//===--- ASTWriter.cpp - AST File Writer ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTWriter class, which writes AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTWriter.h" #include "clang/Serialization/ModuleFileExtension.h" #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "MultiOnDiskHashTable.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclLookups.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/Version.h" #include "clang/Basic/VersionTuple.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/SerializationDiagnostic.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/OnDiskHashTable.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include #include #include #include using namespace clang; using namespace clang::serialization; template static StringRef bytes(const std::vector &v) { if (v.empty()) return StringRef(); return StringRef(reinterpret_cast(&v[0]), sizeof(T) * v.size()); } template static StringRef bytes(const SmallVectorImpl &v) { return StringRef(reinterpret_cast(v.data()), sizeof(T) * v.size()); } //===----------------------------------------------------------------------===// // Type serialization //===----------------------------------------------------------------------===// namespace { class ASTTypeWriter { ASTWriter &Writer; ASTWriter::RecordDataImpl &Record; public: /// \brief Type code that corresponds to the record generated. TypeCode Code; /// \brief Abbreviation to use for the record, if any. unsigned AbbrevToUse; ASTTypeWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record) : Writer(Writer), Record(Record), Code(TYPE_EXT_QUAL) { } void VisitArrayType(const ArrayType *T); void VisitFunctionType(const FunctionType *T); void VisitTagType(const TagType *T); #define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T); #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" }; } // end anonymous namespace void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) { llvm_unreachable("Built-in types are never serialized"); } void ASTTypeWriter::VisitComplexType(const ComplexType *T) { Writer.AddTypeRef(T->getElementType(), Record); Code = TYPE_COMPLEX; } void ASTTypeWriter::VisitPointerType(const PointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_POINTER; } void ASTTypeWriter::VisitDecayedType(const DecayedType *T) { Writer.AddTypeRef(T->getOriginalType(), Record); Code = TYPE_DECAYED; } void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) { Writer.AddTypeRef(T->getOriginalType(), Record); Writer.AddTypeRef(T->getAdjustedType(), Record); Code = TYPE_ADJUSTED; } void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_BLOCK_POINTER; } void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record); Record.push_back(T->isSpelledAsLValue()); Code = TYPE_LVALUE_REFERENCE; } void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record); Code = TYPE_RVALUE_REFERENCE; } void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Writer.AddTypeRef(QualType(T->getClass(), 0), Record); Code = TYPE_MEMBER_POINTER; } void ASTTypeWriter::VisitArrayType(const ArrayType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getSizeModifier()); // FIXME: stable values Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values } void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) { VisitArrayType(T); Writer.AddAPInt(T->getSize(), Record); Code = TYPE_CONSTANT_ARRAY; } void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) { VisitArrayType(T); Code = TYPE_INCOMPLETE_ARRAY; } void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) { VisitArrayType(T); Writer.AddSourceLocation(T->getLBracketLoc(), Record); Writer.AddSourceLocation(T->getRBracketLoc(), Record); Writer.AddStmt(T->getSizeExpr()); Code = TYPE_VARIABLE_ARRAY; } void ASTTypeWriter::VisitVectorType(const VectorType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getNumElements()); Record.push_back(T->getVectorKind()); Code = TYPE_VECTOR; } void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) { VisitVectorType(T); Code = TYPE_EXT_VECTOR; } void ASTTypeWriter::VisitFunctionType(const FunctionType *T) { Writer.AddTypeRef(T->getReturnType(), Record); FunctionType::ExtInfo C = T->getExtInfo(); Record.push_back(C.getNoReturn()); Record.push_back(C.getHasRegParm()); Record.push_back(C.getRegParm()); // FIXME: need to stabilize encoding of calling convention... Record.push_back(C.getCC()); Record.push_back(C.getProducesResult()); if (C.getHasRegParm() || C.getRegParm() || C.getProducesResult()) AbbrevToUse = 0; } void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) { VisitFunctionType(T); Code = TYPE_FUNCTION_NO_PROTO; } static void addExceptionSpec(ASTWriter &Writer, const FunctionProtoType *T, ASTWriter::RecordDataImpl &Record) { Record.push_back(T->getExceptionSpecType()); if (T->getExceptionSpecType() == EST_Dynamic) { Record.push_back(T->getNumExceptions()); for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I) Writer.AddTypeRef(T->getExceptionType(I), Record); } else if (T->getExceptionSpecType() == EST_ComputedNoexcept) { Writer.AddStmt(T->getNoexceptExpr()); } else if (T->getExceptionSpecType() == EST_Uninstantiated) { Writer.AddDeclRef(T->getExceptionSpecDecl(), Record); Writer.AddDeclRef(T->getExceptionSpecTemplate(), Record); } else if (T->getExceptionSpecType() == EST_Unevaluated) { Writer.AddDeclRef(T->getExceptionSpecDecl(), Record); } } void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) { VisitFunctionType(T); Record.push_back(T->isVariadic()); Record.push_back(T->hasTrailingReturn()); Record.push_back(T->getTypeQuals()); Record.push_back(static_cast(T->getRefQualifier())); addExceptionSpec(Writer, T, Record); Record.push_back(T->getNumParams()); for (unsigned I = 0, N = T->getNumParams(); I != N; ++I) Writer.AddTypeRef(T->getParamType(I), Record); if (T->isVariadic() || T->hasTrailingReturn() || T->getTypeQuals() || T->getRefQualifier() || T->getExceptionSpecType() != EST_None) AbbrevToUse = 0; Code = TYPE_FUNCTION_PROTO; } void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) { Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_UNRESOLVED_USING; } void ASTTypeWriter::VisitTypedefType(const TypedefType *T) { Writer.AddDeclRef(T->getDecl(), Record); assert(!T->isCanonicalUnqualified() && "Invalid typedef ?"); Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record); Code = TYPE_TYPEDEF; } void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) { Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_TYPEOF_EXPR; } void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) { Writer.AddTypeRef(T->getUnderlyingType(), Record); Code = TYPE_TYPEOF; } void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) { Writer.AddTypeRef(T->getUnderlyingType(), Record); Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_DECLTYPE; } void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) { Writer.AddTypeRef(T->getBaseType(), Record); Writer.AddTypeRef(T->getUnderlyingType(), Record); Record.push_back(T->getUTTKind()); Code = TYPE_UNARY_TRANSFORM; } void ASTTypeWriter::VisitAutoType(const AutoType *T) { Writer.AddTypeRef(T->getDeducedType(), Record); Record.push_back((unsigned)T->getKeyword()); if (T->getDeducedType().isNull()) Record.push_back(T->isDependentType()); Code = TYPE_AUTO; } void ASTTypeWriter::VisitTagType(const TagType *T) { Record.push_back(T->isDependentType()); Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); assert(!T->isBeingDefined() && "Cannot serialize in the middle of a type definition"); } void ASTTypeWriter::VisitRecordType(const RecordType *T) { VisitTagType(T); Code = TYPE_RECORD; } void ASTTypeWriter::VisitEnumType(const EnumType *T) { VisitTagType(T); Code = TYPE_ENUM; } void ASTTypeWriter::VisitAttributedType(const AttributedType *T) { Writer.AddTypeRef(T->getModifiedType(), Record); Writer.AddTypeRef(T->getEquivalentType(), Record); Record.push_back(T->getAttrKind()); Code = TYPE_ATTRIBUTED; } void ASTTypeWriter::VisitSubstTemplateTypeParmType( const SubstTemplateTypeParmType *T) { Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record); Writer.AddTypeRef(T->getReplacementType(), Record); Code = TYPE_SUBST_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitSubstTemplateTypeParmPackType( const SubstTemplateTypeParmPackType *T) { Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record); Writer.AddTemplateArgument(T->getArgumentPack(), Record); Code = TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK; } void ASTTypeWriter::VisitTemplateSpecializationType( const TemplateSpecializationType *T) { Record.push_back(T->isDependentType()); Writer.AddTemplateName(T->getTemplateName(), Record); Record.push_back(T->getNumArgs()); for (const auto &ArgI : *T) Writer.AddTemplateArgument(ArgI, Record); Writer.AddTypeRef(T->isTypeAlias() ? T->getAliasedType() : T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) { VisitArrayType(T); Writer.AddStmt(T->getSizeExpr()); Writer.AddSourceRange(T->getBracketsRange(), Record); Code = TYPE_DEPENDENT_SIZED_ARRAY; } void ASTTypeWriter::VisitDependentSizedExtVectorType( const DependentSizedExtVectorType *T) { // FIXME: Serialize this type (C++ only) llvm_unreachable("Cannot serialize dependent sized extended vector types"); } void ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) { Record.push_back(T->getDepth()); Record.push_back(T->getIndex()); Record.push_back(T->isParameterPack()); Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_DEPENDENT_NAME; } void ASTTypeWriter::VisitDependentTemplateSpecializationType( const DependentTemplateSpecializationType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Record.push_back(T->getNumArgs()); for (const auto &I : *T) Writer.AddTemplateArgument(I, Record); Code = TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) { Writer.AddTypeRef(T->getPattern(), Record); if (Optional NumExpansions = T->getNumExpansions()) Record.push_back(*NumExpansions + 1); else Record.push_back(0); Code = TYPE_PACK_EXPANSION; } void ASTTypeWriter::VisitParenType(const ParenType *T) { Writer.AddTypeRef(T->getInnerType(), Record); Code = TYPE_PAREN; } void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddTypeRef(T->getNamedType(), Record); Code = TYPE_ELABORATED; } void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) { Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); Writer.AddTypeRef(T->getInjectedSpecializationType(), Record); Code = TYPE_INJECTED_CLASS_NAME; } void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) { Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); Code = TYPE_OBJC_INTERFACE; } void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) { Writer.AddTypeRef(T->getBaseType(), Record); Record.push_back(T->getTypeArgsAsWritten().size()); for (auto TypeArg : T->getTypeArgsAsWritten()) Writer.AddTypeRef(TypeArg, Record); Record.push_back(T->getNumProtocols()); for (const auto *I : T->quals()) Writer.AddDeclRef(I, Record); Record.push_back(T->isKindOfTypeAsWritten()); Code = TYPE_OBJC_OBJECT; } void ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_OBJC_OBJECT_POINTER; } void ASTTypeWriter::VisitAtomicType(const AtomicType *T) { Writer.AddTypeRef(T->getValueType(), Record); Code = TYPE_ATOMIC; } namespace { class TypeLocWriter : public TypeLocVisitor { ASTWriter &Writer; ASTWriter::RecordDataImpl &Record; public: TypeLocWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record) : Writer(Writer), Record(Record) { } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitArrayTypeLoc(ArrayTypeLoc TyLoc); void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc); }; } // end anonymous namespace void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { Writer.AddSourceLocation(TL.getBuiltinLoc(), Record); if (TL.needsExtraLocalData()) { Record.push_back(TL.getWrittenTypeSpec()); Record.push_back(TL.getWrittenSignSpec()); Record.push_back(TL.getWrittenWidthSpec()); Record.push_back(TL.hasModeAttr()); } } void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getCaretLoc(), Record); } void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpLoc(), Record); } void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record); } void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); Writer.AddTypeSourceInfo(TL.getClassTInfo(), Record); } void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) { Writer.AddSourceLocation(TL.getLBracketLoc(), Record); Writer.AddSourceLocation(TL.getRBracketLoc(), Record); Record.push_back(TL.getSizeExpr() ? 1 : 0); if (TL.getSizeExpr()) Writer.AddStmt(TL.getSizeExpr()); } void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) { Writer.AddSourceLocation(TL.getLocalRangeBegin(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddSourceLocation(TL.getLocalRangeEnd(), Record); for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) Writer.AddDeclRef(TL.getParam(i), Record); } void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record); } void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { Writer.AddSourceLocation(TL.getKWLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record); } void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) { Writer.AddSourceLocation(TL.getAttrNameLoc(), Record); if (TL.hasAttrOperand()) { SourceRange range = TL.getAttrOperandParensRange(); Writer.AddSourceLocation(range.getBegin(), Record); Writer.AddSourceLocation(range.getEnd(), Record); } if (TL.hasAttrExprOperand()) { Expr *operand = TL.getAttrExprOperand(); Record.push_back(operand ? 1 : 0); if (operand) Writer.AddStmt(operand); } else if (TL.hasAttrEnumOperand()) { Writer.AddSourceLocation(TL.getAttrEnumOperandLoc(), Record); } } void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record); Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(), TL.getArgLoc(i).getLocInfo(), Record); } void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) { Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); } void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record); Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(), TL.getArgLoc(I).getLocInfo(), Record); } void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { Writer.AddSourceLocation(TL.getEllipsisLoc(), Record); } void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { Record.push_back(TL.hasBaseTypeAsWritten()); Writer.AddSourceLocation(TL.getTypeArgsLAngleLoc(), Record); Writer.AddSourceLocation(TL.getTypeArgsRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i) Writer.AddTypeSourceInfo(TL.getTypeArgTInfo(i), Record); Writer.AddSourceLocation(TL.getProtocolLAngleLoc(), Record); Writer.AddSourceLocation(TL.getProtocolRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) Writer.AddSourceLocation(TL.getProtocolLoc(i), Record); } void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) { Writer.AddSourceLocation(TL.getKWLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void ASTWriter::WriteTypeAbbrevs() { using namespace llvm; BitCodeAbbrev *Abv; // Abbreviation for TYPE_EXT_QUAL Abv = new BitCodeAbbrev(); Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL)); Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals TypeExtQualAbbrev = Stream.EmitAbbrev(Abv); // Abbreviation for TYPE_FUNCTION_PROTO Abv = new BitCodeAbbrev(); Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO)); // FunctionType Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm Abv->Add(BitCodeAbbrevOp(0)); // RegParm Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult // FunctionProtoType Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params TypeFunctionProtoAbbrev = Stream.EmitAbbrev(Abv); } //===----------------------------------------------------------------------===// // ASTWriter Implementation //===----------------------------------------------------------------------===// static void EmitBlockID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record); // Emit the block name if present. if (!Name || Name[0] == 0) return; Record.clear(); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record); } static void EmitRecordID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record); } static void AddStmtsExprs(llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { #define RECORD(X) EmitRecordID(X, #X, Stream, Record) RECORD(STMT_STOP); RECORD(STMT_NULL_PTR); RECORD(STMT_REF_PTR); RECORD(STMT_NULL); RECORD(STMT_COMPOUND); RECORD(STMT_CASE); RECORD(STMT_DEFAULT); RECORD(STMT_LABEL); RECORD(STMT_ATTRIBUTED); RECORD(STMT_IF); RECORD(STMT_SWITCH); RECORD(STMT_WHILE); RECORD(STMT_DO); RECORD(STMT_FOR); RECORD(STMT_GOTO); RECORD(STMT_INDIRECT_GOTO); RECORD(STMT_CONTINUE); RECORD(STMT_BREAK); RECORD(STMT_RETURN); RECORD(STMT_DECL); RECORD(STMT_GCCASM); RECORD(STMT_MSASM); RECORD(EXPR_PREDEFINED); RECORD(EXPR_DECL_REF); RECORD(EXPR_INTEGER_LITERAL); RECORD(EXPR_FLOATING_LITERAL); RECORD(EXPR_IMAGINARY_LITERAL); RECORD(EXPR_STRING_LITERAL); RECORD(EXPR_CHARACTER_LITERAL); RECORD(EXPR_PAREN); RECORD(EXPR_PAREN_LIST); RECORD(EXPR_UNARY_OPERATOR); RECORD(EXPR_SIZEOF_ALIGN_OF); RECORD(EXPR_ARRAY_SUBSCRIPT); RECORD(EXPR_CALL); RECORD(EXPR_MEMBER); RECORD(EXPR_BINARY_OPERATOR); RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR); RECORD(EXPR_CONDITIONAL_OPERATOR); RECORD(EXPR_IMPLICIT_CAST); RECORD(EXPR_CSTYLE_CAST); RECORD(EXPR_COMPOUND_LITERAL); RECORD(EXPR_EXT_VECTOR_ELEMENT); RECORD(EXPR_INIT_LIST); RECORD(EXPR_DESIGNATED_INIT); RECORD(EXPR_DESIGNATED_INIT_UPDATE); RECORD(EXPR_IMPLICIT_VALUE_INIT); RECORD(EXPR_NO_INIT); RECORD(EXPR_VA_ARG); RECORD(EXPR_ADDR_LABEL); RECORD(EXPR_STMT); RECORD(EXPR_CHOOSE); RECORD(EXPR_GNU_NULL); RECORD(EXPR_SHUFFLE_VECTOR); RECORD(EXPR_BLOCK); RECORD(EXPR_GENERIC_SELECTION); RECORD(EXPR_OBJC_STRING_LITERAL); RECORD(EXPR_OBJC_BOXED_EXPRESSION); RECORD(EXPR_OBJC_ARRAY_LITERAL); RECORD(EXPR_OBJC_DICTIONARY_LITERAL); RECORD(EXPR_OBJC_ENCODE); RECORD(EXPR_OBJC_SELECTOR_EXPR); RECORD(EXPR_OBJC_PROTOCOL_EXPR); RECORD(EXPR_OBJC_IVAR_REF_EXPR); RECORD(EXPR_OBJC_PROPERTY_REF_EXPR); RECORD(EXPR_OBJC_KVC_REF_EXPR); RECORD(EXPR_OBJC_MESSAGE_EXPR); RECORD(STMT_OBJC_FOR_COLLECTION); RECORD(STMT_OBJC_CATCH); RECORD(STMT_OBJC_FINALLY); RECORD(STMT_OBJC_AT_TRY); RECORD(STMT_OBJC_AT_SYNCHRONIZED); RECORD(STMT_OBJC_AT_THROW); RECORD(EXPR_OBJC_BOOL_LITERAL); RECORD(STMT_CXX_CATCH); RECORD(STMT_CXX_TRY); RECORD(STMT_CXX_FOR_RANGE); RECORD(EXPR_CXX_OPERATOR_CALL); RECORD(EXPR_CXX_MEMBER_CALL); RECORD(EXPR_CXX_CONSTRUCT); RECORD(EXPR_CXX_TEMPORARY_OBJECT); RECORD(EXPR_CXX_STATIC_CAST); RECORD(EXPR_CXX_DYNAMIC_CAST); RECORD(EXPR_CXX_REINTERPRET_CAST); RECORD(EXPR_CXX_CONST_CAST); RECORD(EXPR_CXX_FUNCTIONAL_CAST); RECORD(EXPR_USER_DEFINED_LITERAL); RECORD(EXPR_CXX_STD_INITIALIZER_LIST); RECORD(EXPR_CXX_BOOL_LITERAL); RECORD(EXPR_CXX_NULL_PTR_LITERAL); RECORD(EXPR_CXX_TYPEID_EXPR); RECORD(EXPR_CXX_TYPEID_TYPE); RECORD(EXPR_CXX_THIS); RECORD(EXPR_CXX_THROW); RECORD(EXPR_CXX_DEFAULT_ARG); RECORD(EXPR_CXX_DEFAULT_INIT); RECORD(EXPR_CXX_BIND_TEMPORARY); RECORD(EXPR_CXX_SCALAR_VALUE_INIT); RECORD(EXPR_CXX_NEW); RECORD(EXPR_CXX_DELETE); RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR); RECORD(EXPR_EXPR_WITH_CLEANUPS); RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER); RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF); RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT); RECORD(EXPR_CXX_UNRESOLVED_MEMBER); RECORD(EXPR_CXX_UNRESOLVED_LOOKUP); RECORD(EXPR_CXX_EXPRESSION_TRAIT); RECORD(EXPR_CXX_NOEXCEPT); RECORD(EXPR_OPAQUE_VALUE); RECORD(EXPR_BINARY_CONDITIONAL_OPERATOR); RECORD(EXPR_TYPE_TRAIT); RECORD(EXPR_ARRAY_TYPE_TRAIT); RECORD(EXPR_PACK_EXPANSION); RECORD(EXPR_SIZEOF_PACK); RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM); RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK); RECORD(EXPR_FUNCTION_PARM_PACK); RECORD(EXPR_MATERIALIZE_TEMPORARY); RECORD(EXPR_CUDA_KERNEL_CALL); RECORD(EXPR_CXX_UUIDOF_EXPR); RECORD(EXPR_CXX_UUIDOF_TYPE); RECORD(EXPR_LAMBDA); #undef RECORD } void ASTWriter::WriteBlockInfoBlock() { RecordData Record; Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3); #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record) #define RECORD(X) EmitRecordID(X, #X, Stream, Record) // Control Block. BLOCK(CONTROL_BLOCK); RECORD(METADATA); RECORD(SIGNATURE); RECORD(MODULE_NAME); RECORD(MODULE_DIRECTORY); RECORD(MODULE_MAP_FILE); RECORD(IMPORTS); RECORD(ORIGINAL_FILE); RECORD(ORIGINAL_PCH_DIR); RECORD(ORIGINAL_FILE_ID); RECORD(INPUT_FILE_OFFSETS); BLOCK(OPTIONS_BLOCK); RECORD(LANGUAGE_OPTIONS); RECORD(TARGET_OPTIONS); RECORD(DIAGNOSTIC_OPTIONS); RECORD(FILE_SYSTEM_OPTIONS); RECORD(HEADER_SEARCH_OPTIONS); RECORD(PREPROCESSOR_OPTIONS); BLOCK(INPUT_FILES_BLOCK); RECORD(INPUT_FILE); // AST