions() { while (!PendingIdentifierInfos.empty() || !PendingIncompleteDeclChains.empty() || !PendingDeclChains.empty() || !PendingMacroIDs.empty() || !PendingDeclContextInfos.empty() || !PendingUpdateRecords.empty()) { // If any identifiers with corresponding top-level declarations have // been loaded, load those declarations now. typedef llvm::DenseMap > TopLevelDeclsMap; TopLevelDeclsMap TopLevelDecls; while (!PendingIdentifierInfos.empty()) { IdentifierInfo *II = PendingIdentifierInfos.back().first; SmallVector DeclIDs = std::move(PendingIdentifierInfos.back().second); PendingIdentifierInfos.pop_back(); SetGloballyVisibleDecls(II, DeclIDs, &TopLevelDecls[II]); } // For each decl chain that we wanted to complete while deserializing, mark // it as "still needs to be completed". for (unsigned I = 0; I != PendingIncompleteDeclChains.size(); ++I) { markIncompleteDeclChain(PendingIncompleteDeclChains[I]); } PendingIncompleteDeclChains.clear(); // Load pending declaration chains. for (unsigned I = 0; I != PendingDeclChains.size(); ++I) loadPendingDeclChain(PendingDeclChains[I].first, PendingDeclChains[I].second); PendingDeclChains.clear(); // Make the most recent of the top-level declarations visible. for (TopLevelDeclsMap::iterator TLD = TopLevelDecls.begin(), TLDEnd = TopLevelDecls.end(); TLD != TLDEnd; ++TLD) { IdentifierInfo *II = TLD->first; for (unsigned I = 0, N = TLD->second.size(); I != N; ++I) { pushExternalDeclIntoScope(cast(TLD->second[I]), II); } } // Load any pending macro definitions. for (unsigned I = 0; I != PendingMacroIDs.size(); ++I) { IdentifierInfo *II = PendingMacroIDs.begin()[I].first; SmallVector GlobalIDs; GlobalIDs.swap(PendingMacroIDs.begin()[I].second); // Initialize the macro history from chained-PCHs ahead of module imports. for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs; ++IDIdx) { const PendingMacroInfo &Info = GlobalIDs[IDIdx]; if (Info.M->Kind != MK_ImplicitModule && Info.M->Kind != MK_ExplicitModule) resolvePendingMacro(II, Info); } // Handle module imports. for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs; ++IDIdx) { const PendingMacroInfo &Info = GlobalIDs[IDIdx]; if (Info.M->Kind == MK_ImplicitModule || Info.M->Kind == MK_ExplicitModule) resolvePendingMacro(II, Info); } } PendingMacroIDs.clear(); // Wire up the DeclContexts for Decls that we delayed setting until // recursive loading is completed. while (!PendingDeclContextInfos.empty()) { PendingDeclContextInfo Info = PendingDeclContextInfos.front(); PendingDeclContextInfos.pop_front(); DeclContext *SemaDC = cast(GetDecl(Info.SemaDC)); DeclContext *LexicalDC = cast(GetDecl(Info.LexicalDC)); Info.D->setDeclContextsImpl(SemaDC, LexicalDC, getContext()); } // Perform any pending declaration updates. while (!PendingUpdateRecords.empty()) { auto Update = PendingUpdateRecords.pop_back_val(); ReadingKindTracker ReadingKind(Read_Decl, *this); loadDeclUpdateRecords(Update.first, Update.second); } } // At this point, all update records for loaded decls are in place, so any // fake class definitions should have become real. assert(PendingFakeDefinitionData.empty() && "faked up a class definition but never saw the real one"); // If we deserialized any C++ or Objective-C class definitions, any // Objective-C protocol definitions, or any redeclarable templates, make sure // that all redeclarations point to the definitions. Note that this can only // happen now, after the redeclaration chains have been fully wired. for (Decl *D : PendingDefinitions) { if (TagDecl *TD = dyn_cast(D)) { if (const TagType *TagT = dyn_cast(TD->getTypeForDecl())) { // Make sure that the TagType points at the definition. const_cast(TagT)->decl = TD; } if (auto RD = dyn_cast(D)) { for (auto *R = getMostRecentExistingDecl(RD); R; R = R->getPreviousDecl()) { assert((R == D) == cast(R)->isThisDeclarationADefinition() && "declaration thinks it's the definition but it isn't"); cast(R)->DefinitionData = RD->DefinitionData; } } continue; } if (auto ID = dyn_cast(D)) { // Make sure that the ObjCInterfaceType points at the definition. const_cast(cast(ID->TypeForDecl)) ->Decl = ID; for (auto *R = getMostRecentExistingDecl(ID); R; R = R->getPreviousDecl()) cast(R)->Data = ID->Data; continue; } if (auto PD = dyn_cast(D)) { for (auto *R = getMostRecentExistingDecl(PD); R; R = R->getPreviousDecl()) cast(R)->Data = PD->Data; continue; } auto RTD = cast(D)->getCanonicalDecl(); for (auto *R = getMostRecentExistingDecl(RTD); R; R = R->getPreviousDecl()) cast(R)->Common = RTD->Common; } PendingDefinitions.clear(); // Load the bodies of any functions or methods we've encountered. We do // this now (delayed) so that we can be sure that the declaration chains // have been fully wired up (hasBody relies on this). // FIXME: We shouldn't require complete redeclaration chains here. for (PendingBodiesMap::iterator PB = PendingBodies.begin(), PBEnd = PendingBodies.end(); PB != PBEnd; ++PB) { if (FunctionDecl *FD = dyn_cast(PB->first)) { // FIXME: Check for =delete/=default? // FIXME: Complain about ODR violations here? if (!getContext().getLangOpts().Modules || !FD->hasBody()) FD->setLazyBody(PB->second); continue; } ObjCMethodDecl *MD = cast(PB->first); if (!getContext().getLangOpts().Modules || !MD->hasBody()) MD->setLazyBody(PB->second); } PendingBodies.clear(); // Do some cleanup. for (auto *ND : PendingMergedDefinitionsToDeduplicate) getContext().deduplicateMergedDefinitonsFor(ND); PendingMergedDefinitionsToDeduplicate.clear(); } void ASTReader::diagnoseOdrViolations() { if (PendingOdrMergeFailures.empty() && PendingOdrMergeChecks.empty()) return; // Trigger the import of the full definition of each class that had any // odr-merging problems, so we can produce better diagnostics for them. // These updates may in turn find and diagnose some ODR failures, so take // ownership of the set first. auto OdrMergeFailures = std::move(PendingOdrMergeFailures); PendingOdrMergeFailures.clear(); for (auto &Merge : OdrMergeFailures) { Merge.first->buildLookup(); Merge.first->decls_begin(); Merge.first->bases_begin(); Merge.first->vbases_begin(); for (auto *RD : Merge.second) { RD->decls_begin(); RD->bases_begin(); RD->vbases_begin(); } } // For each declaration from a merged context, check that the canonical // definition of that context also contains a declaration of the same // entity. // // Caution: this loop does things that might invalidate iterators into // PendingOdrMergeChecks. Don't turn this into a range-based for loop! while (!PendingOdrMergeChecks.empty()) { NamedDecl *D = PendingOdrMergeChecks.pop_back_val(); // FIXME: Skip over implicit declarations for now. This matters for things // like implicitly-declared special member functions. This isn't entirely // correct; we can end up with multiple unmerged declarations of the same // implicit entity. if (D->isImplicit()) continue; DeclContext *CanonDef = D->getDeclContext(); bool Found = false; const Decl *DCanon = D->getCanonicalDecl(); for (auto RI : D->redecls()) { if (RI->getLexicalDeclContext() == CanonDef) { Found = true; break; } } if (Found) continue; // Quick check failed, time to do the slow thing. Note, we can't just // look up the name of D in CanonDef here, because the member that is // in CanonDef might not be found by name lookup (it might have been // replaced by a more recent declaration in the lookup table), and