Top-Level Block. BLOCK(AST_BLOCK); RECORD(TYPE_OFFSET); RECORD(DECL_OFFSET); RECORD(IDENTIFIER_OFFSET); RECORD(IDENTIFIER_TABLE); RECORD(EAGERLY_DESERIALIZED_DECLS); RECORD(SPECIAL_TYPES); RECORD(STATISTICS); RECORD(TENTATIVE_DEFINITIONS); RECORD(SELECTOR_OFFSETS); RECORD(METHOD_POOL); RECORD(PP_COUNTER_VALUE); RECORD(SOURCE_LOCATION_OFFSETS); RECORD(SOURCE_LOCATION_PRELOADS); RECORD(EXT_VECTOR_DECLS); RECORD(UNUSED_FILESCOPED_DECLS); RECORD(PPD_ENTITIES_OFFSETS); RECORD(VTABLE_USES); RECORD(REFERENCED_SELECTOR_POOL); RECORD(TU_UPDATE_LEXICAL); RECORD(SEMA_DECL_REFS); RECORD(WEAK_UNDECLARED_IDENTIFIERS); RECORD(PENDING_IMPLICIT_INSTANTIATIONS); RECORD(DECL_REPLACEMENTS); RECORD(UPDATE_VISIBLE); RECORD(DECL_UPDATE_OFFSETS); RECORD(DECL_UPDATES); RECORD(CXX_BASE_SPECIFIER_OFFSETS); RECORD(DIAG_PRAGMA_MAPPINGS); RECORD(CUDA_SPECIAL_DECL_REFS); RECORD(HEADER_SEARCH_TABLE); RECORD(FP_PRAGMA_OPTIONS); RECORD(OPENCL_EXTENSIONS); RECORD(DELEGATING_CTORS); RECORD(KNOWN_NAMESPACES); RECORD(MODULE_OFFSET_MAP); RECORD(SOURCE_MANAGER_LINE_TABLE); RECORD(OBJC_CATEGORIES_MAP); RECORD(FILE_SORTED_DECLS); RECORD(IMPORTED_MODULES); RECORD(OBJC_CATEGORIES); RECORD(MACRO_OFFSET); RECORD(INTERESTING_IDENTIFIERS); RECORD(UNDEFINED_BUT_USED); RECORD(LATE_PARSED_TEMPLATE); RECORD(OPTIMIZE_PRAGMA_OPTIONS); RECORD(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES); RECORD(CXX_CTOR_INITIALIZERS_OFFSETS); RECORD(DELETE_EXPRS_TO_ANALYZE); // SourceManager Block. BLOCK(SOURCE_MANAGER_BLOCK); RECORD(SM_SLOC_FILE_ENTRY); RECORD(SM_SLOC_BUFFER_ENTRY); RECORD(SM_SLOC_BUFFER_BLOB); RECORD(SM_SLOC_EXPANSION_ENTRY); // Preprocessor Block. BLOCK(PREPROCESSOR_BLOCK); RECORD(PP_MACRO_DIRECTIVE_HISTORY); RECORD(PP_MACRO_FUNCTION_LIKE); RECORD(PP_MACRO_OBJECT_LIKE); RECORD(PP_MODULE_MACRO); RECORD(PP_TOKEN); // Submodule Block. BLOCK(SUBMODULE_BLOCK); RECORD(SUBMODULE_METADATA); RECORD(SUBMODULE_DEFINITION); RECORD(SUBMODULE_UMBRELLA_HEADER); RECORD(SUBMODULE_HEADER); RECORD(SUBMODULE_TOPHEADER); RECORD(SUBMODULE_UMBRELLA_DIR); RECORD(SUBMODULE_IMPORTS); RECORD(SUBMODULE_EXPORTS); RECORD(SUBMODULE_REQUIRES); RECORD(SUBMODULE_EXCLUDED_HEADER); RECORD(SUBMODULE_LINK_LIBRARY); RECORD(SUBMODULE_CONFIG_MACRO); RECORD(SUBMODULE_CONFLICT); RECORD(SUBMODULE_PRIVATE_HEADER); RECORD(SUBMODULE_TEXTUAL_HEADER); RECORD(SUBMODULE_PRIVATE_TEXTUAL_HEADER); // Comments Block. BLOCK(COMMENTS_BLOCK); RECORD(COMMENTS_RAW_COMMENT); // Decls and Types block. BLOCK(DECLTYPES_BLOCK); RECORD(TYPE_EXT_QUAL); RECORD(TYPE_COMPLEX); RECORD(TYPE_POINTER); RECORD(TYPE_BLOCK_POINTER); RECORD(TYPE_LVALUE_REFERENCE); RECORD(TYPE_RVALUE_REFERENCE); RECORD(TYPE_MEMBER_POINTER); RECORD(TYPE_CONSTANT_ARRAY); RECORD(TYPE_INCOMPLETE_ARRAY); RECORD(TYPE_VARIABLE_ARRAY); RECORD(TYPE_VECTOR); RECORD(TYPE_EXT_VECTOR); RECORD(TYPE_FUNCTION_NO_PROTO); RECORD(TYPE_FUNCTION_PROTO); RECORD(TYPE_TYPEDEF); RECORD(TYPE_TYPEOF_EXPR); RECORD(TYPE_TYPEOF); RECORD(TYPE_RECORD); RECORD(TYPE_ENUM); RECORD(TYPE_OBJC_INTERFACE); RECORD(TYPE_OBJC_OBJECT_POINTER); RECORD(TYPE_DECLTYPE); RECORD(TYPE_ELABORATED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM); RECORD(TYPE_UNRESOLVED_USING); RECORD(TYPE_INJECTED_CLASS_NAME); RECORD(TYPE_OBJC_OBJECT); RECORD(TYPE_TEMPLATE_TYPE_PARM); RECORD(TYPE_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_NAME); RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_SIZED_ARRAY); RECORD(TYPE_PAREN); RECORD(TYPE_PACK_EXPANSION); RECORD(TYPE_ATTRIBUTED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK); RECORD(TYPE_AUTO); RECORD(TYPE_UNARY_TRANSFORM); RECORD(TYPE_ATOMIC); RECORD(TYPE_DECAYED); RECORD(TYPE_ADJUSTED); RECORD(LOCAL_REDECLARATIONS); RECORD(DECL_TYPEDEF); RECORD(DECL_TYPEALIAS); RECORD(DECL_ENUM); RECORD(DECL_RECORD); RECORD(DECL_ENUM_CONSTANT); RECORD(DECL_FUNCTION); RECORD(DECL_OBJC_METHOD); RECORD(DECL_OBJC_INTERFACE); RECORD(DECL_OBJC_PROTOCOL); RECORD(DECL_OBJC_IVAR); RECORD(DECL_OBJC_AT_DEFS_FIELD); RECORD(DECL_OBJC_CATEGORY); RECORD(DECL_OBJC_CATEGORY_IMPL); RECORD(DECL_OBJC_IMPLEMENTATION); RECORD(DECL_OBJC_COMPATIBLE_ALIAS); RECORD(DECL_OBJC_PROPERTY); RECORD(DECL_OBJC_PROPERTY_IMPL); RECORD(DECL_FIELD); RECORD(DECL_MS_PROPERTY); RECORD(DECL_VAR); RECORD(DECL_IMPLICIT_PARAM); RECORD(DECL_PARM_VAR); RECORD(DECL_FILE_SCOPE_ASM); RECORD(DECL_BLOCK); RECORD(DECL_CONTEXT_LEXICAL); RECORD(DECL_CONTEXT_VISIBLE); RECORD(DECL_NAMESPACE); RECORD(DECL_NAMESPACE_ALIAS); RECORD(DECL_USING); RECORD(DECL_USING_SHADOW); RECORD(DECL_USING_DIRECTIVE); RECORD(DECL_UNRESOLVED_USING_VALUE); RECORD(DECL_UNRESOLVED_USING_TYPENAME); RECORD(DECL_LINKAGE_SPEC); RECORD(DECL_CXX_RECORD); RECORD(DECL_CXX_METHOD); RECORD(DECL_CXX_CONSTRUCTOR); RECORD(DECL_CXX_DESTRUCTOR); RECORD(DECL_CXX_CONVERSION); RECORD(DECL_ACCESS_SPEC); RECORD(DECL_FRIEND); RECORD(DECL_FRIEND_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION); RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE); RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_FUNCTION_TEMPLATE); RECORD(DECL_TEMPLATE_TYPE_PARM); RECORD(DECL_NON_TYPE_TEMPLATE_PARM); RECORD(DECL_TEMPLATE_TEMPLATE_PARM); RECORD(DECL_STATIC_ASSERT); RECORD(DECL_CXX_BASE_SPECIFIERS); RECORD(DECL_INDIRECTFIELD); RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK); // Statements and Exprs can occur in the Decls and Types block. AddStmtsExprs(Stream, Record); BLOCK(PREPROCESSOR_DETAIL_BLOCK); RECORD(PPD_MACRO_EXPANSION); RECORD(PPD_MACRO_DEFINITION); RECORD(PPD_INCLUSION_DIRECTIVE); // Decls and Types block. BLOCK(EXTENSION_BLOCK); RECORD(EXTENSION_METADATA); #undef RECORD #undef BLOCK Stream.ExitBlock(); } /// \brief Prepares a path for being written to an AST file by converting it /// to an absolute path and removing nested './'s. /// /// \return \c true if the path was changed. static bool cleanPathForOutput(FileManager &FileMgr, SmallVectorImpl &Path) { bool Changed = FileMgr.makeAbsolutePath(Path); return Changed | llvm::sys::path::remove_dots(Path); } /// \brief Adjusts the given filename to only write out the portion of the /// filename that is not part of the system root directory. /// /// \param Filename the file name to adjust. /// /// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and /// the returned filename will be adjusted by this root directory. /// /// \returns either the original filename (if it needs no adjustment) or the /// adjusted filename (which points into the @p Filename parameter). static const char * adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) { assert(Filename && "No file name to adjust?"); if (BaseDir.empty()) return Filename; // Verify that the filename and the system root have the same prefix. unsigned Pos = 0; for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos) if (Filename[Pos] != BaseDir[Pos]) return Filename; // Prefixes don't match. // We hit the end of the filename before we hit the end of the system root. if (!Filename[Pos]) return Filename; // If there's not a path separator at the end of the base directory nor // immediately after it, then this isn't within the base directory. if (!llvm::sys::path::is_separator(Filename[Pos])) { if (!llvm::sys::path::is_separator(BaseDir.back())) return Filename; } else { // If the file name has a '/' at the current position, skip over the '/'. // We distinguish relative paths from absolute paths by the // absence of '/' at the beginning of relative paths. // // FIXME: This is wrong. We distinguish them by asking if the path is // absolute, which isn't the same thing. And there might be multiple '/'s // in a row. Use a better mechanism to indicate whether we have emitted an // absolute or relative path. ++Pos; } return Filename + Pos; } static ASTFileSignature getSignature() { while (1) { if (ASTFileSignature S = llvm::sys::Process::GetRandomNumber()) return S; // Rely on GetRandomNumber to eventually return non-zero... } } /// \brief Write the control block. uint64_t ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context, StringRef isysroot, const std::string &OutputFile) { ASTFileSignature Signature = 0; using namespace llvm; Stream.EnterSubblock(CONTROL_BLOCK_ID, 5); RecordData Record; // Metadata auto *MetadataAbbrev = new BitCodeAbbrev(); MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA)); MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Timestamps MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag unsigned MetadataAbbrevCode = Stream.EmitAbbrev(MetadataAbbrev); assert((!WritingModule || isysroot.empty()) && "writing module as a relocatable PCH?"); { RecordData::value_type Record[] = {METADATA, VERSION_MAJOR, VERSION_MINOR, CLANG_VERSION_MAJOR, CLANG_VERSION_MINOR, !isysroot.empty(), IncludeTimestamps, ASTHasCompilerErrors}; Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record, getClangFullRepositoryVersion()); } if (WritingModule) { // For implicit modules we output a signature that we can use to ensure // duplicate module builds don't collide in the cache as their output order // is non-deterministic. // FIXME: Remove this when output is deterministic. if (Context.getLangOpts().ImplicitModules) { Signature = getSignature(); RecordData::value_type Record[] = {Signature}; Stream.EmitRecord(SIGNATURE, Record); } // Module name auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); RecordData::value_type Record[] = {MODULE_NAME}; Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name); } if (WritingModule && WritingModule->Directory) { SmallString<128> BaseDir(WritingModule->Directory->getName()); cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir); // If the home of the module is the current working directory, then we // want to pick up the cwd of the build process loading the module, not // our cwd, when we load this module. if (!PP.getHeaderSearchInfo() .getHeaderSearchOpts() .ModuleMapFileHomeIsCwd || WritingModule->Directory->getName() != StringRef(".")) { // Module directory. auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); RecordData::value_type Record[] = {MODULE_DIRECTORY}; Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir); } // Write out all other paths relative to the base directory if possible. BaseDirectory.assign(BaseDir.begin(), BaseDir.end()); } else if (!isysroot.empty()) { // Write out paths relative to the sysroot if possible. BaseDirectory = isysroot; } // Module map file if (WritingModule) { Record.clear(); auto &Map = PP.getHeaderSearchInfo().getModuleMap(); // Primary module map file. AddPath(Map.getModuleMapFileForUniquing(WritingModule)->getName(), Record); // Additional module map files. if (auto *AdditionalModMaps = Map.getAdditionalModuleMapFiles(WritingModule)) { Record.push_back(AdditionalModMaps->size()); for (const FileEntry *F : *AdditionalModMaps) AddPath(F->getName(), Record); } else { Record.push_back(0); } Stream.EmitRecord(MODULE_MAP_FILE, Record); } // Imports if (Chain) { serialization::ModuleManager &Mgr = Chain->getModuleManager(); Record.clear(); for (auto *M : Mgr) { // Skip modules that weren't directly imported. if (!M->isDirectlyImported()) continue; Record.push_back((unsigned)M->Kind); // FIXME: Stable encoding AddSourceLocation(M->ImportLoc, Record); Record.push_back(M->File->getSize()); Record.push_back(getTimestampForOutput(M->File)); Record.push_back(M->Signature); AddPath(M->FileName, Record); } Stream.EmitRecord(IMPORTS, Record); } // Write the options block. Stream.EnterSubblock(OPTIONS_BLOCK_ID, 4); // Language options. Record.clear(); const LangOptions &LangOpts = Context.getLangOpts(); #define LANGOPT(Name, Bits, Default, Description) \ Record.push_back(LangOpts.Name); #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ Record.push_back(static_cast(LangOpts.get##Name())); #include "clang/Basic/LangOptions.def" #define SANITIZER(NAME, ID) \ Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID)); #include "clang/Basic/Sanitizers.def" Record.push_back(LangOpts.ModuleFeatures.size()); for (StringRef Feature : LangOpts.ModuleFeatures) AddString(Feature, Record); Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind()); AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record); AddString(LangOpts.CurrentModule, Record); // Comment options. Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size()); for (const auto &I : LangOpts.CommentOpts.BlockCommandNames) { AddString(I, Record); } Record.push_back(LangOpts.CommentOpts.ParseAllComments); Stream.EmitRecord(LANGUAGE_OPTIONS, Record); // Target options. Record.clear(); const TargetInfo &Target = Context.getTargetInfo(); const TargetOptions &TargetOpts = Target.getTargetOpts(); AddString(TargetOpts.Triple, Record); AddString(TargetOpts.CPU, Record); AddString(TargetOpts.ABI, Record); Record.push_back(TargetOpts.FeaturesAsWritten.size()); for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) { AddString(TargetOpts.FeaturesAsWritten[I], Record); } Record.push_back(TargetOpts.Features.size()); for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) { AddString(TargetOpts.Features[I], Record); } Stream.EmitRecord(TARGET_OPTIONS, Record); // Diagnostic options. Record.clear(); const DiagnosticOptions &DiagOpts = Context.getDiagnostics().getDiagnosticOptions(); #define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name); #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ Record.push_back(static_cast(DiagOpts.get##Name())); #include "clang/Basic/DiagnosticOptions.def" Record.push_back(DiagOpts.Warnings.size()); for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I) AddString(DiagOpts.Warnings[I], Record); Record.push_back(DiagOpts.Remarks.size()); for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I) AddString(DiagOpts.Remarks[I], Record); // Note: we don't serialize the log or serialization file names, because they // are generally transient files and will almost always be overridden. Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record); // File system options. Record.clear(); const FileSystemOptions &FSOpts = Context.getSourceManager().getFileManager().getFileSystemOpts(); AddString(FSOpts.WorkingDir, Record); Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record); // Header search options. Record.clear(); const HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); AddString(HSOpts.Sysroot, Record); // Include entries. Record.push_back(HSOpts.UserEntries.size()); for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) { const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I]; AddString(Entry.Path, Record); Record.push_back(static_cast(Entry.Group)); Record.push_back(Entry.IsFramework); Record.push_back(Entry.IgnoreSysRoot); } // System header prefixes. Record.push_back(HSOpts.SystemHeaderPrefixes.size()); for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) { AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record); Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader); } AddString(HSOpts.ResourceDir, Record); AddString(HSOpts.ModuleCachePath, Record); AddString(HSOpts.ModuleUserBuildPath, Record); Record.push_back(HSOpts.DisableModuleHash); Record.push_back(HSOpts.UseBuiltinIncludes); Record.push_back(HSOpts.UseStandardSystemIncludes); Record.push_back(HSOpts.UseStandardCXXIncludes); Record.push_back(HSOpts.UseLibcxx); // Write out the specific module cache path that contains the module files. AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record); Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record); // Preprocessor options. Record.clear(); const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts(); // Macro definitions. Record.push_back(PPOpts.Macros.size()); for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) { AddString(PPOpts.Macros[I].first, Record); Record.push_back(PPOpts.Macros[I].second); } // Includes Record.push_back(PPOpts.Includes.size()); for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I) AddString(PPOpts.Includes[I], Record); // Macro includes Record.push_back(PPOpts.MacroIncludes.size()); for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I) AddString(PPOpts.MacroIncludes[I], Record); Record.push_back(PPOpts.UsePredefines); // Detailed record is important since it is used for the module cache hash. Record.push_back(PPOpts.DetailedRecord); AddString(PPOpts.ImplicitPCHInclude, Record); AddString(PPOpts.ImplicitPTHInclude, Record); Record.push_back(static_cast(PPOpts.ObjCXXARCStandardLibrary)); Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record); // Leave the options block. Stream.ExitBlock(); // Original file name and file ID SourceManager &SM = Context.getSourceManager(); if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { auto *FileAbbrev = new BitCodeAbbrev(); FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE)); FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev); Record.clear(); Record.push_back(ORIGINAL_FILE); Record.push_back(SM.getMainFileID().getOpaqueValue()); EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName()); } Record.clear(); Record.push_back(SM.getMainFileID().getOpaqueValue()); Stream.EmitRecord(ORIGINAL_FILE_ID, Record); // Original PCH directory if (!OutputFile.empty() && OutputFile != "-") { auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); SmallString<128> OutputPath(OutputFile); SM.getFileManager().makeAbsolutePath(OutputPath); StringRef origDir = llvm::sys::path::parent_path(OutputPath); RecordData::value_type Record[] = {ORIGINAL_PCH_DIR}; Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir); } WriteInputFiles(Context.SourceMgr, PP.getHeaderSearchInfo().getHeaderSearchOpts(), PP.getLangOpts().Modules); Stream.ExitBlock(); return Signature; } namespace { /// \brief An input file. struct InputFileEntry { const FileEntry *File; bool IsSystemFile; bool IsTransient; bool BufferOverridden; }; } // end anonymous namespace void ASTWriter::WriteInputFiles(SourceManager &SourceMgr, HeaderSearchOptions &HSOpts, bool Modules) { using namespace llvm; Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4); // Create input-file abbreviation. auto *IFAbbrev = new BitCodeAbbrev(); IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE)); IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Transient IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned IFAbbrevCode = Stream.EmitAbbrev(IFAbbrev); // Get all ContentCache objects for files, sorted by whether the file is a // system one or not. System files go at the back, users files at the front. std::deque SortedFiles; for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc); // We only care about file entries that were not overridden. if (!SLoc->isFile()) continue; const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache(); if (!Cache->OrigEntry) continue; InputFileEntry Entry; Entry.File = Cache->OrigEntry; Entry.IsSystemFile = Cache->IsSystemFile; Entry.IsTransient = Cache->IsTransient; Entry.BufferOverridden = Cache->BufferOverridden; if (Cache->IsSystemFile) SortedFiles.push_back(Entry); else SortedFiles.push_front(Entry); } unsigned UserFilesNum = 0; // Write out all of the input files. std::vector InputFileOffsets; for (const auto &Entry : SortedFiles) { uint32_t &InputFileID = InputFileIDs[Entry.File]; if (InputFileID != 0) continue; // already recorded this file. // Record this entry's offset. InputFileOffsets.push_back(Stream.GetCurrentBitNo()); InputFileID = InputFileOffsets.size(); if (!Entry.IsSystemFile) ++UserFilesNum; // Emit size/modification time for this file. // And whether this file was overridden. RecordData::value_type Record[] = { INPUT_FILE, InputFileOffsets.size(), (uint64_t)Entry.File->getSize(), (uint64_t)getTimestampForOutput(Entry.File), Entry.BufferOverridden, Entry.IsTransient}; EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName()); } Stream.ExitBlock(); // Create input file offsets abbreviation. auto *OffsetsAbbrev = new BitCodeAbbrev(); OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS)); OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system // input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(OffsetsAbbrev); // Write input file offsets. RecordData::value_type Record[] = {INPUT_FILE_OFFSETS, InputFileOffsets.size(), UserFilesNum}; Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets)); } //===----------------------------------------------------------------------===// // Source Manager Serialization //===----------------------------------------------------------------------===// /// \brief Create an abbreviation for the SLocEntry that refers to a /// file. static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives // FileEntry fields. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer. static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer's blob. static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_BLOB)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a macro /// expansion. static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length return Stream.EmitAbbrev(Abbrev); } namespace { // Trait used for the on-disk hash table of header search information. class HeaderFileInfoTrait { ASTWriter &Writer; const HeaderSearch &HS; // Keep track of the framework names we've used during serialization. SmallVector FrameworkStringData; llvm::StringMap FrameworkNameOffset; public: HeaderFileInfoTrait(ASTWriter &Writer, const HeaderSearch &HS) : Writer(Writer), HS(HS) { } struct key_type { const FileEntry *FE; const char *Filename; }; typedef const key_type &key_type_ref; typedef HeaderFileInfo data_type; typedef const data_type &data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; hash_value_type ComputeHash(key_type_ref key) { // The hash is based only on size/time of the file, so that the reader can // match even when symlinking or excess path elements ("foo/../", "../") // change the form of the name. However, complete path is still the key. return llvm::hash_combine(key.FE->getSize(), Writer.getTimestampForOutput(key.FE)); } std::pair EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) { using namespace llvm::support; endian::Writer LE(Out); unsigned KeyLen = strlen(key.Filename) + 1 + 8 + 8; LE.write(KeyLen); unsigned DataLen = 1 + 2 + 4 + 4; for (auto ModInfo : HS.getModuleMap().findAllModulesForHeader(key.FE)) if (Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule())) DataLen += 4; LE.write(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) { using namespace llvm::support; endian::Writer LE(Out); LE.write(key.FE->getSize()); KeyLen -= 8; LE.write(Writer.getTimestampForOutput(key.FE)); KeyLen -= 8; Out.write(key.Filename, KeyLen); } void EmitData(raw_ostream &Out, key_type_ref key, data_type_ref Data, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out); uint64_t Start = Out.tell(); (void)Start; unsigned char Flags = (Data.isImport << 4) | (Data.isPragmaOnce << 3) | (Data.DirInfo << 1) | Data.IndexHeaderMapHeader; LE.write(Flags); LE.write(Data.NumIncludes); if (!Data.ControllingMacro) LE.write(Data.ControllingMacroID); else LE.write(Writer.getIdentifierRef(Data.ControllingMacro)); unsigned Offset = 0; if (!Data.Framework.empty()) { // If this header refers into a framework, save the framework name. llvm::StringMap::iterator Pos = FrameworkNameOffset.find(Data.Framework); if (Pos == FrameworkNameOffset.end()) { Offset = FrameworkStringData.size() + 1; FrameworkStringData.append(Data.Framework.begin(), Data.Framework.end()); FrameworkStringData.push_back(0); FrameworkNameOffset[Data.Framework] = Offset; } else Offset = Pos->second; } LE.write(Offset); // FIXME: If the header is excluded, we should write out some // record of that fact. for (auto ModInfo : HS.getModuleMap().findAllModulesForHeader(key.FE)) { if (uint32_t ModID = Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule())) { uint32_t Value = (ModID << 2) | (unsigned)ModInfo.getRole(); assert((Value >> 2) == ModID && "overflow in header module info"); LE.write(Value); } } assert(Out.tell() - Start == DataLen && "Wrong data length"); } const char *strings_begin() const { return FrameworkStringData.begin(); } const char *strings_end() const { return FrameworkStringData.end(); } }; } // end anonymous namespace /// \brief Write the header search block for the list of files that /// /// \param HS The header search structure to save. void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) { SmallVector FilesByUID; HS.getFileMgr().GetUniqueIDMapping(FilesByUID); if (FilesByUID.size() > HS.header_file_size()) FilesByUID.resize(HS.header_file_size()); HeaderFileInfoTrait GeneratorTrait(*this, HS); llvm::OnDiskChainedHashTableGenerator Generator; SmallVector SavedStrings; unsigned NumHeaderSearchEntries = 0; for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) { const FileEntry *File = FilesByUID[UID]; if (!File) continue; // Get the file info. This will load info from the external source if // necessary. Skip emitting this file if we have no information on it // as a header file (in which case HFI will be null) or if it hasn't // changed since it was loaded. Also skip it if it's for a modular header // from a different module; in that case, we rely on the module(s) // containing the header to provide this information. const HeaderFileInfo *HFI = HS.getExistingFileInfo(File, /*WantExternal*/!Chain); if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader)) continue; // Massage the file path into an appropriate form. const char *Filename = File->getName(); SmallString<128> FilenameTmp(Filename); if (PreparePathForOutput(FilenameTmp)) { // If we performed any translation on the file name at all, we need to // save this string, since the generator will refer to it later. Filename = strdup(FilenameTmp.c_str()); SavedStrings.push_back(Filename); } HeaderFileInfoTrait::key_type key = { File, Filename }; Generator.insert(key, *HFI, GeneratorTrait); ++NumHeaderSearchEntries; } // Create the on-disk hash table in a buffer. SmallString<4096> TableData; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(TableData); // Make sure that no bucket is at offset 0 endian::Writer(Out).write(0); BucketOffset = Generator.Emit(Out, GeneratorTrait); } // Create a blob abbreviation using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned TableAbbrev = Stream.EmitAbbrev(Abbrev); // Write the header search table RecordData::value_type Record[] = {HEADER_SEARCH_TABLE, BucketOffset, NumHeaderSearchEntries, TableData.size()}; TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end()); Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData); // Free all of the strings we had to duplicate. for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I) free(const_cast(SavedStrings[I])); } /// \brief Writes the block containing the serialized form of the /// source manager. /// /// TODO: We should probably use an on-disk hash table (stored in a /// blob), indexed based on the file name, so that we only create /// entries for files that we actually need. In the common case (no /// errors), we probably won't have to create file entries for any of /// the files in the AST. void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr, const Preprocessor &PP) { RecordData Record; // Enter the source manager block. Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 3); // Abbreviations for the various kinds of source-location entries. unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream); unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream); unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream); unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream); // Write out the source location entry table. We skip the first // entry, which is always the same dummy entry. std::vector SLocEntryOffsets; RecordData PreloadSLocs; SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1); for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); FileID FID = FileID::get(I); assert(&SourceMgr.getSLocEntry(FID) == SLoc); // Record the offset of this source-location entry. SLocEntryOffsets.push_back(Stream.GetCurrentBitNo()); // Figure out which record code to use. unsigned Code; if (SLoc->isFile()) { const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache(); if (Cache->OrigEntry) { Code = SM_SLOC_FILE_ENTRY; } else Code = SM_SLOC_BUFFER_ENTRY; } else Code = SM_SLOC_EXPANSION_ENTRY; Record.clear(); Record.push_back(Code); // Starting offset of this entry within this module, so skip the dummy. Record.push_back(SLoc->getOffset() - 2); if (SLoc->isFile()) { const SrcMgr::FileInfo &File = SLoc->getFile(); Record.push_back(File.getIncludeLoc().getRawEncoding()); Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding Record.push_back(File.hasLineDirectives()); const SrcMgr::ContentCache *Content = File.getContentCache(); if (Content->OrigEntry) { assert(Content->OrigEntry == Content->ContentsEntry && "Writing to AST an overridden file is not supported"); // The source location entry is a file. Emit input file ID. assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry"); Record.push_back(InputFileIDs[Content->OrigEntry]); Record.push_back(File.NumCreatedFIDs); FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID); if (FDI != FileDeclIDs.end()) { Record.push_back(FDI->second->FirstDeclIndex); Record.push_back(FDI->second->DeclIDs.size()); } else { Record.push_back(0); Record.push_back(0); } Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record); if (Content->BufferOverridden || Content->IsTransient) { RecordData::value_type Record[] = {SM_SLOC_BUFFER_BLOB}; const llvm::MemoryBuffer *Buffer = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager()); Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, StringRef(Buffer->getBufferStart(), Buffer->getBufferSize() + 1)); } } else { // The source location entry is a buffer. The blob associated // with this entry contains the contents of the buffer. // We add one to the size so that we capture the trailing NULL // that is required by llvm::MemoryBuffer::getMemBuffer (on // the reader side). const llvm::MemoryBuffer *Buffer = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager()); const char *Name = Buffer->getBufferIdentifier(); Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record, StringRef(Name, strlen(Name) + 1)); RecordData::value_type Record[] = {SM_SLOC_BUFFER_BLOB}; Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, StringRef(Buffer->getBufferStart(), Buffer->getBufferSize() + 1)); if (strcmp(Name, "") == 0) { PreloadSLocs.push_back(SLocEntryOffsets.size()); } } } else { // The source location entry is a macro expansion. const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion(); Record.push_back(Expansion.getSpellingLoc().getRawEncoding()); Record.push_back(Expansion.getExpansionLocStart().getRawEncoding()); Record.push_back(Expansion.isMacroArgExpansion() ? 0 : Expansion.getExpansionLocEnd().getRawEncoding()); // Compute the token length for this macro expansion. unsigned NextOffset = SourceMgr.getNextLocalOffset(); if (I + 1 != N) NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset(); Record.push_back(NextOffset - SLoc->getOffset() - 1); Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record); } } Stream.ExitBlock(); if (SLocEntryOffsets.empty()) return; // Write the source-location offsets table into the AST block. This // table is used for lazily loading source-location information. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev); { RecordData::value_type Record[] = { SOURCE_LOCATION_OFFSETS, SLocEntryOffsets.size(), SourceMgr.getNextLocalOffset() - 1 /* skip dummy */}; Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, bytes(SLocEntryOffsets)); } // Write the source location entry preloads array, telling the AST // reader which source locations entries it should load eagerly. Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs); // Write the line table. It depends on remapping working, so it must come // after the source location offsets. if (SourceMgr.hasLineTable()) { LineTableInfo &LineTable = SourceMgr.getLineTable(); Record.clear(); // Emit the needed file names. llvm::DenseMap FilenameMap; for (const auto &L : LineTable) { if (L.first.ID < 0) continue; for (auto &LE : L.second) { if (FilenameMap.insert(std::make_pair(LE.FilenameID, FilenameMap.size())).second) AddPath(LineTable.getFilename(LE.FilenameID), Record); } } Record.push_back(0); // Emit the line entries for (const auto &L : LineTable) { // Only emit entries for local files. if (L.first.ID < 0) continue; // Emit the file ID Record.push_back(L.first.ID); // Emit the line entries Record.push_back(L.second.size()); for (const auto &LE : L.second) { Record.push_back(LE.FileOffset); Record.push_back(LE.LineNo); Record.push_back(FilenameMap[LE.FilenameID]); Record.push_back((unsigned)LE.FileKind); Record.push_back(LE.IncludeOffset); } } Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record); } } //===----------------------------------------------------------------------===// // Preprocessor Serialization //===----------------------------------------------------------------------===// static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule, const Preprocessor &PP) { if (MacroInfo *MI = MD->getMacroInfo()) if (MI->isBuiltinMacro()) return true; if (IsModule) { SourceLocation Loc = MD->getLocation(); if (Loc.isInvalid()) return true; if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID()) return true; } return false; } /// \brief Writes the block containing the serialized form of the /// preprocessor. /// void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) { PreprocessingRecord *PPRec = PP.getPreprocessingRecord(); if (PPRec) WritePreprocessorDetail(*PPRec); RecordData Record; RecordData ModuleMacroRecord; // If the preprocessor __COUNTER__ value has been bumped, remember it. if (PP.getCounterValue() != 0) { RecordData::value_type Record[] = {PP.getCounterValue()}; Stream.EmitRecord(PP_COUNTER_VALUE, Record); } // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3); // If the AST file contains __DATE__ or __TIME__ emit a warning about this. // FIXME: Include a location for the use, and say which one was used. if (PP.SawDateOrTime()) PP.Diag(SourceLocation(), diag::warn_module_uses_date_time) << IsModule; // Loop over all the macro directives that are live at the end of the file, // emitting each to the PP section. // Construct the list of identifiers with macro directives that need to be // serialized. SmallVector MacroIdentifiers; for (auto &Id : PP.getIdentifierTable()) if (Id.second->hadMacroDefinition() && (!Id.second->isFromAST() || Id.second->hasChangedSinceDeserialization())) MacroIdentifiers.push_back(Id.second); // Sort the set of macro definitions that need to be serialized by the // name of the macro, to provide a stable ordering. std::sort(MacroIdentifiers.begin(), MacroIdentifiers.end(), llvm::less_ptr()); // Emit the macro directives as a list and associate the offset with the // identifier they belong to. for (const IdentifierInfo *Name : MacroIdentifiers) { MacroDirective *MD = PP.getLocalMacroDirectiveHistory(Name); auto StartOffset = Stream.GetCurrentBitNo(); // Emit the macro directives in reverse source order. for (; MD; MD = MD->getPrevious()) { // Once we hit an ignored macro, we're done: the rest of the chain // will all be ignored macros. if (shouldIgnoreMacro(MD, IsModule, PP)) break; AddSourceLocation(MD->getLocation(), Record); Record.push_back(MD->getKind()); if (auto *DefMD = dyn_cast(MD)) { Record.push_back(getMacroRef(DefMD->getInfo(), Name)); } else if (auto *VisMD = dyn_cast(MD)) { Record.push_back(VisMD->isPublic()); } } // Write out any exported module macros. bool EmittedModuleMacros = false; if (IsModule) { auto Leafs = PP.getLeafModuleMacros(Name); SmallVector Worklist(Leafs.begin(), Leafs.end()); llvm::DenseMap Visits; while (!Worklist.empty()) { auto *Macro = Worklist.pop_back_val(); // Emit a record indicating this submodule exports this macro. ModuleMacroRecord.push_back( getSubmoduleID(Macro->getOwningModule())); ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name)); for (auto *M : Macro->overrides()) ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule())); Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord); ModuleMacroRecord.clear(); // Enqueue overridden macros once we've visited all their ancestors. for (auto *M : Macro->overrides()) if (++Visits[M] == M->getNumOverridingMacros()) Worklist.push_back(M); EmittedModuleMacros = true; } } if (Record.empty() && !EmittedModuleMacros) continue; IdentMacroDirectivesOffsetMap[Name] = StartOffset; Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record); Record.clear(); } /// \brief Offsets of each of the macros into the bitstream, indexed by /// the local macro ID /// /// For each identifier that is associated with a macro, this map /// provides the offset into the bitstream where that macro is /// defined. std::vector MacroOffsets; for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) { const IdentifierInfo *Name = MacroInfosToEmit[I].Name; MacroInfo *MI = MacroInfosToEmit[I].MI; MacroID ID = MacroInfosToEmit[I].ID; if (ID < FirstMacroID) { assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?"); continue; } // Record the local offset of this macro. unsigned Index = ID - FirstMacroID; if (Index == MacroOffsets.size()) MacroOffsets.push_back(Stream.GetCurrentBitNo()); else { if (Index > MacroOffsets.size()) MacroOffsets.resize(Index + 1); MacroOffsets[Index] = Stream.GetCurrentBitNo(); } AddIdentifierRef(Name, Record); Record.push_back(inferSubmoduleIDFromLocation(MI->getDefinitionLoc())); AddSourceLocation(MI->getDefinitionLoc(), Record); AddSourceLocation(MI->getDefinitionEndLoc(), Record); Record.push_back(MI->isUsed()); Record.push_back(MI->isUsedForHeaderGuard()); unsigned Code; if (MI->isObjectLike()) { Code = PP_MACRO_OBJECT_LIKE; } else { Code = PP_MACRO_FUNCTION_LIKE; Record.push_back(MI->isC99Varargs()); Record.push_back(MI->isGNUVarargs()); Record.push_back(MI->hasCommaPasting()); Record.push_back(MI->getNumArgs()); for (const IdentifierInfo *Arg : MI->args()) AddIdentifierRef(Arg, Record); } // If we have a detailed preprocessing record, record the macro definition // ID that corresponds to this macro. if (PPRec) Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]); Stream.EmitRecord(Code, Record); Record.clear(); // Emit the tokens array. for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) { // Note that we know that the preprocessor does not have any annotation // tokens in it because they are created by the parser, and thus can't // be in a macro definition. const Token &Tok = MI->getReplacementToken(TokNo); AddToken(Tok, Record); Stream.EmitRecord(PP_TOKEN, Record); Record.clear(); } ++NumMacros; } Stream.ExitBlock(); // Write the offsets table for macro IDs. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(Abbrev); { RecordData::value_type Record[] = {MACRO_OFFSET, MacroOffsets.size(), FirstMacroID - NUM_PREDEF_MACRO_IDS}; Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, bytes(MacroOffsets)); } } void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) { if (PPRec.local_begin() == PPRec.local_end()) return; SmallVector PreprocessedEntityOffsets; // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3); // If the preprocessor has a preprocessing record, emit it. unsigned NumPreprocessingRecords = 0; using namespace llvm; // Set up the abbreviation for unsigned InclusionAbbrev = 0; { auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); InclusionAbbrev = Stream.EmitAbbrev(Abbrev); } unsigned FirstPreprocessorEntityID = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0) + NUM_PREDEF_PP_ENTITY_IDS; unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID; RecordData Record; for (PreprocessingRecord::iterator E = PPRec.local_begin(), EEnd = PPRec.local_end(); E != EEnd; (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) { Record.clear(); PreprocessedEntityOffsets.push_back( PPEntityOffset((*E)->getSourceRange(), Stream.GetCurrentBitNo())); if (auto *MD = dyn_cast(*E)) { // Record this macro definition's ID. MacroDefinitions[MD] = NextPreprocessorEntityID; AddIdentifierRef(MD->getName(), Record); Stream.EmitRecord(PPD_MACRO_DEFINITION, Record); continue; } if (auto *ME = dyn_cast(*E)) { Record.push_back(ME->isBuiltinMacro()); if (ME->isBuiltinMacro()) AddIdentifierRef(ME->getName(), Record); else Record.push_back(MacroDefinitions[ME->getDefinition()]); Stream.EmitRecord(PPD_MACRO_EXPANSION, Record); continue; } if (auto *ID = dyn_cast(*E)) { Record.push_back(PPD_INCLUSION_DIRECTIVE); Record.push_back(ID->getFileName().size()); Record.push_back(ID->wasInQuotes()); Record.push_back(static_cast(ID->getKind())); Record.push_back(ID->importedModule()); SmallString<64> Buffer; Buffer += ID->getFileName(); // Check that the FileEntry is not null because it was not resolved and // we create a PCH even with compiler errors. if (ID->getFile()) Buffer += ID->getFile()->getName(); Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer); continue; } llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter"); } Stream.ExitBlock(); // Write the offsets table for the preprocessing record. if (NumPreprocessingRecords > 0) { assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords); // Write the offsets table for identifier IDs. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(Abbrev); RecordData::value_type Record[] = {PPD_ENTITIES_OFFSETS, FirstPreprocessorEntityID - NUM_PREDEF_PP_ENTITY_IDS}; Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record, bytes(PreprocessedEntityOffsets)); } } unsigned ASTWriter::getLocalOrImportedSubmoduleID(Module *Mod) { if (!Mod) return 0; llvm::DenseMap::iterator Known = SubmoduleIDs.find(Mod); if (Known != SubmoduleIDs.end()) return Known->second; if (Mod->getTopLevelModule() != WritingModule) return 0; return SubmoduleIDs[Mod] = NextSubmoduleID++; } unsigned ASTWriter::getSubmoduleID(Module *Mod) { // FIXME: This can easily happen, if we have a reference to a submodule that // did not result in us loading a module file for that submodule. For // instance, a cross-top-level-module 'conflict' declaration will hit this. unsigned ID = getLocalOrImportedSubmoduleID(Mod); assert((ID || !Mod) && "asked for module ID for non-local, non-imported module"); return ID; } /// \brief Compute the number of modules within the given tree (including the /// given module). static unsigned getNumberOfModules(Module *Mod) { unsigned ChildModules = 0; for (auto Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end(); Sub != SubEnd; ++Sub) ChildModules += getNumberOfModules(*Sub); return ChildModules + 1; } void ASTWriter::WriteSubmodules(Module *WritingModule) { // Enter the submodule description block. Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5); // Write the abbreviations needed for the submodules block. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned DefinitionAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned HeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned TopHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature unsigned RequiresAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message unsigned ConflictAbbrev = Stream.EmitAbbrev(Abbrev); // Write the submodule metadata block. RecordData::value_type Record[] = {getNumberOfModules(WritingModule), FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS}; Stream.EmitRecord(SUBMODULE_METADATA, Record); // Write all of the submodules. std::queue Q; Q.push(WritingModule); while (!Q.empty()) { Module *Mod = Q.front(); Q.pop(); unsigned ID = getSubmoduleID(Mod); uint64_t ParentID = 0; if (Mod->Parent) { assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?"); ParentID = SubmoduleIDs[Mod->Parent]; } // Emit the definition of the block. { RecordData::value_type Record[] = { SUBMODULE_DEFINITION, ID, ParentID, Mod->IsFramework, Mod->IsExplicit, Mod->IsSystem, Mod->IsExternC, Mod->InferSubmodules, Mod->InferExplicitSubmodules, Mod->InferExportWildcard, Mod->ConfigMacrosExhaustive}; Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name); } // Emit the requirements. for (const auto &R : Mod->Requirements) { RecordData::value_type Record[] = {SUBMODULE_REQUIRES, R.second}; Stream.EmitRecordWithBlob(RequiresAbbrev, Record, R.first); } // Emit the umbrella header, if there is one. if (auto UmbrellaHeader = Mod->getUmbrellaHeader()) { RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_HEADER}; Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record, UmbrellaHeader.NameAsWritten); } else if (auto UmbrellaDir = Mod->getUmbrellaDir()) { RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_DIR}; Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record, UmbrellaDir.NameAsWritten); } // Emit the headers. struct { unsigned RecordKind; unsigned Abbrev; Module::HeaderKind HeaderKind; } HeaderLists[] = { {SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal}, {SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual}, {SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private}, {SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev, Module::HK_PrivateTextual}, {SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded} }; for (auto &HL : HeaderLists) { RecordData::value_type Record[] = {HL.RecordKind}; for (auto &H : Mod->Headers[HL.HeaderKind]) Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten); } // Emit the top headers. { auto TopHeaders = Mod->getTopHeaders(PP->getFileManager()); RecordData::value_type Record[] = {SUBMODULE_TOPHEADER}; for (auto *H : TopHeaders) Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, H->getName()); } // Emit the imports. if (!Mod->Imports.empty()) { RecordData Record; for (auto *I : Mod->Imports) Record.push_back(getSubmoduleID(I)); Stream.EmitRecord(SUBMODULE_IMPORTS, Record); } // Emit the exports. if (!Mod->Exports.empty()) { RecordData Record; for (const auto &E : Mod->Exports) { // FIXME: This may fail; we don't require that all exported modules // are local or imported. Record.push_back(getSubmoduleID(E.getPointer())); Record.push_back(E.getInt()); } Stream.EmitRecord(SUBMODULE_EXPORTS, Record); } //FIXME: How do we emit the 'use'd modules? They may not be submodules. // Might be unnecessary as use declarations are only used to build the // module itself. // Emit the link libraries. for (const auto &LL : Mod->LinkLibraries) { RecordData::value_type Record[] = {SUBMODULE_LINK_LIBRARY, LL.IsFramework}; Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record, LL.Library); } // Emit the conflicts. for (const auto &C : Mod->Conflicts) { // FIXME: This may fail; we don't require that all conflicting modules // are local or imported. RecordData::value_type Record[] = {SUBMODULE_CONFLICT, getSubmoduleID(C.Other)}; Stream.EmitRecordWithBlob(ConflictAbbrev, Record, C.Message); } // Emit the configuration macros. for (const auto &CM : Mod->ConfigMacros) { RecordData::value_type Record[] = {SUBMODULE_CONFIG_MACRO}; Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record, CM); } // Queue up the submodules of this module. for (auto *M : Mod->submodules()) Q.push(M); } Stream.ExitBlock(); assert((NextSubmoduleID - FirstSubmoduleID == getNumberOfModules(WritingModule)) && "Wrong # of submodules; found a reference to a non-local, " "non-imported submodule?"); } serialization::SubmoduleID ASTWriter::inferSubmoduleIDFromLocation(SourceLocation Loc) { if (Loc.isInvalid() || !WritingModule) return 0; // No submodule // Find the module that owns this location. ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap(); Module *OwningMod = ModMap.inferModuleFromLocation(FullSourceLoc(Loc,PP->getSourceManager())); if (!OwningMod) return 0; // Check whether this submodule is part of our own module. if (WritingModule != OwningMod && !OwningMod->isSubModuleOf(WritingModule)) return 0; return getSubmoduleID(OwningMod); } void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag, bool isModule) { // Make sure set diagnostic pragmas don't affect the translation unit that // imports the module. // FIXME: Make diagnostic pragma sections work properly with modules. if (isModule) return; llvm::SmallDenseMap DiagStateIDMap; unsigned CurrID = 0; DiagStateIDMap[&Diag.DiagStates.front()] = ++CurrID; // the command-line one. RecordData Record; for (DiagnosticsEngine::DiagStatePointsTy::const_iterator I = Diag.DiagStatePoints.begin(), E = Diag.DiagStatePoints.end(); I != E; ++I) { const DiagnosticsEngine::DiagStatePoint &point = *I; if (point.Loc.isInvalid()) continue; Record.push_back(point.Loc.getRawEncoding()); unsigned &DiagStateID = DiagStateIDMap[point.State]; Record.push_back(DiagStateID); if (DiagStateID == 0) { DiagStateID = ++CurrID; for (const auto &I : *(point.State)) { if (I.second.isPragma()) { Record.push_back(I.first); Record.push_back((unsigned)I.second.getSeverity()); } } Record.push_back(-1); // mark the end of the diag/map pairs for this // location. } } if (!Record.empty()) Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record); } void ASTWriter::WriteCXXCtorInitializersOffsets() { if (CXXCtorInitializersOffsets.empty()) return; // Create a blob abbreviation for the C++ ctor initializer offsets. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(CXX_CTOR_INITIALIZERS_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned CtorInitializersOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the base specifier offsets table. RecordData::value_type Record[] = {CXX_CTOR_INITIALIZERS_OFFSETS, CXXCtorInitializersOffsets.size()}; Stream.EmitRecordWithBlob(CtorInitializersOffsetAbbrev, Record, bytes(CXXCtorInitializersOffsets)); } void ASTWriter::WriteCXXBaseSpecifiersOffsets() { if (CXXBaseSpecifiersOffsets.empty()) return; // Create a blob abbreviation for the C++ base specifiers offsets. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(CXX_BASE_SPECIFIER_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned BaseSpecifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the base specifier offsets table. RecordData::value_type Record[] = {CXX_BASE_SPECIFIER_OFFSETS, CXXBaseSpecifiersOffsets.size()}; Stream.EmitRecordWithBlob(BaseSpecifierOffsetAbbrev, Record, bytes(CXXBaseSpecifiersOffsets)); } //===----------------------------------------------------------------------===// // Type Serialization //===----------------------------------------------------------------------===// /// \brief Write the representation of a type to the AST stream. void ASTWriter::WriteType(QualType T) { TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) // we haven't seen this type before. Idx = TypeIdx(NextTypeID++); assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST"); // Record the offset for this type. unsigned Index = Idx.getIndex() - FirstTypeID; if (TypeOffsets.size() == Index) TypeOffsets.push_back(Stream.GetCurrentBitNo()); else if (TypeOffsets.size() < Index) { TypeOffsets.resize(Index + 1); TypeOffsets[Index] = Stream.GetCurrentBitNo(); } RecordData Record; // Emit the type's representation. ASTTypeWriter W(*this, Record); W.AbbrevToUse = 0; if (T.hasLocalNonFastQualifiers()) { Qualifiers Qs = T.getLocalQualifiers(); AddTypeRef(T.getLocalUnqualifiedType(), Record); Record.push_back(Qs.getAsOpaqueValue()); W.Code = TYPE_EXT_QUAL; W.AbbrevToUse = TypeExtQualAbbrev; } else { switch (T->getTypeClass()) { // For all of the concrete, non-dependent types, call the // appropriate visitor function. #define TYPE(Class, Base) \ case Type::Class: W.Visit##Class##Type(cast(T)); break; #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" } } // Emit the serialized record. Stream.EmitRecord(W.Code, Record, W.AbbrevToUse); // Flush any expressions that were written as part of this type. FlushStmts(); } //===----------------------------------------------------------------------===// // Declaration Serialization //===----------------------------------------------------------------------===// /// \brief Write the block containing all of the declaration IDs /// lexically declared within the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the /// bistream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context, DeclContext *DC) { if (DC->decls_empty()) return 0; uint64_t Offset = Stream.GetCurrentBitNo(); SmallVector KindDeclPairs; for (const auto *D : DC->decls()) { KindDeclPairs.push_back(D->getKind()); KindDeclPairs.push_back(GetDeclRef(D)); } ++NumLexicalDeclContexts; RecordData::value_type Record[] = {DECL_CONTEXT_LEXICAL}; Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, bytes(KindDeclPairs)); return Offset; } void ASTWriter::WriteTypeDeclOffsets() { using namespace llvm; // Write the type offsets array auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev); { RecordData::value_type Record[] = {TYPE_OFFSET, TypeOffsets.size(), FirstTypeID - NUM_PREDEF_TYPE_IDS}; Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, bytes(TypeOffsets)); } // Write the declaration offsets array Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev); { RecordData::value_type Record[] = {DECL_OFFSET, DeclOffsets.size(), FirstDeclID - NUM_PREDEF_DECL_IDS}; Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, bytes(DeclOffsets)); } } void ASTWriter::WriteFileDeclIDsMap() { using namespace llvm; SmallVector, 64> SortedFileDeclIDs( FileDeclIDs.begin(), FileDeclIDs.end()); std::sort(SortedFileDeclIDs.begin(), SortedFileDeclIDs.end(), llvm::less_first()); // Join the vectors of DeclIDs from all files. SmallVector FileGroupedDeclIDs; for (auto &FileDeclEntry : SortedFileDeclIDs) { DeclIDInFileInfo &Info = *FileDeclEntry.second; Info.FirstDeclIndex = FileGroupedDeclIDs.size(); for (auto &LocDeclEntry : Info.DeclIDs) FileGroupedDeclIDs.push_back(LocDeclEntry.second); } auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); RecordData::value_type Record[] = {FILE_SORTED_DECLS, FileGroupedDeclIDs.size()}; Stream.EmitRecordWithBlob(AbbrevCode, Record, bytes(FileGroupedDeclIDs)); } void ASTWriter::WriteComments() { Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3); ArrayRef RawComments = Context->Comments.getComments(); RecordData Record; for (const auto *I : RawComments) { Record.clear(); AddSourceRange(I->getSourceRange(), Record); Record.push_back(I->getKind()); Record.push_back(I->isTrailingComment()); Record.push_back(I->isAlmostTrailingComment()); Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record); } Stream.ExitBlock(); } //===----------------------------------------------------------------------===// // Global Method Pool and Selector Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTMethodPoolTrait { ASTWriter &Writer; public: typedef Selector key_type; typedef key_type key_type_ref; struct data_type { SelectorID ID; ObjCMethodList Instance, Factory; }; typedef const data_type& data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) { } static hash_value_type ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair EmitKeyDataLength(raw_ostream& Out, Selector Sel, data_type_ref Methods) { using namespace llvm::support; endian::Writer LE(Out); unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4); LE.write(KeyLen); unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->getMethod()) DataLen += 4; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->getMethod()) DataLen += 4; LE.write(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, Selector Sel, unsigned) { using namespace llvm::support; endian::Writer LE(Out); uint64_t Start = Out.tell(); assert((Start >> 32) == 0 && "Selector key offset too large"); Writer.SetSelectorOffset(Sel, Start); unsigned N = Sel.getNumArgs(); LE.write(N); if (N == 0) N = 1; for (unsigned I = 0; I != N; ++I) LE.write( Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I))); } void EmitData(raw_ostream& Out, key_type_ref, data_type_ref Methods, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out); uint64_t Start = Out.tell(); (void)Start; LE.write(Methods.ID); unsigned NumInstanceMethods = 0; for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->getMethod()) ++NumInstanceMethods; unsigned NumFactoryMethods = 0; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->getMethod()) ++NumFactoryMethods; unsigned InstanceBits = Methods.Instance.getBits(); assert(InstanceBits < 4); unsigned InstanceHasMoreThanOneDeclBit = Methods.Instance.hasMoreThanOneDecl(); unsigned FullInstanceBits = (NumInstanceMethods << 3) | (InstanceHasMoreThanOneDeclBit << 2) | InstanceBits; unsigned FactoryBits = Methods.Factory.getBits(); assert(FactoryBits < 4); unsigned FactoryHasMoreThanOneDeclBit = Methods.Factory.hasMoreThanOneDecl(); unsigned FullFactoryBits = (NumFactoryMethods << 3) | (FactoryHasMoreThanOneDeclBit << 2) | FactoryBits; LE.write(FullInstanceBits); LE.write(FullFactoryBits); for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->getMethod()) LE.write(Writer.getDeclID(Method->getMethod())); for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->getMethod()) LE.write(Writer.getDeclID(Method->getMethod())); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace /// \brief Write ObjC data: selectors and the method pool. /// /// The method pool contains both instance and factory methods, stored /// in an on-disk hash table indexed by the selector. The hash table also /// contains an empty entry for every other selector known to Sema. void ASTWriter::WriteSelectors(Sema &SemaRef) { using namespace llvm; // Do we have to do anything at all? if (SemaRef.MethodPool.empty() && SelectorIDs.empty()) return; unsigned NumTableEntries = 0; // Create and write out the blob that contains selectors and the method pool. { llvm::OnDiskChainedHashTableGenerator Generator; ASTMethodPoolTrait Trait(*this); // Create the on-disk hash table representation. We walk through every // selector we've seen and look it up in the method pool. SelectorOffsets.resize(NextSelectorID - FirstSelectorID); for (auto &SelectorAndID : SelectorIDs) { Selector S = SelectorAndID.first; SelectorID ID = SelectorAndID.second; Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S); ASTMethodPoolTrait::data_type Data = { ID, ObjCMethodList(), ObjCMethodList() }; if (F != SemaRef.MethodPool.end()) { Data.Instance = F->second.first; Data.Factory = F->second.second; } // Only write this selector if it's not in an existing AST or something // changed. if (Chain && ID < FirstSelectorID) { // Selector already exists. Did it change? bool changed = false; for (ObjCMethodList *M = &Data.Instance; !changed && M && M->getMethod(); M = M->getNext()) { if (!M->getMethod()->isFromASTFile()) changed = true; } for (ObjCMethodList *M = &Data.Factory; !changed && M && M->getMethod(); M = M->getNext()) { if (!M->getMethod()->isFromASTFile()) changed = true; } if (!changed) continue; } else if (Data.Instance.getMethod() || Data.Factory.getMethod()) { // A new method pool entry. ++NumTableEntries; } Generator.insert(S, Data, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> MethodPool; uint32_t BucketOffset; { using namespace llvm::support; ASTMethodPoolTrait Trait(*this); llvm::raw_svector_ostream Out(MethodPool); // Make sure that no bucket is at offset 0 endian::Writer(Out).write(0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev); // Write the method pool { RecordData::value_type Record[] = {METHOD_POOL, BucketOffset, NumTableEntries}; Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool); } // Create a blob abbreviation for the selector table offsets. Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the selector offsets table. { RecordData::value_type Record[] = { SELECTOR_OFFSETS, SelectorOffsets.size(), FirstSelectorID - NUM_PREDEF_SELECTOR_IDS}; Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record, bytes(SelectorOffsets)); } } } /// \brief Write the selectors referenced in @selector expression into AST file. void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) { using namespace llvm; if (SemaRef.ReferencedSelectors.empty()) return; RecordData Record; // Note: this writes out all references even for a dependent AST. But it is // very tricky to fix, and given that @selector shouldn't really appear in // headers, probably not worth it. It's not a correctness issue. for (auto &SelectorAndLocation : SemaRef.ReferencedSelectors) { Selector Sel = SelectorAndLocation.first; SourceLocation Loc = SelectorAndLocation.second; AddSelectorRef(Sel, Record); AddSourceLocation(Loc, Record); } Stream.EmitRecord(REFERENCED_SELECTOR_POOL, Record); } //===----------------------------------------------------------------------===// // Identifier Table Serialization //===----------------------------------------------------------------------===// /// Determine the declaration that should be put into the name lookup table to /// represent the given declaration in this module. This is usually D itself, /// but if D was imported and merged into a local declaration, we want the most /// recent local declaration instead. The chosen declaration will be the most /// recent declaration in any module that imports this one. static NamedDecl *getDeclForLocalLookup(const LangOptions &LangOpts, NamedDecl *D) { if (!LangOpts.Modules || !D->isFromASTFile()) return D; if (Decl *Redecl = D->getPreviousDecl()) { // For Redeclarable decls, a prior declaration might be local. for (; Redecl; Redecl = Redecl->getPreviousDecl()) { if (!Redecl->isFromASTFile()) return cast(Redecl); // If we find a decl from a (chained-)PCH stop since we won't find a // local one. if (D->getOwningModuleID() == 0) break; } } else if (Decl *First = D->getCanonicalDecl()) { // For Mergeable decls, the first decl might be local. if (!First->isFromASTFile()) return cast(First); } // All declarations are imported. Our most recent declaration will also be // the most recent one in anyone who imports us. return D; } namespace { class ASTIdentifierTableTrait { ASTWriter &Writer; Preprocessor &PP; IdentifierResolver &IdResolver; bool IsModule; bool NeedDecls; ASTWriter::RecordData *InterestingIdentifierOffsets; /// \brief Determines whether this is an "interesting" identifier that needs a /// full IdentifierInfo structure written into the hash table. Notably, this /// doesn't check whether the name has macros defined; use PublicMacroIterator /// to check that. bool isInterestingIdentifier(const IdentifierInfo *II, uint64_t MacroOffset) { if (MacroOffset || II->isPoisoned() || (IsModule ? II->hasRevertedBuiltin() : II->getObjCOrBuiltinID()) || II->hasRevertedTokenIDToIdentifier() || (NeedDecls && II->getFETokenInfo())) return true; return false; } public: typedef IdentifierInfo* key_type; typedef key_type key_type_ref; typedef IdentID data_type; typedef data_type data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule, ASTWriter::RecordData *InterestingIdentifierOffsets) : Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule), NeedDecls(!IsModule || !Writer.getLangOpts().CPlusPlus), InterestingIdentifierOffsets(InterestingIdentifierOffsets) {} static hash_value_type ComputeHash(const IdentifierInfo* II) { return llvm::HashString(II->getName()); } bool isInterestingIdentifier(const IdentifierInfo *II) { auto MacroOffset = Writer.getMacroDirectivesOffset(II); return isInterestingIdentifier(II, MacroOffset); } bool isInterestingNonMacroIdentifier(const IdentifierInfo *II) { return isInterestingIdentifier(II, 0); } std::pair EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) { unsigned KeyLen = II->getLength() + 1; unsigned DataLen = 4; // 4 bytes for the persistent ID << 1 auto MacroOffset = Writer.getMacroDirectivesOffset(II); if (isInterestingIdentifier(II, MacroOffset)) { DataLen += 2; // 2 bytes for builtin ID DataLen += 2; // 2 bytes for flags if (MacroOffset) DataLen += 4; // MacroDirectives offset. if (NeedDecls) { for (IdentifierResolver::iterator D = IdResolver.begin(II), DEnd = IdResolver.end(); D != DEnd; ++D) DataLen += 4; } } using namespace llvm::support; endian::Writer LE(Out); assert((uint16_t)DataLen == DataLen && (uint16_t)KeyLen == KeyLen); LE.write(DataLen); // We emit the key length after the data length so that every // string is preceded by a 16-bit length. This matches the PTH // format for storing identifiers. LE.write(KeyLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, const IdentifierInfo* II, unsigned KeyLen) { // Record the location of the key data. This is used when generating // the mapping from persistent IDs to strings. Writer.SetIdentifierOffset(II, Out.tell()); // Emit the offset of the key/data length information to the interesting // identifiers table if necessary. if (InterestingIdentifierOffsets && isInterestingIdentifier(II)) InterestingIdentifierOffsets->push_back(Out.tell() - 4); Out.write(II->getNameStart(), KeyLen); } void EmitData(raw_ostream& Out, IdentifierInfo* II, IdentID ID, unsigned) { using namespace llvm::support; endian::Writer LE(Out); auto MacroOffset = Writer.getMacroDirectivesOffset(II); if (!isInterestingIdentifier(II, MacroOffset)) { LE.write(ID << 1); return; } LE.write((ID << 1) | 0x01); uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID(); assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader."); LE.write(Bits); Bits = 0; bool HadMacroDefinition = MacroOffset != 0; Bits = (Bits << 1) | unsigned(HadMacroDefinition); Bits = (Bits << 1) | unsigned(II->isExtensionToken()); Bits = (Bits << 1) | unsigned(II->isPoisoned()); Bits = (Bits << 1) | unsigned(II->hasRevertedBuiltin()); Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier()); Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword()); LE.write(Bits); if (HadMacroDefinition) LE.write(MacroOffset); if (NeedDecls) { // Emit the declaration IDs in reverse order, because the // IdentifierResolver provides the declarations as they would be // visible (e.g., the function "stat" would come before the struct // "stat"), but the ASTReader adds declarations to the end of the list // (so we need to see the struct "stat" before the function "stat"). // Only emit declarations that aren't from a chained PCH, though. SmallVector Decls(IdResolver.begin(II), IdResolver.end()); for (SmallVectorImpl::reverse_iterator D = Decls.rbegin(), DEnd = Decls.rend(); D != DEnd; ++D) LE.write( Writer.getDeclID(getDeclForLocalLookup(PP.getLangOpts(), *D))); } } }; } // end anonymous namespace /// \brief Write the identifier table into the AST file. /// /// The identifier table consists of a blob containing string data /// (the actual identifiers themselves) and a separate "offsets" index /// that maps identifier IDs to locations within the blob. void ASTWriter::WriteIdentifierTable(Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule) { using namespace llvm; RecordData InterestingIdents; // Create and write out the blob that contains the identifier // strings. { llvm::OnDiskChainedHashTableGenerator Generator; ASTIdentifierTableTrait Trait( *this, PP, IdResolver, IsModule, (getLangOpts().CPlusPlus && IsModule) ? &InterestingIdents : nullptr); // Look for any identifiers that were named while processing the // headers, but are otherwise not needed. We add these to the hash // table to enable checking of the predefines buffer in the case // where the user adds new macro definitions when building the AST // file. SmallVector IIs; for (const auto &ID : PP.getIdentifierTable()) IIs.push_back(ID.second); // Sort the identifiers lexicographically before getting them references so // that their order is stable. std::sort(IIs.begin(), IIs.end(), llvm::less_ptr()); for (const IdentifierInfo *II : IIs) if (Trait.isInterestingNonMacroIdentifier(II)) getIdentifierRef(II); // Create the on-disk hash table representation. We only store offsets // for identifiers that appear here for the first time. IdentifierOffsets.resize(NextIdentID - FirstIdentID); for (auto IdentIDPair : IdentifierIDs) { auto *II = const_cast(IdentIDPair.first); IdentID ID = IdentIDPair.second; assert(II && "NULL identifier in identifier table"); if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization()) Generator.insert(II, ID, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> IdentifierTable; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(IdentifierTable); // Make sure that no bucket is at offset 0 endian::Writer(Out).write(0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev); // Write the identifier table RecordData::value_type Record[] = {IDENTIFIER_TABLE, BucketOffset}; Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable); } // Write the offsets table for identifier IDs. auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I) assert(IdentifierOffsets[I] && "Missing identifier offset?"); #endif RecordData::value_type Record[] = {IDENTIFIER_OFFSET, IdentifierOffsets.size(), FirstIdentID - NUM_PREDEF_IDENT_IDS}; Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record, bytes(IdentifierOffsets)); // In C++, write the list of interesting identifiers (those that are // defined as macros, poisoned, or similar unusual things). if (!InterestingIdents.empty()) Stream.EmitRecord(INTERESTING_IDENTIFIERS, InterestingIdents); } //===----------------------------------------------------------------------===// // DeclContext's Name Lookup Table Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTDeclContextNameLookupTrait { ASTWriter &Writer; llvm::SmallVector DeclIDs; public: typedef DeclarationNameKey key_type; typedef key_type key_type_ref; /// A start and end index into DeclIDs, representing a sequence of decls. typedef std::pair data_type; typedef const data_type& data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) { } template data_type getData(const Coll &Decls) { unsigned Start = DeclIDs.size(); for (NamedDecl *D : Decls) { DeclIDs.push_back( Writer.GetDeclRef(getDeclForLocalLookup(Writer.getLangOpts(), D))); } return std::make_pair(Start, DeclIDs.size()); } data_type ImportData(const reader::ASTDeclContextNameLookupTrait::data_type &FromReader) { unsigned Start = DeclIDs.size(); for (auto ID : FromReader) DeclIDs.push_back(ID); return std::make_pair(Start, DeclIDs.size()); } static bool EqualKey(key_type_ref a, key_type_ref b) { return a == b; } hash_value_type ComputeHash(DeclarationNameKey Name) { return Name.getHash(); } void EmitFileRef(raw_ostream &Out, ModuleFile *F) const { assert(Writer.hasChain() && "have reference to loaded module file but no chain?"); using namespace llvm::support; endian::Writer(Out) .write(Writer.getChain()->getModuleFileID(F)); } std::pair EmitKeyDataLength(raw_ostream &Out, DeclarationNameKey Name, data_type_ref Lookup) { using namespace llvm::support; endian::Writer LE(Out); unsigned KeyLen = 1; switch (Name.getKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXLiteralOperatorName: KeyLen += 4; break; case DeclarationName::CXXOperatorName: KeyLen += 1; break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } LE.write(KeyLen); // 4 bytes for each DeclID. unsigned DataLen = 4 * (Lookup.second - Lookup.first); assert(uint16_t(DataLen) == DataLen && "too many decls for serialized lookup result"); LE.write(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream &Out, DeclarationNameKey Name, unsigned) { using namespace llvm::support; endian::Writer LE(Out); LE.write(Name.getKind()); switch (Name.getKind()) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: LE.write(Writer.getIdentifierRef(Name.getIdentifier())); return; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: LE.write(Writer.getSelectorRef(Name.getSelector())); return; case DeclarationName::CXXOperatorName: assert(Name.getOperatorKind() < NUM_OVERLOADED_OPERATORS && "Invalid operator?"); LE.write(Name.getOperatorKind()); return; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: return; } llvm_unreachable("Invalid name kind?"); } void EmitData(raw_ostream &Out, key_type_ref, data_type Lookup, unsigned DataLen) { using namespace llvm::support; endian::Writer LE(Out); uint64_t Start = Out.tell(); (void)Start; for (unsigned I = Lookup.first, N = Lookup.second; I != N; ++I) LE.write(DeclIDs[I]); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace bool ASTWriter::isLookupResultExternal(StoredDeclsList &Result, DeclContext *DC) { return Result.hasExternalDecls() && DC->NeedToReconcileExternalVisibleStorage; } bool ASTWriter::isLookupResultEntirelyExternal(StoredDeclsList &Result, DeclContext *DC) { for (auto *D : Result.getLookupResult()) if (!getDeclForLocalLookup(getLangOpts(), D)->isFromASTFile()) return false; return true; } void ASTWriter::GenerateNameLookupTable(const DeclContext *ConstDC, llvm::SmallVectorImpl &LookupTable) { assert(!ConstDC->HasLazyLocalLexicalLookups && !ConstDC->HasLazyExternalLexicalLookups && "must call buildLookups first"); // FIXME: We need to build the lookups table, which is logically const. auto *DC = const_cast(ConstDC); assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table"); // Create the on-disk hash table representation. MultiOnDiskHashTableGenerator Generator; ASTDeclContextNameLookupTrait Trait(*this); // The first step is to collect the declaration names which we need to // serialize into the name lookup table, and to collect them in a stable // order. SmallVector Names; // We also build up small sets of the constructor and conversion function // names which are visible. llvm::SmallSet ConstructorNameSet, ConversionNameSet; for (auto &Lookup : *DC->buildLookup()) { auto &Name = Lookup.first; auto &Result = Lookup.second; // If there are no local declarations in our lookup result, we // don't need to write an entry for the name at all. If we can't // write out a lookup set without performing more deserialization, // just skip this entry. if (isLookupResultExternal(Result, DC) && isLookupResultEntirelyExternal(Result, DC)) continue; // We also skip empty results. If any of the results could be external and // the currently available results are empty, then all of the results are // external and we skip it above. So the only way we get here with an empty // results is when no results could have been external *and* we have // external results. // // FIXME: While we might want to start emitting on-disk entries for negative // lookups into a decl context as an optimization, today we *have* to skip // them because there are names with empty lookup results in decl contexts // which we can't emit in any stable ordering: we lookup constructors and // conversion functions in the enclosing namespace scope creating empty // results for them. This in almost certainly a bug in Clang's name lookup, // but that is likely to be hard or impossible to fix and so we tolerate it // here by omitting lookups with empty results. if (Lookup.second.getLookupResult().empty()) continue; switch (Lookup.first.getNameKind()) { default: Names.push_back(Lookup.first); break; case DeclarationName::CXXConstructorName: assert(isa(DC) && "Cannot have a constructor name outside of a class!"); ConstructorNameSet.insert(Name); break; case DeclarationName::CXXConversionFunctionName: assert(isa(DC) && "Cannot have a conversion function name outside of a class!"); ConversionNameSet.insert(Name); break; } } // Sort the names into a stable order. std::sort(Names.begin(), Names.end()); if (auto *D = dyn_cast(DC)) { // We need to establish an ordering of constructor and conversion function // names, and they don't have an intrinsic ordering. // First we try the easy case by forming the current context's constructor // name and adding that name first. This is a very useful optimization to // avoid walking the lexical declarations in many cases, and it also // handles the only case where a constructor name can come from some other // lexical context -- when that name is an implicit constructor merged from // another declaration in the redecl chain. Any non-implicit constructor or // conversion function which doesn't occur in all the lexical contexts // would be an ODR violation. auto ImplicitCtorName = Context->DeclarationNames.getCXXConstructorName( Context->getCanonicalType(Context->getRecordType(D))); if (ConstructorNameSet.erase(ImplicitCtorName)) Names.push_back(ImplicitCtorName); // If we still have constructors or conversion functions, we walk all the // names in the decl and add the constructors and conversion functions // which are visible in the order they lexically occur within the context. if (!ConstructorNameSet.empty() || !ConversionNameSet.empty()) for (Decl *ChildD : cast(DC)->decls()) if (auto *ChildND = dyn_cast(ChildD)) { auto Name = ChildND->getDeclName(); switch (Name.getNameKind()) { default: continue; case DeclarationName::CXXConstructorName: if (ConstructorNameSet.erase(Name)) Names.push_back(Name); break; case DeclarationName::CXXConversionFunctionName: if (ConversionNameSet.erase(Name)) Names.push_back(Name); break; } if (ConstructorNameSet.empty() && ConversionNameSet.empty()) break; } assert(ConstructorNameSet.empty() && "Failed to find all of the visible " "constructors by walking all the " "lexical members of the context."); assert(ConversionNameSet.empty() && "Failed to find all of the visible " "conversion functions by walking all " "the lexical members of the context."); } // Next we need to do a lookup with each name into this decl context to fully // populate any results from external sources. We don't actually use the // results of these lookups because we only want to use the results after all // results have been loaded and the pointers into them will be stable. for (auto &Name : Names) DC->lookup(Name); // Now we need to insert the results for each name into the hash table. For // constructor names and conversion function names, we actually need to merge // all of the results for them into one list of results each and insert // those. SmallVector ConstructorDecls; SmallVector ConversionDecls; // Now loop over the names, either inserting them or appending for the two // special cases. for (auto &Name : Names) { DeclContext::lookup_result Result = DC->noload_lookup(Name); switch (Name.getNameKind()) { default: Generator.insert(Name, Trait.getData(Result), Trait); break; case DeclarationName::CXXConstructorName: ConstructorDecls.append(Result.begin(), Result.end()); break; case DeclarationName::CXXConversionFunctionName: ConversionDecls.append(Result.begin(), Result.end()); break; } } // Handle our two special cases if we ended up having any. We arbitrarily use // the first declaration's name here because the name itself isn't part of // the key, only the kind of name is used. if (!ConstructorDecls.empty()) Generator.insert(ConstructorDecls.front()->getDeclName(), Trait.getData(ConstructorDecls), Trait); if (!ConversionDecls.empty()) Generator.insert(ConversionDecls.front()->getDeclName(), Trait.getData(ConversionDecls), Trait); // Create the on-disk hash table. Also emit the existing imported and // merged table if there is one. auto *Lookups = Chain ? Chain->getLoadedLookupTables(DC) : nullptr; Generator.emit(LookupTable, Trait, Lookups ? &Lookups->Table : nullptr); } /// \brief Write the block containing all of the declaration IDs /// visible from the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the /// bitstream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context, DeclContext *DC) { // If we imported a key declaration of this namespace, write the visible // lookup results as an update record for it rather than including them // on this declaration. We will only look at key declarations on reload. if (isa(DC) && Chain && Chain->getKeyDeclaration(cast(DC))->isFromASTFile()) { // Only do this once, for the first local declaration of the namespace. for (auto *Prev = cast(DC)->getPreviousDecl(); Prev; Prev = Prev->getPreviousDecl()) if (!Prev->isFromASTFile()) return 0; // Note that we need to emit an update record for the primary context. UpdatedDeclContexts.insert(DC->getPrimaryContext()); // Make sure all visible decls are written. They will be recorded later. We // do this using a side data structure so we can sort the names into // a deterministic order. StoredDeclsMap *Map = DC->getPrimaryContext()->buildLookup(); SmallVector, 16> LookupResults; if (Map) { LookupResults.reserve(Map->size()); for (auto &Entry : *Map) LookupResults.push_back( std::make_pair(Entry.first, Entry.second.getLookupResult())); } std::sort(LookupResults.begin(), LookupResults.end(), llvm::less_first()); for (auto &NameAndResult : LookupResults) { DeclarationName Name = NameAndResult.first; DeclContext::lookup_result Result = NameAndResult.second; if (Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { // We have to work around a name lookup bug here where negative lookup // results for these names get cached in namespace lookup tables (these // names should never be looked up in a namespace). assert(Result.empty() && "Cannot have a constructor or conversion " "function name in a namespace!"); continue; } for (NamedDecl *ND : Result) if (!ND->isFromASTFile()) GetDeclRef(ND); } return 0; } if (DC->getPrimaryContext() != DC) return 0; // Skip contexts which don't support name lookup. if (!DC->isLookupContext()) return 0; // If not in C++, we perform name lookup for the translation unit via the // IdentifierInfo chains, don't bother to build a visible-declarations table. if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus) return 0; // Serialize the contents of the mapping used for lookup. Note that, // although we have two very different code paths, the serialized // representation is the same for both cases: a declaration name, // followed by a size, followed by references to the visible // declarations that have that name. uint64_t Offset = Stream.GetCurrentBitNo(); StoredDeclsMap *Map = DC->buildLookup(); if (!Map || Map->empty()) return 0; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; GenerateNameLookupTable(DC, LookupTable); // Write the lookup table RecordData::value_type Record[] = {DECL_CONTEXT_VISIBLE}; Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record, LookupTable); ++NumVisibleDeclContexts; return Offset; } /// \brief Write an UPDATE_VISIBLE block for the given context. /// /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing /// DeclContext in a dependent AST file. As such, they only exist for the TU /// (in C++), for namespaces, and for classes with forward-declared unscoped /// enumeration members (in C++11). void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) { StoredDeclsMap *Map = DC->getLookupPtr(); if (!Map || Map->empty()) return; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; GenerateNameLookupTable(DC, LookupTable); // If we're updating a namespace, select a key declaration as the key for the // update record; those are the only ones that will be checked on reload. if (isa(DC)) DC = cast(Chain->getKeyDeclaration(cast(DC))); // Write the lookup table RecordData::value_type Record[] = {UPDATE_VISIBLE, getDeclID(cast(DC))}; Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable); } /// \brief Write an FP_PRAGMA_OPTIONS block for the given FPOptions. void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) { RecordData::value_type Record[] = {Opts.fp_contract}; Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record); } /// \brief Write an OPENCL_EXTENSIONS block for the given OpenCLOptions. void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) { if (!SemaRef.Context.getLangOpts().OpenCL) return; const OpenCLOptions &Opts = SemaRef.getOpenCLOptions(); RecordData Record; #define OPENCLEXT(nm) Record.push_back(Opts.nm); #include "clang/Basic/OpenCLExtensions.def" Stream.EmitRecord(OPENCL_EXTENSIONS, Record); } void ASTWriter::WriteObjCCategories() { SmallVector CategoriesMap; RecordData Categories; for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) { unsigned Size = 0; unsigned StartIndex = Categories.size(); ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I]; // Allocate space for the size. Categories.push_back(0); // Add the categories. for (ObjCInterfaceDecl::known_categories_iterator Cat = Class->known_categories_begin(), CatEnd = Class->known_categories_end(); Cat != CatEnd; ++Cat, ++Size) { assert(getDeclID(*Cat) != 0 && "Bogus category"); AddDeclRef(*Cat, Categories); } // Update the size. Categories[StartIndex] = Size; // Record this interface -> category map. ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex }; CategoriesMap.push_back(CatInfo); } // Sort the categories map by the definition ID, since the reader will be // performing binary searches on this information. llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end()); // Emit the categories map. using namespace llvm; auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevID = Stream.EmitAbbrev(Abbrev); RecordData::value_type Record[] = {OBJC_CATEGORIES_MAP, CategoriesMap.size()}; Stream.EmitRecordWithBlob(AbbrevID, Record, reinterpret_cast(CategoriesMap.data()), CategoriesMap.size() * sizeof(ObjCCategoriesInfo)); // Emit the category lists. Stream.EmitRecord(OBJC_CATEGORIES, Categories); } void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) { Sema::LateParsedTemplateMapT &LPTMap = SemaRef.LateParsedTemplateMap; if (LPTMap.empty()) return; RecordData Record; for (auto LPTMapEntry : LPTMap) { const FunctionDecl *FD = LPTMapEntry.first; LateParsedTemplate *LPT = LPTMapEntry.second; AddDeclRef(FD, Record); AddDeclRef(LPT->D, Record); Record.push_back(LPT->Toks.size()); for (const auto &Tok : LPT->Toks) { AddToken(Tok, Record); } } Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record); } /// \brief Write the state of 'pragma clang optimize' at the end of the module. void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) { RecordData Record; SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation(); AddSourceLocation(PragmaLoc, Record); Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record); } void ASTWriter::WriteModuleFileExtension(Sema &SemaRef, ModuleFileExtensionWriter &Writer) { // Enter the extension block. Stream.EnterSubblock(EXTENSION_BLOCK_ID, 4); // Emit the metadata record abbreviation. auto *Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(EXTENSION_METADATA)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned Abbrev = Stream.EmitAbbrev(Abv); // Emit the metadata record. RecordData Record; auto Metadata = Writer.getExtension()->getExtensionMetadata(); Record.push_back(EXTENSION_METADATA); Record.push_back(Metadata.MajorVersion); Record.push_back(Metadata.MinorVersion); Record.push_back(Metadata.BlockName.size()); Record.push_back(Metadata.UserInfo.size()); SmallString<64> Buffer; Buffer += Metadata.BlockName; Buffer += Metadata.UserInfo; Stream.EmitRecordWithBlob(Abbrev, Record, Buffer); // Emit the contents of the extension block. Writer.writeExtensionContents(SemaRef, Stream); // Exit the extension block. Stream.ExitBlock(); } //===----------------------------------------------------------------------===// // General Serialization Routines //===----------------------------------------------------------------------===// /// \brief Write a record containing the given attributes. void ASTWriter::WriteAttributes(ArrayRef Attrs, RecordDataImpl &Record) { Record.push_back(Attrs.size()); for (const auto *A : Attrs) { Record.push_back(A->getKind()); // FIXME: stable encoding, target attrs AddSourceRange(A->getRange(), Record); #include "clang/Serialization/AttrPCHWrite.inc" } } void ASTWriter::AddToken(const Token &Tok, RecordDataImpl &Record) { AddSourceLocation(Tok.getLocation(), Record); Record.push_back(Tok.getLength()); // FIXME: When reading literal tokens, reconstruct the literal pointer // if it is needed. AddIdentifierRef(Tok.getIdentifierInfo(), Record); // FIXME: Should translate token kind to a stable encoding. Record.push_back(Tok.getKind()); // FIXME: Should translate token flags to a stable encoding. Record.push_back(Tok.getFlags()); } void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) { Record.push_back(Str.size()); Record.insert(Record.end(), Str.begin(), Str.end()); } bool ASTWriter::PreparePathForOutput(SmallVectorImpl &Path) { assert(Context && "should have context when outputting path"); bool Changed = cleanPathForOutput(Context->getSourceManager().getFileManager(), Path); // Remove a prefix to make the path relative, if relevant. const char *PathBegin = Path.data(); const char *PathPtr = adjustFilenameForRelocatableAST(PathBegin, BaseDirectory); if (PathPtr != PathBegin) { Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin)); Changed = true; } return Changed; } void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) { SmallString<128> FilePath(Path); PreparePathForOutput(FilePath); AddString(FilePath, Record); } void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataRef Record, StringRef Path) { SmallString<128> FilePath(Path); PreparePathForOutput(FilePath); Stream.EmitRecordWithBlob(Abbrev, Record, FilePath); } void ASTWriter::AddVersionTuple(const VersionTuple &Version, RecordDataImpl &Record) { Record.push_back(Version.getMajor()); if (Optional Minor = Version.getMinor()) Record.push_back(*Minor + 1); else Record.push_back(0); if (Optional Subminor = Version.getSubminor()) Record.push_back(*Subminor + 1); else Record.push_back(0); } /// \brief Note that the identifier II occurs at the given offset /// within the identifier table. void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) { IdentID ID = IdentifierIDs[II]; // Only store offsets new to this AST file. Other identifier names are looked // up earlier in the chain and thus don't need an offset. if (ID >= FirstIdentID) IdentifierOffsets[ID - FirstIdentID] = Offset; } /// \brief Note that the selector Sel occurs at the given offset /// within the method pool/selector table. void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) { unsigned ID = SelectorIDs[Sel]; assert(ID && "Unknown selector"); // Don't record offsets for selectors that are also available in a different // file. if (ID < FirstSelectorID) return; SelectorOffsets[ID - FirstSelectorID] = Offset; } ASTWriter::ASTWriter( llvm::BitstreamWriter &Stream, ArrayRef> Extensions, bool IncludeTimestamps) : Stream(Stream), Context(nullptr), PP(nullptr), Chain(nullptr), WritingModule(nullptr), IncludeTimestamps(IncludeTimestamps), WritingAST(false), DoneWritingDeclsAndTypes(false), ASTHasCompilerErrors(false), FirstDeclID(NUM_PREDEF_DECL_IDS), NextDeclID(FirstDeclID), FirstTypeID(NUM_PREDEF_TYPE_IDS), NextTypeID(FirstTypeID), FirstIdentID(NUM_PREDEF_IDENT_IDS), NextIdentID(FirstIdentID), FirstMacroID(NUM_PREDEF_MACRO_IDS), NextMacroID(FirstMacroID), FirstSubmoduleID(NUM_PREDEF_SUBMODULE_IDS), NextSubmoduleID(FirstSubmoduleID), FirstSelectorID(NUM_PREDEF_SELECTOR_IDS), NextSelectorID(FirstSelectorID), CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0), NumLexicalDeclContexts(0), NumVisibleDeclContexts(0), NextCXXBaseSpecifiersID(1), NextCXXCtorInitializersID(1), TypeExtQualAbbrev(0), TypeFunctionProtoAbbrev(0), DeclParmVarAbbrev(0), DeclContextLexicalAbbrev(0), DeclContextVisibleLookupAbbrev(0), UpdateVisibleAbbrev(0), DeclRecordAbbrev(0), DeclTypedefAbbrev(0), DeclVarAbbrev(0), DeclFieldAbbrev(0), DeclEnumAbbrev(0), DeclObjCIvarAbbrev(0), DeclCXXMethodAbbrev(0), DeclRefExprAbbrev(0), CharacterLiteralAbbrev(0), IntegerLiteralAbbrev(0), ExprImplicitCastAbbrev(0) { for (const auto &Ext : Extensions) { if (auto Writer = Ext->createExtensionWriter(*this)) ModuleFileExtensionWriters.push_back(std::move(Writer)); } } ASTWriter::~ASTWriter() { llvm::DeleteContainerSeconds(FileDeclIDs); } const LangOptions &ASTWriter::getLangOpts() const { assert(WritingAST && "can't determine lang opts when not writing AST"); return Context->getLangOpts(); } time_t ASTWriter::getTimestampForOutput(const FileEntry *E) const { return IncludeTimestamps ? E->getModificationTime() : 0; } uint64_t ASTWriter::WriteAST(Sema &SemaRef, const std::string &OutputFile, Module *WritingModule, StringRef isysroot, bool hasErrors) { WritingAST = true; ASTHasCompilerErrors = hasErrors; // Emit the file header. Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'P', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'H', 8); WriteBlockInfoBlock(); Context = &SemaRef.Context; PP = &SemaRef.PP; this->WritingModule = WritingModule; ASTFileSignature Signature = WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule); Context = nullptr; PP = nullptr; this->WritingModule = nullptr; this->BaseDirectory.clear(); WritingAST = false; return Signature; } template static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec, ASTWriter::RecordData &Record) { for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end(); I != E; ++I) { Writer.AddDeclRef(*I, Record); } } uint64_t ASTWriter::WriteASTCore(Sema &SemaRef, StringRef isysroot, const std::string &OutputFile, Module *WritingModule) { using namespace llvm; bool isModule = WritingModule != nullptr; // Make sure that the AST reader knows to finalize itself. if (Chain) Chain->finalizeForWriting(); ASTContext &Context = SemaRef.Context; Preprocessor &PP = SemaRef.PP; // Set up predefined declaration IDs. auto RegisterPredefDecl = [&] (Decl *D, PredefinedDeclIDs ID) { if (D) { assert(D->isCanonicalDecl() && "predefined decl is not canonical"); DeclIDs[D] = ID; } }; RegisterPredefDecl(Context.getTranslationUnitDecl(), PREDEF_DECL_TRANSLATION_UNIT_ID); RegisterPredefDecl(Context.ObjCIdDecl, PREDEF_DECL_OBJC_ID_ID); RegisterPredefDecl(Context.ObjCSelDecl, PREDEF_DECL_OBJC_SEL_ID); RegisterPredefDecl(Context.ObjCClassDecl, PREDEF_DECL_OBJC_CLASS_ID); RegisterPredefDecl(Context.ObjCProtocolClassDecl, PREDEF_DECL_OBJC_PROTOCOL_ID); RegisterPredefDecl(Context.Int128Decl, PREDEF_DECL_INT_128_ID); RegisterPredefDecl(Context.UInt128Decl, PREDEF_DECL_UNSIGNED_INT_128_ID); RegisterPredefDecl(Context.ObjCInstanceTypeDecl, PREDEF_DECL_OBJC_INSTANCETYPE_ID); RegisterPredefDecl(Context.BuiltinVaListDecl, PREDEF_DECL_BUILTIN_VA_LIST_ID); RegisterPredefDecl(Context.VaListTagDecl, PREDEF_DECL_VA_LIST_TAG); RegisterPredefDecl(Context.BuiltinMSVaListDecl, PREDEF_DECL_BUILTIN_MS_VA_LIST_ID); RegisterPredefDecl(Context.ExternCContext, PREDEF_DECL_EXTERN_C_CONTEXT_ID); RegisterPredefDecl(Context.MakeIntegerSeqDecl, PREDEF_DECL_MAKE_INTEGER_SEQ_ID); // Build a record containing all of the tentative definitions in this file, in // TentativeDefinitions order. Generally, this record will be empty for // headers. RecordData TentativeDefinitions; AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions); // Build a record containing all of the file scoped decls in this file. RecordData UnusedFileScopedDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.UnusedFileScopedDecls, UnusedFileScopedDecls); // Build a record containing all of the delegating constructors we still need // to resolve. RecordData DelegatingCtorDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls); // Write the set of weak, undeclared identifiers. We always write the // entire table, since later PCH files in a PCH chain are only interested in // the results at the end of the chain. RecordData WeakUndeclaredIdentifiers; for (auto &WeakUndeclaredIdentifier : SemaRef.WeakUndeclaredIdentifiers) { IdentifierInfo *II = WeakUndeclaredIdentifier.first; WeakInfo &WI = WeakUndeclaredIdentifier.second; AddIdentifierRef(II, WeakUndeclaredIdentifiers); AddIdentifierRef(WI.getAlias(), WeakUndeclaredIdentifiers); AddSourceLocation(WI.getLocation(), WeakUndeclaredIdentifiers); WeakUndeclaredIdentifiers.push_back(WI.getUsed()); } // Build a record containing all of the ext_vector declarations. RecordData ExtVectorDecls; AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls); // Build a record containing all of the VTable uses information. RecordData VTableUses; if (!SemaRef.VTableUses.empty()) { for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) { AddDeclRef(SemaRef.VTableUses[I].first, VTableUses); AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses); VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]); } } // Build a record containing all of the UnusedLocalTypedefNameCandidates. RecordData UnusedLocalTypedefNameCandidates; for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates) AddDeclRef(TD, UnusedLocalTypedefNameCandidates); // Build a record containing all of pending implicit instantiations. RecordData PendingInstantiations; for (const auto &I : SemaRef.PendingInstantiations) { AddDeclRef(I.first, PendingInstantiations); AddSourceLocation(I.second, PendingInstantiations); } assert(SemaRef.PendingLocalImplicitInstantiations.empty() && "There are local ones at end of translation unit!"); // Build a record containing some declaration references. RecordData SemaDeclRefs; if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) { AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs); AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs); } RecordData CUDASpecialDeclRefs; if (Context.getcudaConfigureCallDecl()) { AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs); } // Build a record containing all of the known namespaces. RecordData KnownNamespaces; for (const auto &I : SemaRef.KnownNamespaces) { if (!I.second) AddDeclRef(I.first, KnownNamespaces); } // Build a record of all used, undefined objects that require definitions. RecordData UndefinedButUsed; SmallVector, 16> Undefined; SemaRef.getUndefinedButUsed(Undefined); for (const auto &I : Undefined) { AddDeclRef(I.first, UndefinedButUsed); AddSourceLocation(I.second, UndefinedButUsed); } // Build a record containing all delete-expressions that we would like to // analyze later in AST. RecordData DeleteExprsToAnalyze; for (const auto &DeleteExprsInfo : SemaRef.getMismatchingDeleteExpressions()) { AddDeclRef(DeleteExprsInfo.first, DeleteExprsToAnalyze); DeleteExprsToAnalyze.push_back(DeleteExprsInfo.second.size()); for (const auto &DeleteLoc : DeleteExprsInfo.second) { AddSourceLocation(DeleteLoc.first, DeleteExprsToAnalyze); DeleteExprsToAnalyze.push_back(DeleteLoc.second); } } // Write the control block uint64_t Signature = WriteControlBlock(PP, Context, isysroot, OutputFile); // Write the remaining AST contents. Stream.EnterSubblock(AST_BLOCK_ID, 5); // This is so that older clang versions, before the introduction // of the control block, can read and reject the newer PCH format. { RecordData Record = {VERSION_MAJOR}; Stream.EmitRecord(METADATA_OLD_FORMAT, Record); } // Create a lexical update block containing all of the declarations in the // translation unit that do not come from other AST files. const TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); SmallVector NewGlobalKindDeclPairs; for (const auto *D : TU->noload_decls()) { if (!D->isFromASTFile()) { NewGlobalKindDeclPairs.push_back(D->getKind()); NewGlobalKindDeclPairs.push_back(GetDeclRef(D)); } } auto *Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv); { RecordData::value_type Record[] = {TU_UPDATE_LEXICAL}; Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record, bytes(NewGlobalKindDeclPairs)); } // And a visible updates block for the translation unit. Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); UpdateVisibleAbbrev = Stream.EmitAbbrev(Abv); WriteDeclContextVisibleUpdate(TU); // If we have any extern "C" names, write out a visible update for them. if (Context.ExternCContext) WriteDeclContextVisibleUpdate(Context.ExternCContext); // If the translation unit has an anonymous namespace, and we don't already // have an update block for it, write it as an update block. // FIXME: Why do we not do this if there's already an update block? if (NamespaceDecl *NS = TU->getAnonymousNamespace()) { ASTWriter::UpdateRecord &Record = DeclUpdates[TU]; if (Record.empty()) Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS)); } // Add update records for all mangling numbers and static local numbers. // These aren't really update records, but this is a convenient way of // tagging this rare extra data onto the declarations. for (const auto &Number : Context.MangleNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER, Number.second)); for (const auto &Number : Context.StaticLocalNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER, Number.second)); // Make sure visible decls, added to DeclContexts previously loaded from // an AST file, are registered for serialization. for (const auto *I : UpdatingVisibleDecls) { GetDeclRef(I); } // Make sure all decls associated with an identifier are registered for // serialization, if we're storing decls with identifiers. if (!WritingModule || !getLangOpts().CPlusPlus) { llvm::SmallVector IIs; for (const auto &ID : PP.getIdentifierTable()) { const IdentifierInfo *II = ID.second; if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization()) IIs.push_back(II); } // Sort the identifiers to visit based on their name. std::sort(IIs.begin(), IIs.end(), llvm::less_ptr()); for (const IdentifierInfo *II : IIs) { for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II), DEnd = SemaRef.IdResolver.end(); D != DEnd; ++D) { GetDeclRef(*D); } } } // Form the record of special types. RecordData SpecialTypes; AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes); AddTypeRef(Context.getFILEType(), SpecialTypes); AddTypeRef(Context.getjmp_bufType(), SpecialTypes); AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes); AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes); AddTypeRef(Context.getucontext_tType(), SpecialTypes); if (Chain) { // Write the mapping information describing our module dependencies and how // each of those modules were mapped into our own offset/ID space, so that // the reader can build the appropriate mapping to its own offset/ID space. // The map consists solely of a blob with the following format: // *(module-name-len:i16 module-name:len*i8 // source-location-offset:i32 // identifier-id:i32 // preprocessed-entity-id:i32 // macro-definition-id:i32 // submodule-id:i32 // selector-id:i32 // declaration-id:i32 // c++-base-specifiers-id:i32 // type-id:i32) // auto *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(Abbrev); SmallString<2048> Buffer; { llvm::raw_svector_ostream Out(Buffer); for (ModuleFile *M : Chain->ModuleMgr) { using namespace llvm::support; endian::Writer LE(Out); StringRef FileName = M->FileName; LE.write(FileName.size()); Out.write(FileName.data(), FileName.size()); // Note: if a base ID was uint max, it would not be possible to load // another module after it or have more than one entity inside it. uint32_t None = std::numeric_limits::max(); auto writeBaseIDOrNone = [&](uint32_t BaseID, bool ShouldWrite) { assert(BaseID < std::numeric_limits::max() && "base id too high"); if (ShouldWrite) LE.write(BaseID); else LE.write(None); }; // These values should be unique within a chain, since they will be read // as keys into ContinuousRangeMaps. writeBaseIDOrNone(M->SLocEntryBaseOffset, M->LocalNumSLocEntries); writeBaseIDOrNone(M->BaseIdentifierID, M->LocalNumIdentifiers); writeBaseIDOrNone(M->BaseMacroID, M->LocalNumMacros); writeBaseIDOrNone(M->BasePreprocessedEntityID, M->NumPreprocessedEntities); writeBaseIDOrNone(M->BaseSubmoduleID, M->LocalNumSubmodules); writeBaseIDOrNone(M->BaseSelectorID, M->LocalNumSelectors); writeBaseIDOrNone(M->BaseDeclID, M->LocalNumDecls); writeBaseIDOrNone(M->BaseTypeIndex, M->LocalNumTypes); } } RecordData::value_type Record[] = {MODULE_OFFSET_MAP}; Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record, Buffer.data(), Buffer.size()); } RecordData DeclUpdatesOffsetsRecord; // Keep writing types, declarations, and declaration update records // until we've emitted all of them. Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5); WriteTypeAbbrevs(); WriteDeclAbbrevs(); do { WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord); while (!DeclTypesToEmit.empty()) { DeclOrType DOT = DeclTypesToEmit.front(); DeclTypesToEmit.pop(); if (DOT.isType()) WriteType(DOT.getType()); else WriteDecl(Context, DOT.getDecl()); } } while (!DeclUpdates.empty()); Stream.ExitBlock(); DoneWritingDeclsAndTypes = true; // These things can only be done once we've written out decls and types. WriteTypeDeclOffsets(); if (!DeclUpdatesOffsetsRecord.empty()) Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord); WriteCXXBaseSpecifiersOffsets(); WriteCXXCtorInitializersOffsets(); WriteFileDeclIDsMap(); WriteSourceManagerBlock(Context.getSourceManager(), PP); WriteComments(); WritePreprocessor(PP, isModule); WriteHeaderSearch(PP.getHeaderSearchInfo()); WriteSelectors(SemaRef); WriteReferencedSelectorsPool(SemaRef); WriteLateParsedTemplates(SemaRef); WriteIdentifierTable(PP, SemaRef.IdResolver, isModule); WriteFPPragmaOptions(SemaRef.getFPOptions()); WriteOpenCLExtensions(SemaRef); WritePragmaDiagnosticMappings(Context.getDiagnostics(), isModule); // If we're emitting a module, write out the submodule information. if (WritingModule) WriteSubmodules(WritingModule); Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes); // Write the record containing external, unnamed definitions. if (!EagerlyDeserializedDecls.empty()) Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls); // Write the record containing tentative definitions. if (!TentativeDefinitions.empty()) Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions); // Write the record containing unused file scoped decls. if (!UnusedFileScopedDecls.empty()) Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls); // Write the record containing weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS, WeakUndeclaredIdentifiers); // Write the record containing ext_vector type names. if (!ExtVectorDecls.empty()) Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls); // Write the record containing VTable uses information. if (!VTableUses.empty()) Stream.EmitRecord(VTABLE_USES, VTableUses); // Write the record containing potentially unused local typedefs. if (!UnusedLocalTypedefNameCandidates.empty()) Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES, UnusedLocalTypedefNameCandidates); // Write the record containing pending implicit instantiations. if (!PendingInstantiations.empty()) Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations); // Write the record containing declaration references of Sema. if (!SemaDeclRefs.empty()) Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs); // Write the record containing CUDA-specific declaration references. if (!CUDASpecialDeclRefs.empty()) Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs); // Write the delegating constructors. if (!DelegatingCtorDecls.empty()) Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls); // Write the known namespaces. if (!KnownNamespaces.empty()) Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces); // Write the undefined internal functions and variables, and inline functions. if (!UndefinedButUsed.empty()) Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed); if (!DeleteExprsToAnalyze.empty()) Stream.EmitRecord(DELETE_EXPRS_TO_ANALYZE, DeleteExprsToAnalyze); // Write the visible updates to DeclContexts. for (auto *DC : UpdatedDeclContexts) WriteDeclContextVisibleUpdate(DC); if (!WritingModule) { // Write the submodules that were imported, if any. struct ModuleInfo { uint64_t ID; Module *M; ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {} }; llvm::SmallVector Imports; for (const auto *I : Context.local_imports()) { assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end()); Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()], I->getImportedModule())); } if (!Imports.empty()) { auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) { return A.ID < B.ID; }; auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) { return A.ID == B.ID; }; // Sort and deduplicate module IDs. std::sort(Imports.begin(), Imports.end(), Cmp); Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq), Imports.end()); RecordData ImportedModules; for (const auto &Import : Imports) { ImportedModules.push_back(Import.ID); // FIXME: If the module has macros imported then later has declarations // imported, this location won't be the right one as a location for the // declaration imports. AddSourceLocation(PP.getModuleImportLoc(Import.M), ImportedModules); } Stream.EmitRecord(IMPORTED_MODULES, ImportedModules); } } WriteDeclReplacementsBlock(); WriteObjCCategories(); if(!WritingModule) WriteOptimizePragmaOptions(SemaRef); // Some simple statistics RecordData::value_type Record[] = { NumStatements, NumMacros, NumLexicalDeclContexts, NumVisibleDeclContexts}; Stream.EmitRecord(STATISTICS, Record); Stream.ExitBlock(); // Write the module file extension blocks. for (const auto &ExtWriter : ModuleFileExtensionWriters) WriteModuleFileExtension(SemaRef, *ExtWriter); return Signature; } void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) { if (DeclUpdates.empty()) return; DeclUpdateMap LocalUpdates; LocalUpdates.swap(DeclUpdates); for (auto &DeclUpdate : LocalUpdates) { const Decl *D = DeclUpdate.first; bool HasUpdatedBody = false; RecordData Record; for (auto &Update : DeclUpdate.second) { DeclUpdateKind Kind = (DeclUpdateKind)Update.getKind(); Record.push_back(Kind); switch (Kind) { case UPD_CXX_ADDED_IMPLICIT_MEMBER: case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION: case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: assert(Update.getDecl() && "no decl to add?"); Record.push_back(GetDeclRef(Update.getDecl())); break; case UPD_CXX_ADDED_FUNCTION_DEFINITION: // An updated body is emitted last, so that the reader doesn't need // to skip over the lazy body to reach statements for other records. Record.pop_back(); HasUpdatedBody = true; break; case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER: AddSourceLocation(Update.getLoc(), Record); break; case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: { auto *RD = cast(D); UpdatedDeclContexts.insert(RD->getPrimaryContext()); AddCXXDefinitionData(RD, Record); Record.push_back(WriteDeclContextLexicalBlock( *Context, const_cast(RD))); // This state is sometimes updated by template instantiation, when we // switch from the specialization referring to the template declaration // to it referring to the template definition. if (auto *MSInfo = RD->getMemberSpecializationInfo()) { Record.push_back(MSInfo->getTemplateSpecializationKind()); AddSourceLocation(MSInfo->getPointOfInstantiation(), Record); } else { auto *Spec = cast(RD); Record.push_back(Spec->getTemplateSpecializationKind()); AddSourceLocation(Spec->getPointOfInstantiation(), Record); // The instantiation might have been resolved to a partial // specialization. If so, record which one. auto From = Spec->getInstantiatedFrom(); if (auto PartialSpec = From.dyn_cast()) { Record.push_back(true); AddDeclRef(PartialSpec, Record); AddTemplateArgumentList(&Spec->getTemplateInstantiationArgs(), Record); } else { Record.push_back(false); } } Record.push_back(RD->getTagKind()); AddSourceLocation(RD->getLocation(), Record); AddSourceLocation(RD->getLocStart(), Record); AddSourceLocation(RD->getRBraceLoc(), Record); // Instantiation may change attributes; write them all out afresh. Record.push_back(D->hasAttrs()); if (Record.back()) WriteAttributes(llvm::makeArrayRef(D->getAttrs().begin(), D->getAttrs().size()), Record); // FIXME: Ensure we don't get here for explicit instantiations. break; } case UPD_CXX_RESOLVED_DTOR_DELETE: AddDeclRef(Update.getDecl(), Record); break; case UPD_CXX_RESOLVED_EXCEPTION_SPEC: addExceptionSpec( *this, cast(D)->getType()->castAs(), Record); break; case UPD_CXX_DEDUCED_RETURN_TYPE: Record.push_back(GetOrCreateTypeID(Update.getType())); break; case UPD_DECL_MARKED_USED: break; case UPD_MANGLING_NUMBER: case UPD_STATIC_LOCAL_NUMBER: Record.push_back(Update.getNumber()); break; case UPD_DECL_MARKED_OPENMP_THREADPRIVATE: AddSourceRange(D->getAttr()->getRange(), Record); break; case UPD_DECL_EXPORTED: Record.push_back(getSubmoduleID(Update.getModule())); break; case UPD_ADDED_ATTR_TO_RECORD: WriteAttributes(llvm::makeArrayRef(Update.getAttr()), Record); break; } } if (HasUpdatedBody) { const auto *Def = cast(D); Record.push_back(UPD_CXX_ADDED_FUNCTION_DEFINITION); Record.push_back(Def->isInlined()); AddSourceLocation(Def->getInnerLocStart(), Record); AddFunctionDefinition(Def, Record); } OffsetsRecord.push_back(GetDeclRef(D)); OffsetsRecord.push_back(Stream.GetCurrentBitNo()); Stream.EmitRecord(DECL_UPDATES, Record); FlushPendingAfterDecl(); } } void ASTWriter::WriteDeclReplacementsBlock() { if (ReplacedDecls.empty()) return; RecordData Record; for (const auto &I : ReplacedDecls) { Record.push_back(I.ID); Record.push_back(I.Offset); Record.push_back(I.Loc); } Stream.EmitRecord(DECL_REPLACEMENTS, Record); } void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record) { Record.push_back(Loc.getRawEncoding()); } void ASTWriter::AddSourceRange(SourceRange Range, RecordDataImpl &Record) { AddSourceLocation(Range.getBegin(), Record); AddSourceLocation(Range.getEnd(), Record); } void ASTWriter::AddAPInt(const llvm::APInt &Value, RecordDataImpl &Record) { Record.push_back(Value.getBitWidth()); const uint64_t *Words = Value.getRawData(); Record.append(Words, Words + Value.getNumWords()); } void ASTWriter::AddAPSInt(const llvm::APSInt &Value, RecordDataImpl &Record) { Record.push_back(Value.isUnsigned()); AddAPInt(Value, Record); } void ASTWriter::AddAPFloat(const llvm::APFloat &Value, RecordDataImpl &Record) { AddAPInt(Value.bitcastToAPInt(), Record); } void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record) { Record.push_back(getIdentifierRef(II)); } IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) { if (!II) return 0; IdentID &ID = IdentifierIDs[II]; if (ID == 0) ID = NextIdentID++; return ID; } MacroID ASTWriter::getMacroRef(MacroInfo *MI, const IdentifierInfo *Name) { // Don't emit builtin macros like __LINE__ to the AST file unless they // have been redefined by the header (in which case they are not // isBuiltinMacro). if (!MI || MI->isBuiltinMacro()) return 0; MacroID &ID = MacroIDs[MI]; if (ID == 0) { ID = NextMacroID++; MacroInfoToEmitData Info = { Name, MI, ID }; MacroInfosToEmit.push_back(Info); } return ID; } MacroID ASTWriter::getMacroID(MacroInfo *MI) { if (!MI || MI->isBuiltinMacro()) return 0; assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!"); return MacroIDs[MI]; } uint64_t ASTWriter::getMacroDirectivesOffset(const IdentifierInfo *Name) { return IdentMacroDirectivesOffsetMap.lookup(Name); } void ASTWriter::AddSelectorRef(const Selector SelRef, RecordDataImpl &Record) { Record.push_back(getSelectorRef(SelRef)); } SelectorID ASTWriter::getSelectorRef(Selector Sel) { if (Sel.getAsOpaquePtr() == nullptr) { return 0; } SelectorID SID = SelectorIDs[Sel]; if (SID == 0 && Chain) { // This might trigger a ReadSelector callback, which will set the ID for // this selector. Chain->LoadSelector(Sel); SID = SelectorIDs[Sel]; } if (SID == 0) { SID = NextSelectorID++; SelectorIDs[Sel] = SID; } return SID; } void ASTWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordDataImpl &Record) { AddDeclRef(Temp->getDestructor(), Record); } void ASTWriter::AddCXXCtorInitializersRef(ArrayRef Inits, RecordDataImpl &Record) { assert(!Inits.empty() && "Empty ctor initializer sets are not recorded"); CXXCtorInitializersToWrite.push_back( QueuedCXXCtorInitializers(NextCXXCtorInitializersID, Inits)); Record.push_back(NextCXXCtorInitializersID++); } void ASTWriter::AddCXXBaseSpecifiersRef(CXXBaseSpecifier const *Bases, CXXBaseSpecifier const *BasesEnd, RecordDataImpl &Record) { assert(Bases != BasesEnd && "Empty base-specifier sets are not recorded"); CXXBaseSpecifiersToWrite.push_back( QueuedCXXBaseSpecifiers(NextCXXBaseSpecifiersID, Bases, BasesEnd)); Record.push_back(NextCXXBaseSpecifiersID++); } void ASTWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind, const TemplateArgumentLocInfo &Arg, RecordDataImpl &Record) { switch (Kind) { case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Type: AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record); break; case TemplateArgument::Template: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record); AddSourceLocation(Arg.getTemplateNameLoc(), Record); break; case TemplateArgument::TemplateExpansion: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record); AddSourceLocation(Arg.getTemplateNameLoc(), Record); AddSourceLocation(Arg.getTemplateEllipsisLoc(), Record); break; case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: case TemplateArgument::Pack: // FIXME: Is this right? break; } } void ASTWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg, RecordDataImpl &Record) { AddTemplateArgument(Arg.getArgument(), Record); if (Arg.getArgument().getKind() == TemplateArgument::Expression) { bool InfoHasSameExpr = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr(); Record.push_back(InfoHasSameExpr); if (InfoHasSameExpr) return; // Avoid storing the same expr twice. } AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(), Record); } void ASTWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo, RecordDataImpl &Record) { if (!TInfo) { AddTypeRef(QualType(), Record); return; } AddTypeLoc(TInfo->getTypeLoc(), Record); } void ASTWriter::AddTypeLoc(TypeLoc TL, RecordDataImpl &Record) { AddTypeRef(TL.getType(), Record); TypeLocWriter TLW(*this, Record); for (; !TL.isNull(); TL = TL.getNextTypeLoc()) TLW.Visit(TL); } void ASTWriter::AddTypeRef(QualType T, RecordDataImpl &Record) { Record.push_back(GetOrCreateTypeID(T)); } TypeID ASTWriter::GetOrCreateTypeID(QualType T) { assert(Context); return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New type seen after serializing all the types to emit!"); return TypeIdx(); } // We haven't seen this type before. Assign it a new ID and put it // into the queue of types to emit. Idx = TypeIdx(NextTypeID++); DeclTypesToEmit.push(T); } return Idx; }); } TypeID ASTWriter::getTypeID(QualType T) const { assert(Context); return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdxMap::const_iterator I = TypeIdxs.find(T); assert(I != TypeIdxs.end() && "Type not emitted!"); return I->second; }); } void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) { Record.push_back(GetDeclRef(D)); } DeclID ASTWriter::GetDeclRef(const Decl *D) { assert(WritingAST && "Cannot request a declaration ID before AST writing"); if (!D) { return 0; } // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(!(reinterpret_cast(D) & 0x01) && "Invalid decl pointer"); DeclID &ID = DeclIDs[D]; if (ID == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New decl seen after serializing all the decls to emit!"); return 0; } // We haven't seen this declaration before. Give it a new ID and // enqueue it in the list of declarations to emit. ID = NextDeclID++; DeclTypesToEmit.push(const_cast(D)); } return ID; } DeclID ASTWriter::getDeclID(const Decl *D) { if (!D) return 0; // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!"); return DeclIDs[D]; } void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) { assert(ID); assert(D); SourceLocation Loc = D->getLocation(); if (Loc.isInvalid()) return; // We only keep track of the file-level declarations of each file. if (!D->getLexicalDeclContext()->isFileContext()) return; // FIXME: ParmVarDecls that are part of a function type of a parameter of // a function/objc method, should not have TU as lexical context. if (isa(D)) return; SourceManager &SM = Context->getSourceManager(); SourceLocation FileLoc = SM.getFileLoc(Loc); assert(SM.isLocalSourceLocation(FileLoc)); FileID FID; unsigned Offset; std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc); if (FID.isInvalid()) return; assert(SM.getSLocEntry(FID).isFile()); DeclIDInFileInfo *&Info = FileDeclIDs[FID]; if (!Info) Info = new DeclIDInFileInfo(); std::pair LocDecl(Offset, ID); LocDeclIDsTy &Decls = Info->DeclIDs; if (Decls.empty() || Decls.back().first <= Offset) { Decls.push_back(LocDecl); return; } LocDeclIDsTy::iterator I = std::upper_bound(Decls.begin(), Decls.end(), LocDecl, llvm::less_first()); Decls.insert(I, LocDecl); } void ASTWriter::AddDeclarationName(DeclarationName Name, RecordDataImpl &Record) { // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc. Record.push_back(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: AddIdentifierRef(Name.getAsIdentifierInfo(), Record); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: AddSelectorRef(Name.getObjCSelector(), Record); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeRef(Name.getCXXNameType(), Record); break; case DeclarationName::CXXOperatorName: Record.push_back(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record); break; case DeclarationName::CXXUsingDirective: // No extra data to emit break; } } unsigned ASTWriter::getAnonymousDeclarationNumber(const NamedDecl *D) { assert(needsAnonymousDeclarationNumber(D) && "expected an anonymous declaration"); // Number the anonymous declarations within this context, if we've not // already done so. auto It = AnonymousDeclarationNumbers.find(D); if (It == AnonymousDeclarationNumbers.end()) { auto *DC = D->getLexicalDeclContext(); numberAnonymousDeclsWithin(DC, [&](const NamedDecl *ND, unsigned Number) { AnonymousDeclarationNumbers[ND] = Number; }); It = AnonymousDeclarationNumbers.find(D); assert(It != AnonymousDeclarationNumbers.end() && "declaration not found within its lexical context"); } return It->second; } void ASTWriter::AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc, DeclarationName Name, RecordDataImpl &Record) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeSourceInfo(DNLoc.NamedType.TInfo, Record); break; case DeclarationName::CXXOperatorName: AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.BeginOpNameLoc), Record); AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.EndOpNameLoc), Record); break; case DeclarationName::CXXLiteralOperatorName: AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXLiteralOperatorName.OpNameLoc), Record); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: break; } } void ASTWriter::AddDeclarationNameInfo(const DeclarationNameInfo &NameInfo, RecordDataImpl &Record) { AddDeclarationName(NameInfo.getName(), Record); AddSourceLocation(NameInfo.getLoc(), Record); AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName(), Record); } void ASTWriter::AddQualifierInfo(const QualifierInfo &Info, RecordDataImpl &Record) { AddNestedNameSpecifierLoc(Info.QualifierLoc, Record); Record.push_back(Info.NumTemplParamLists); for (unsigned i=0, e=Info.NumTemplParamLists; i != e; ++i) AddTemplateParameterList(Info.TemplParamLists[i], Record); } void ASTWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS, RecordDataImpl &Record) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accommodate the vast majority. SmallVector NestedNames; // Push each of the NNS's onto a stack for serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS->getPrefix(); } Record.push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS->getKind(); Record.push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS->getAsIdentifier(), Record); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS->getAsNamespace(), Record); break; case NestedNameSpecifier::NamespaceAlias: AddDeclRef(NNS->getAsNamespaceAlias(), Record); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: AddTypeRef(QualType(NNS->getAsType(), 0), Record); Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); break; case NestedNameSpecifier::Global: // Don't need to write an associated value. break; case NestedNameSpecifier::Super: AddDeclRef(NNS->getAsRecordDecl(), Record); break; } } } void