we // can't necessarily find it in the redeclaration chain because it might // be merely mergeable, not redeclarable. llvm::SmallVector Candidates; for (auto *CanonMember : CanonDef->decls()) { if (CanonMember->getCanonicalDecl() == DCanon) { // This can happen if the declaration is merely mergeable and not // actually redeclarable (we looked for redeclarations earlier). // // FIXME: We should be able to detect this more efficiently, without // pulling in all of the members of CanonDef. Found = true; break; } if (auto *ND = dyn_cast(CanonMember)) if (ND->getDeclName() == D->getDeclName()) Candidates.push_back(ND); } if (!Found) { // The AST doesn't like TagDecls becoming invalid after they've been // completed. We only really need to mark FieldDecls as invalid here. if (!isa(D)) D->setInvalidDecl(); // Ensure we don't accidentally recursively enter deserialization while // we're producing our diagnostic. Deserializing RecursionGuard(this); std::string CanonDefModule = getOwningModuleNameForDiagnostic(cast(CanonDef)); Diag(D->getLocation(), diag::err_module_odr_violation_missing_decl) << D << getOwningModuleNameForDiagnostic(D) << CanonDef << CanonDefModule.empty() << CanonDefModule; if (Candidates.empty()) Diag(cast(CanonDef)->getLocation(), diag::note_module_odr_violation_no_possible_decls) << D; else { for (unsigned I = 0, N = Candidates.size(); I != N; ++I) Diag(Candidates[I]->getLocation(), diag::note_module_odr_violation_possible_decl) << Candidates[I]; } DiagnosedOdrMergeFailures.insert(CanonDef); } } if (OdrMergeFailures.empty()) return; // Ensure we don't accidentally recursively enter deserialization while // we're producing our diagnostics. Deserializing RecursionGuard(this); // Issue any pending ODR-failure diagnostics. for (auto &Merge : OdrMergeFailures) { // If we've already pointed out a specific problem with this class, don't // bother issuing a general "something's different" diagnostic. if (!DiagnosedOdrMergeFailures.insert(Merge.first).second) continue; bool Diagnosed = false; for (auto *RD : Merge.second) { // Multiple different declarations got merged together; tell the user // where they came from. if (Merge.first != RD) { // FIXME: Walk the definition, figure out what's different, // and diagnose that. if (!Diagnosed) { std::string Module = getOwningModuleNameForDiagnostic(Merge.first); Diag(Merge.first->getLocation(), diag::err_module_odr_violation_different_definitions) << Merge.first << Module.empty() << Module; Diagnosed = true; } Diag(RD->getLocation(), diag::note_module_odr_violation_different_definitions) << getOwningModuleNameForDiagnostic(RD); } } if (!Diagnosed) { // All definitions are updates to the same declaration. This happens if a // module instantiates the declaration of a class template specialization // and two or more other modules instantiate its definition. // // FIXME: Indicate which modules had instantiations of this definition. // FIXME: How can this even happen? Diag(Merge.first->getLocation(), diag::err_module_odr_violation_different_instantiations) << Merge.first; } } } void ASTReader::StartedDeserializing() { if (++NumCurrentElementsDeserializing == 1 && ReadTimer.get()) ReadTimer->startTimer(); } void ASTReader::FinishedDeserializing() { assert(NumCurrentElementsDeserializing && "FinishedDeserializing not paired with StartedDeserializing"); if (NumCurrentElementsDeserializing == 1) { // We decrease NumCurrentElementsDeserializing only after pending actions // are finished, to avoid recursively re-calling finishPendingActions(). finishPendingActions(); } --NumCurrentElementsDeserializing; if (NumCurrentElementsDeserializing == 0) { // Propagate exception