ASTWriter::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, RecordDataImpl &Record) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accommodate the vast majority. SmallVector NestedNames; // Push each of the nested-name-specifiers's onto a stack for // serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS.getPrefix(); } Record.push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS.getNestedNameSpecifier()->getKind(); Record.push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS.getNestedNameSpecifier()->getAsIdentifier(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespace(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::NamespaceAlias: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespaceAlias(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); AddTypeLoc(NNS.getTypeLoc(), Record); AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record); break; case NestedNameSpecifier::Global: AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record); break; case NestedNameSpecifier::Super: AddDeclRef(NNS.getNestedNameSpecifier()->getAsRecordDecl(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; } } } void ASTWriter::AddTemplateName(TemplateName Name, RecordDataImpl &Record) { TemplateName::NameKind Kind = Name.getKind(); Record.push_back(Kind); switch (Kind) { case TemplateName::Template: AddDeclRef(Name.getAsTemplateDecl(), Record); break; case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate(); Record.push_back(OvT->size()); for (const auto &I : *OvT) AddDeclRef(I, Record); break; } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName(); AddNestedNameSpecifier(QualT->getQualifier(), Record); Record.push_back(QualT->hasTemplateKeyword()); AddDeclRef(QualT->getTemplateDecl(), Record); break; } case TemplateName::DependentTemplate: { DependentTemplateName *DepT = Name.getAsDependentTemplateName(); AddNestedNameSpecifier(DepT->getQualifier(), Record); Record.push_back(DepT->isIdentifier()); if (DepT->isIdentifier()) AddIdentifierRef(DepT->getIdentifier(), Record); else Record.push_back(DepT->getOperator()); break; } case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = Name.getAsSubstTemplateTemplateParm(); AddDeclRef(subst->getParameter(), Record); AddTemplateName(subst->getReplacement(), Record); break; } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *SubstPack = Name.getAsSubstTemplateTemplateParmPack(); AddDeclRef(SubstPack->getParameterPack(), Record); AddTemplateArgument(SubstPack->getArgumentPack(), Record); break; } } } void ASTWriter::AddTemplateArgument(const TemplateArgument &Arg, RecordDataImpl &Record) { Record.push_back(Arg.getKind()); switch (Arg.getKind()) { case TemplateArgument::Null: break; case TemplateArgument::Type: AddTypeRef(Arg.getAsType(), Record); break; case TemplateArgument::Declaration: AddDeclRef(Arg.getAsDecl(), Record); AddTypeRef(Arg.getParamTypeForDecl(), Record); break; case TemplateArgument::NullPtr: AddTypeRef(Arg.getNullPtrType(), Record); break; case TemplateArgument::Integral: AddAPSInt(Arg.getAsIntegral(), Record); AddTypeRef(Arg.getIntegralType(), Record); break; case TemplateArgument::Template: AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record); break; case TemplateArgument::TemplateExpansion: AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record); if (Optional NumExpansions = Arg.getNumTemplateExpansions()) Record.push_back(*NumExpansions + 1); else Record.push_back(0); break; case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Pack: Record.push_back(Arg.pack_size()); for (const auto &P : Arg.pack_elements()) AddTemplateArgument(P, Record); break; } } void ASTWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams, RecordDataImpl &Record) { assert(TemplateParams && "No TemplateParams!"); AddSourceLocation(TemplateParams->getTemplateLoc(), Record); AddSourceLocation(TemplateParams->getLAngleLoc(), Record); AddSourceLocation(TemplateParams->getRAngleLoc(), Record); Record.push_back(TemplateParams->size()); for (const auto &P : *TemplateParams) AddDeclRef(P, Record); } /// \brief Emit a template argument list. void ASTWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs, RecordDataImpl &Record) { assert(TemplateArgs && "No TemplateArgs!"); Record.push_back(TemplateArgs->size()); for (int i=0, e = TemplateArgs->size(); i != e; ++i) AddTemplateArgument(TemplateArgs->get(i), Record); } void ASTWriter::AddASTTemplateArgumentListInfo (const ASTTemplateArgumentListInfo *ASTTemplArgList, RecordDataImpl &Record) { assert(ASTTemplArgList && "No ASTTemplArgList!"); AddSourceLocation(ASTTemplArgList->LAngleLoc, Record); AddSourceLocation(ASTTemplArgList->RAngleLoc, Record); Record.push_back(ASTTemplArgList->NumTemplateArgs); const TemplateArgumentLoc *TemplArgs = ASTTemplArgList->getTemplateArgs(); for (int i=0, e = ASTTemplArgList->NumTemplateArgs; i != e; ++i) AddTemplateArgumentLoc(TemplArgs[i], Record); } void ASTWriter::AddUnresolvedSet(const ASTUnresolvedSet &Set, RecordDataImpl &Record) { Record.push_back(Set.size()); for (ASTUnresolvedSet::const_iterator I = Set.begin(), E = Set.end(); I != E; ++I) { AddDeclRef(I.getDecl(), Record); Record.push_back(I.getAccess()); } } void ASTWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base, RecordDataImpl &Record) { Record.push_back(Base.isVirtual()); Record.push_back(Base.isBaseOfClass()); Record.push_back(Base.getAccessSpecifierAsWritten()); Record.push_back(Base.getInheritConstructors()); AddTypeSourceInfo(Base.getTypeSourceInfo(), Record); AddSourceRange(Base.getSourceRange(), Record); AddSourceLocation(Base.isPackExpansion()? Base.getEllipsisLoc() : SourceLocation(), Record); } void ASTWriter::FlushCXXBaseSpecifiers() { RecordData Record; unsigned N = CXXBaseSpecifiersToWrite.size(); for (unsigned I = 0; I != N; ++I) { Record.clear(); // Record the offset of this base-specifier set. unsigned Index = CXXBaseSpecifiersToWrite[I].ID - 1; if (Index == CXXBaseSpecifiersOffsets.size()) CXXBaseSpecifiersOffsets.push_back(Stream.GetCurrentBitNo()); else { if (Index > CXXBaseSpecifiersOffsets.size()) CXXBaseSpecifiersOffsets.resize(Index + 1); CXXBaseSpecifiersOffsets[Index] = Stream.GetCurrentBitNo(); } const CXXBaseSpecifier *B = CXXBaseSpecifiersToWrite[I].Bases, *BEnd = CXXBaseSpecifiersToWrite[I].BasesEnd; Record.push_back(BEnd - B); for (; B != BEnd; ++B) AddCXXBaseSpecifier(*B, Record); Stream.EmitRecord(serialization::DECL_CXX_BASE_SPECIFIERS, Record); // Flush any expressions that were written as part of the base specifiers. FlushStmts(); } assert(N == CXXBaseSpecifiersToWrite.size() && "added more base specifiers while writing base specifiers"); CXXBaseSpecifiersToWrite.clear(); } void ASTWriter::AddCXXCtorInitializers( const CXXCtorInitializer * const *CtorInitializers, unsigned NumCtorInitializers, RecordDataImpl &Record) { Record.push_back(NumCtorInitializers); for (unsigned i=0; i != NumCtorInitializers; ++i) { const CXXCtorInitializer *Init = CtorInitializers[i]; if (Init->isBaseInitializer()) { Record.push_back(CTOR_INITIALIZER_BASE); AddTypeSourceInfo(Init->getTypeSourceInfo(), Record); Record.push_back(Init->isBaseVirtual()); } else if (Init->isDelegatingInitializer()) { Record.push_back(CTOR_INITIALIZER_DELEGATING); AddTypeSourceInfo(Init->getTypeSourceInfo(), Record); } else if (Init->isMemberInitializer()){ Record.push_back(CTOR_INITIALIZER_MEMBER); AddDeclRef(Init->getMember(), Record); } else { Record.push_back(CTOR_INITIALIZER_INDIRECT_MEMBER); AddDeclRef(Init->getIndirectMember(), Record); } AddSourceLocation(Init->getMemberLocation(), Record); AddStmt(Init->getInit()); AddSourceLocation(Init->getLParenLoc(), Record); AddSourceLocation(Init->getRParenLoc(), Record); Record.push_back(Init->isWritten()); if (Init->isWritten()) { Record.push_back(Init->getSourceOrder()); } else { Record.push_back(Init->getNumArrayIndices()); for (unsigned i=0, e=Init->getNumArrayIndices(); i != e; ++i) AddDeclRef(Init->getArrayIndex(i), Record); } } } void ASTWriter::FlushCXXCtorInitializers() { RecordData Record; unsigned N = CXXCtorInitializersToWrite.size(); (void)N; // Silence unused warning in non-assert builds. for (auto &Init : CXXCtorInitializersToWrite) { Record.clear(); // Record the offset of this mem-initializer list. unsigned Index = Init.ID - 1; if (Index == CXXCtorInitializersOffsets.size()) CXXCtorInitializersOffsets.push_back(Stream.GetCurrentBitNo()); else { if (Index > CXXCtorInitializersOffsets.size()) CXXCtorInitializersOffsets.resize(Index + 1); CXXCtorInitializersOffsets[Index] = Stream.GetCurrentBitNo(); } AddCXXCtorInitializers(Init.Inits.data(), Init.Inits.size(), Record); Stream.EmitRecord(serialization::DECL_CXX_CTOR_INITIALIZERS, Record); // Flush any expressions that were written as part of the initializers. FlushStmts(); } assert(N == CXXCtorInitializersToWrite.size() && "added more ctor initializers while writing ctor initializers"); CXXCtorInitializersToWrite.clear(); } void ASTWriter::AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Record) { auto &Data = D->data(); Record.push_back(Data.IsLambda); Record.push_back(Data.UserDeclaredConstructor); Record.push_back(Data.UserDeclaredSpecialMembers); Record.push_back(Data.Aggregate); Record.push_back(Data.PlainOldData); Record.push_back(Data.Empty); Record.push_back(Data.Polymorphic); Record.push_back(Data.Abstract); Record.push_back(Data.IsStandardLayout); Record.push_back(Data.HasNoNonEmptyBases); Record.push_back(Data.HasPrivateFields); Record.push_back(Data.HasProtectedFields); Record.push_back(Data.HasPublicFields); Record.push_back(Data.HasMutableFields); Record.push_back(Data.HasVariantMembers); Record.push_back(Data.HasOnlyCMembers); Record.push_back(Data.HasInClassInitializer); Record.push_back(Data.HasUninitializedReferenceMember); Record.push_back(Data.NeedOverloadResolutionForMoveConstructor); Record.push_back(Data.NeedOverloadResolutionForMoveAssignment); Record.push_back(Data.NeedOverloadResolutionForDestructor); Record.push_back(Data.DefaultedMoveConstructorIsDeleted); Record.push_back(Data.DefaultedMoveAssignmentIsDeleted); Record.push_back(Data.DefaultedDestructorIsDeleted); Record.push_back(Data.HasTrivialSpecialMembers); Record.push_back(Data.DeclaredNonTrivialSpecialMembers); Record.push_back(Data.HasIrrelevantDestructor); Record.push_back(Data.HasConstexprNonCopyMoveConstructor); Record.push_back(Data.DefaultedDefaultConstructorIsConstexpr); Record.push_back(Data.HasConstexprDefaultConstructor); Record.push_back(Data.HasNonLiteralTypeFieldsOrBases); Record.push_back(Data.ComputedVisibleConversions); Record.push_back(Data.UserProvidedDefaultConstructor); Record.push_back(Data.DeclaredSpecialMembers); Record.push_back(Data.ImplicitCopyConstructorHasConstParam); Record.push_back(Data.ImplicitCopyAssignmentHasConstParam); Record.push_back(Data.HasDeclaredCopyConstructorWithConstParam); Record.push_back(Data.HasDeclaredCopyAssignmentWithConstParam); // IsLambda bit is already saved. Record.push_back(Data.NumBases); if (Data.NumBases > 0) AddCXXBaseSpecifiersRef(Data.getBases(), Data.getBases() + Data.NumBases, Record); // FIXME: Make VBases lazily computed when needed to avoid storing them. Record.push_back(Data.NumVBases); if (Data.NumVBases > 0) AddCXXBaseSpecifiersRef(Data.getVBases(), Data.getVBases() + Data.NumVBases, Record); AddUnresolvedSet(Data.Conversions.get(*Context), Record); AddUnresolvedSet(Data.VisibleConversions.get(*Context), Record); // Data.Definition is the owning decl, no need to write it. AddDeclRef(D->getFirstFriend(), Record); // Add lambda-specific data. if (Data.IsLambda) { auto &Lambda = D->getLambdaData(); Record.push_back(Lambda.Dependent); Record.push_back(Lambda.IsGenericLambda); Record.push_back(Lambda.CaptureDefault); Record.push_back(Lambda.NumCaptures); Record.push_back(Lambda.NumExplicitCaptures); Record.push_back(Lambda.ManglingNumber); AddDeclRef(Lambda.ContextDecl, Record); AddTypeSourceInfo(Lambda.MethodTyInfo, Record); for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) { const LambdaCapture &Capture = Lambda.Captures[I]; AddSourceLocation(Capture.getLocation(), Record); Record.push_back(Capture.isImplicit()); Record.push_back(Capture.getCaptureKind()); switch (Capture.getCaptureKind()) { case LCK_This: case LCK_VLAType: break; case LCK_ByCopy: case LCK_ByRef: VarDecl *Var = Capture.capturesVariable() ? Capture.getCapturedVar() : nullptr; AddDeclRef(Var, Record); AddSourceLocation(Capture.isPackExpansion() ? Capture.getEllipsisLoc() : SourceLocation(), Record); break; } } } } void ASTWriter::ReaderInitialized(ASTReader *Reader) { assert(Reader && "Cannot remove chain"); assert((!Chain || Chain == Reader) && "Cannot replace chain"); assert(FirstDeclID == NextDeclID && FirstTypeID == NextTypeID && FirstIdentID == NextIdentID && FirstMacroID == NextMacroID && FirstSubmoduleID == NextSubmoduleID && FirstSelectorID == NextSelectorID && "Setting chain after writing has started."); Chain = Reader; // Note, this will get called multiple times, once one the reader starts up // and again each time it's done reading a PCH or module. FirstDeclID = NUM_PREDEF_DECL_IDS + Chain->getTotalNumDecls(); FirstTypeID = NUM_PREDEF_TYPE_IDS + Chain->getTotalNumTypes(); FirstIdentID = NUM_PREDEF_IDENT_IDS + Chain->getTotalNumIdentifiers(); FirstMacroID = NUM_PREDEF_MACRO_IDS + Chain->getTotalNumMacros(); FirstSubmoduleID = NUM_PREDEF_SUBMODULE_IDS + Chain->getTotalNumSubmodules(); FirstSelectorID = NUM_PREDEF_SELECTOR_IDS + Chain->getTotalNumSelectors(); NextDeclID = FirstDeclID; NextTypeID = FirstTypeID; NextIdentID = FirstIdentID; NextMacroID = FirstMacroID; NextSelectorID = FirstSelectorID; NextSubmoduleID = FirstSubmoduleID; } void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) { // Always keep the highest ID. See \p TypeRead() for more information. IdentID &StoredID = IdentifierIDs[II]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroRead(serialization::MacroID ID, MacroInfo *MI) { // Always keep the highest ID. See \p TypeRead() for more information. MacroID &StoredID = MacroIDs[MI]; if (ID > StoredID) StoredID = ID; } void ASTWriter::TypeRead(TypeIdx Idx, QualType T) { // Always take the highest-numbered type index. This copes with an interesting // case for chained AST writing where we schedule writing the type and then, // later, deserialize the type from another AST. In this case, we want to // keep the higher-numbered entry so that we can properly write it out to // the AST file. TypeIdx &StoredIdx = TypeIdxs[T]; if (Idx.getIndex() >= StoredIdx.getIndex()) StoredIdx = Idx; } void ASTWriter::SelectorRead(SelectorID ID, Selector S) { // Always keep the highest ID. See \p TypeRead() for more information. SelectorID &StoredID = SelectorIDs[S]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroDefinitionRead(serialization::PreprocessedEntityID ID, MacroDefinitionRecord *MD) { assert(MacroDefinitions.find(MD) == MacroDefinitions.end()); MacroDefinitions[MD] = ID; } void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Module *Mod) { assert(SubmoduleIDs.find(Mod) == SubmoduleIDs.end()); SubmoduleIDs[Mod] = ID; } void ASTWriter::CompletedTagDefinition(const TagDecl *D) { assert(D->isCompleteDefinition()); assert(!WritingAST && "Already writing the AST!"); if (auto *RD = dyn_cast(D)) { // We are interested when a PCH decl is modified. if (RD->isFromASTFile()) { // A forward reference was mutated into a definition. Rewrite it. // FIXME: This happens during template instantiation, should we // have created a new definition decl instead ? assert(isTemplateInstantiation(RD->getTemplateSpecializationKind()) && "completed a tag from another module but not by instantiation?"); DeclUpdates[RD].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_CLASS_DEFINITION)); } } } static bool isImportedDeclContext(ASTReader *Chain, const Decl *D) { if (D->isFromASTFile()) return true; // If we've not loaded any modules, this can't be imported. if (!Chain || !Chain->getModuleManager().size()) return false; // The predefined __va_list_tag struct is imported if we imported any decls. // FIXME: This is a gross hack. return D == D->getASTContext().getVaListTagDecl(); } void ASTWriter::AddedVisibleDecl(const DeclContext *DC, const Decl *D) { // TU and namespaces are handled elsewhere. if (isa(DC) || isa(DC)) return; // We're only interested in cases where a local declaration is added to an // imported context. if (D->isFromASTFile() || !isImportedDeclContext(Chain, cast(DC))) return; assert(DC == DC->getPrimaryContext() && "added to non-primary context"); assert(!getDefinitiveDeclContext(DC) && "DeclContext not definitive!"); assert(!WritingAST && "Already writing the AST!"); if (UpdatedDeclContexts.insert(DC) && !cast(DC)->isFromASTFile()) { // We're adding a visible declaration to a predefined decl context. Ensure // that we write out all of its lookup results so we don't get a nasty // surprise when we try to emit its lookup table. for (auto *Child : DC->decls()) UpdatingVisibleDecls.push_back(Child); } UpdatingVisibleDecls.push_back(D); } void ASTWriter::AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) { assert(D->isImplicit()); // We're only interested in cases where a local declaration is added to an // imported context. if (D->isFromASTFile() || !isImportedDeclContext(Chain, RD)) return; if (!isa(D)) return; // A decl coming from PCH was modified. assert(RD->isCompleteDefinition()); assert(!WritingAST && "Already writing the AST!"); DeclUpdates[RD].push_back(DeclUpdate(UPD_CXX_ADDED_IMPLICIT_MEMBER, D)); } void ASTWriter::ResolvedExceptionSpec(const FunctionDecl *FD) { assert(!DoneWritingDeclsAndTypes && "Already done writing updates!"); if (!Chain) return; Chain->forEachImportedKeyDecl(FD, [&](const Decl *D) { // If we don't already know the exception specification for this redecl // chain, add an update record for it. if (isUnresolvedExceptionSpec(cast(D) ->getType() ->castAs() ->getExceptionSpecType())) DeclUpdates[D].push_back(UPD_CXX_RESOLVED_EXCEPTION_SPEC); }); } void ASTWriter::DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) { assert(!WritingAST && "Already writing the AST!"); if (!Chain) return; Chain->forEachImportedKeyDecl(FD, [&](const Decl *D) { DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_DEDUCED_RETURN_TYPE, ReturnType)); }); } void ASTWriter::ResolvedOperatorDelete(const CXXDestructorDecl *DD, const FunctionDecl *Delete) { assert(!WritingAST && "Already writing the AST!"); assert(Delete && "Not given an operator delete"); if (!Chain) return; Chain->forEachImportedKeyDecl(DD, [&](const Decl *D) { DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_RESOLVED_DTOR_DELETE, Delete)); }); } void ASTWriter::CompletedImplicitDefinition(const FunctionDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Declaration not imported from PCH. // Implicit function decl from a PCH was defined. DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION)); } void ASTWriter::FunctionDefinitionInstantiated(const FunctionDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION)); } void ASTWriter::StaticDataMemberInstantiated(const VarDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Since the actual instantiation is delayed, this really means that we need // to update the instantiation location. DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER, D->getMemberSpecializationInfo()->getPointOfInstantiation())); } void ASTWriter::AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD, const ObjCInterfaceDecl *IFD) { assert(!WritingAST && "Already writing the AST!"); if (!IFD->isFromASTFile()) return; // Declaration not imported from PCH. assert(IFD->getDefinition() && "Category on a class without a definition?"); ObjCClassesWithCategories.insert( const_cast(IFD->getDefinition())); } void ASTWriter::DeclarationMarkedUsed(const Decl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_USED)); } void ASTWriter::DeclarationMarkedOpenMPThreadPrivate(const Decl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_OPENMP_THREADPRIVATE)); } void ASTWriter::RedefinedHiddenDefinition(const NamedDecl *D, Module *M) { assert(!WritingAST && "Already writing the AST!"); assert(D->isHidden() && "expected a hidden declaration"); DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_EXPORTED, M)); } void ASTWriter::AddedAttributeToRecord(const Attr *Attr, const RecordDecl *Record) { assert(!WritingAST && "Already writing the AST!"); if (!Record->isFromASTFile()) return; DeclUpdates[Record].push_back(DeclUpdate(UPD_ADDED_ATTR_TO_RECORD, Attr)); }