specification updates along redeclaration chains. while (!PendingExceptionSpecUpdates.empty()) { auto Updates = std::move(PendingExceptionSpecUpdates); PendingExceptionSpecUpdates.clear(); for (auto Update : Updates) { auto *FPT = Update.second->getType()->castAs(); auto ESI = FPT->getExtProtoInfo().ExceptionSpec; if (auto *Listener = Context.getASTMutationListener()) Listener->ResolvedExceptionSpec(cast(Update.second)); for (auto *Redecl : Update.second->redecls()) Context.adjustExceptionSpec(cast(Redecl), ESI); } } if (ReadTimer) ReadTimer->stopTimer(); diagnoseOdrViolations(); // We are not in recursive loading, so it's safe to pass the "interesting" // decls to the consumer. if (Consumer) PassInterestingDeclsToConsumer(); } } void ASTReader::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) { if (IdentifierInfo *II = Name.getAsIdentifierInfo()) { // Remove any fake results before adding any real ones. auto It = PendingFakeLookupResults.find(II); if (It != PendingFakeLookupResults.end()) { for (auto *ND : It->second) SemaObj->IdResolver.RemoveDecl(ND); // FIXME: this works around module+PCH performance issue. // Rather than erase the result from the map, which is O(n), just clear // the vector of NamedDecls. It->second.clear(); } } if (SemaObj->IdResolver.tryAddTopLevelDecl(D, Name) && SemaObj->TUScope) { SemaObj->TUScope->AddDecl(D); } else if (SemaObj->TUScope) { // Adding the decl to IdResolver may have failed because it was already in // (even though it was not added in scope). If it is already in, make sure // it gets in the scope as well. if (std::find(SemaObj->IdResolver.begin(Name), SemaObj->IdResolver.end(), D) != SemaObj->IdResolver.end()) SemaObj->TUScope->AddDecl(D); } } ASTReader::ASTReader( Preprocessor &PP, ASTContext &Context, const PCHContainerReader &PCHContainerRdr, ArrayRef> Extensions, StringRef isysroot, bool DisableValidation, bool AllowASTWithCompilerErrors, bool AllowConfigurationMismatch, bool ValidateSystemInputs, bool UseGlobalIndex, std::unique_ptr ReadTimer) : Listener(new PCHValidator(PP, *this)), DeserializationListener(nullptr), OwnsDeserializationListener(false), SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()), PCHContainerRdr(PCHContainerRdr), Diags(PP.getDiagnostics()), SemaObj(nullptr), PP(PP), Context(Context), Consumer(nullptr), ModuleMgr(PP.getFileManager(), PCHContainerRdr), ReadTimer(std::move(ReadTimer)), isysroot(isysroot), DisableValidation(DisableValidation), AllowASTWithCompilerErrors(AllowASTWithCompilerErrors), AllowConfigurationMismatch(AllowConfigurationMismatch), ValidateSystemInputs(ValidateSystemInputs), UseGlobalIndex(UseGlobalIndex), TriedLoadingGlobalIndex(false), CurrSwitchCaseStmts(&SwitchCaseStmts), NumSLocEntriesRead(0), TotalNumSLocEntries(0), NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0), NumIdentifierLookups(0), NumIdentifierLookupHits(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0), NumMethodPoolLookups(0), NumMethodPoolHits(0), NumMethodPoolTableLookups(0), NumMethodPoolTableHits(0), TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0), TotalModulesSizeInBits(0), NumCurrentElementsDeserializing(0), PassingDeclsToConsumer(false), ReadingKind(Read_None) { SourceMgr.setExternalSLocEntrySource(this); for (const auto &Ext : Extensions) { auto BlockName = Ext->getExtensionMetadata().BlockName; auto Known = ModuleFileExtensions.find(BlockName); if (Known != ModuleFileExtensions.end()) { Diags.Report(diag::warn_duplicate_module_file_extension) << BlockName; continue; } ModuleFileExtensions.insert({BlockName, Ext}); } } ASTReader::~ASTReader() { if (OwnsDeserializationListener) delete DeserializationListener; }