//===-- tsan_rtl.cc -------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main file (entry points) for the TSan run-time. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include "tsan_defs.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_mman.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "ubsan/ubsan_init.h" #ifdef __SSE3__ // transitively includes , // and it's prohibited to include std headers into tsan runtime. // So we do this dirty trick. #define _MM_MALLOC_H_INCLUDED #define __MM_MALLOC_H #include typedef __m128i m128; #endif volatile int __tsan_resumed = 0; extern "C" void __tsan_resume() { __tsan_resumed = 1; } namespace __tsan { #if !defined(SANITIZER_GO) && !SANITIZER_MAC THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); #endif static char ctx_placeholder[sizeof(Context)] ALIGNED(64); Context *ctx; // Can be overriden by a front-end. #ifdef TSAN_EXTERNAL_HOOKS bool OnFinalize(bool failed); void OnInitialize(); #else SANITIZER_WEAK_CXX_DEFAULT_IMPL bool OnFinalize(bool failed) { return failed; } SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnInitialize() {} #endif static char thread_registry_placeholder[sizeof(ThreadRegistry)]; static ThreadContextBase *CreateThreadContext(u32 tid) { // Map thread trace when context is created. char name[50]; internal_snprintf(name, sizeof(name), "trace %u", tid); MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); const uptr hdr = GetThreadTraceHeader(tid); internal_snprintf(name, sizeof(name), "trace header %u", tid); MapThreadTrace(hdr, sizeof(Trace), name); new((void*)hdr) Trace(); // We are going to use only a small part of the trace with the default // value of history_size. However, the constructor writes to the whole trace. // Unmap the unused part. uptr hdr_end = hdr + sizeof(Trace); hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); hdr_end = RoundUp(hdr_end, GetPageSizeCached()); if (hdr_end < hdr + sizeof(Trace)) UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); return new(mem) ThreadContext(tid); } #ifndef SANITIZER_GO static const u32 kThreadQuarantineSize = 16; #else static const u32 kThreadQuarantineSize = 64; #endif Context::Context() : initialized() , report_mtx(MutexTypeReport, StatMtxReport) , nreported() , nmissed_expected() , thread_registry(new(thread_registry_placeholder) ThreadRegistry( CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) , racy_mtx(MutexTypeRacy, StatMtxRacy) , racy_stacks(MBlockRacyStacks) , racy_addresses(MBlockRacyAddresses) , fired_suppressions_mtx(MutexTypeFired, StatMtxFired) , fired_suppressions(8) { } // The objects are allocated in TLS, so one may rely on zero-initialization. ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, unsigned reuse_count, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size) : fast_state(tid, epoch) // Do not touch these, rely on zero initialization, // they may be accessed before the ctor. // , ignore_reads_and_writes() // , ignore_interceptors() , clock(tid, reuse_count) #ifndef SANITIZER_GO , jmp_bufs(MBlockJmpBuf) #endif , tid(tid) , unique_id(unique_id) , stk_addr(stk_addr) , stk_size(stk_size) , tls_addr(tls_addr) , tls_size(tls_size) #ifndef SANITIZER_GO , last_sleep_clock(tid) #endif { } #ifndef SANITIZER_GO static void MemoryProfiler(Context *ctx, fd_t fd, int i) { uptr n_threads; uptr n_running_threads; ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); InternalScopedBuffer buf(4096); WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); WriteToFile(fd, buf.data(), internal_strlen(buf.data())); } static void BackgroundThread(void *arg) { // This is a non-initialized non-user thread, nothing to see here. // We don't use ScopedIgnoreInterceptors, because we want ignores to be // enabled even when the thread function exits (e.g. during pthread thread // shutdown code). cur_thread()->ignore_interceptors++; const u64 kMs2Ns = 1000 * 1000; fd_t mprof_fd = kInvalidFd; if (flags()->profile_memory && flags()->profile_memory[0]) { if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { mprof_fd = 1; } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { mprof_fd = 2; } else { InternalScopedString filename(kMaxPathLength); filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); fd_t fd = OpenFile(filename.data(), WrOnly); if (fd == kInvalidFd) { Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", &filename[0]); } else { mprof_fd = fd; } } } u64 last_flush = NanoTime(); uptr last_rss = 0; for (int i = 0; atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; i++) { SleepForMillis(100); u64 now = NanoTime(); // Flush memory if requested. if (flags()->flush_memory_ms > 0) { if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); FlushShadowMemory(); last_flush = NanoTime(); } } // GetRSS can be expensive on huge programs, so don't do it every 100ms. if (flags()->memory_limit_mb > 0) { uptr rss = GetRSS(); uptr limit = uptr(flags()->memory_limit_mb) << 20; VPrintf(1, "ThreadSanitizer: memory flush check" " RSS=%llu LAST=%llu LIMIT=%llu\n", (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); if (2 * rss > limit + last_rss) { VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); FlushShadowMemory(); rss = GetRSS(); VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); } last_rss = rss; } // Write memory profile if requested. if (mprof_fd != kInvalidFd) MemoryProfiler(ctx, mprof_fd, i); // Flush symbolizer cache if requested. if (flags()->flush_symbolizer_ms > 0) { u64 last = atomic_load(&ctx->last_symbolize_time_ns, memory_order_relaxed); if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { Lock l(&ctx->report_mtx); SpinMutexLock l2(&CommonSanitizerReportMutex); SymbolizeFlush(); atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); } } } } static void StartBackgroundThread() { ctx->background_thread = internal_start_thread(&BackgroundThread, 0); } #ifndef __mips__ static void StopBackgroundThread() { atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); internal_join_thread(ctx->background_thread); ctx->background_thread = 0; } #endif #endif void DontNeedShadowFor(uptr addr, uptr size) { uptr shadow_beg = MemToShadow(addr); uptr shadow_end = MemToShadow(addr + size); FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); } void MapShadow(uptr addr, uptr size) { // Global data is not 64K aligned, but there are no adjacent mappings, // so we can get away with unaligned mapping. // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier, "shadow"); // Meta shadow is 2:1, so tread carefully. static bool data_mapped = false; static uptr mapped_meta_end = 0; uptr meta_begin = (uptr)MemToMeta(addr); uptr meta_end = (uptr)MemToMeta(addr + size); meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); if (!data_mapped) { // First call maps data+bss. data_mapped = true; MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"); } else { // Mapping continous heap. // Windows wants 64K alignment. meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); if (meta_end <= mapped_meta_end) return; if (meta_begin < mapped_meta_end) meta_begin = mapped_meta_end; MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"); mapped_meta_end = meta_end; } VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", addr, addr+size, meta_begin, meta_end); } void MapThreadTrace(uptr addr, uptr size, const char *name) { DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); CHECK_GE(addr, TraceMemBeg()); CHECK_LE(addr + size, TraceMemEnd()); CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment uptr addr1 = (uptr)MmapFixedNoReserve(addr, size, name); if (addr1 != addr) { Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n", addr, size, addr1); Die(); } } static void CheckShadowMapping() { uptr beg, end; for (int i = 0; GetUserRegion(i, &beg, &end); i++) { VPrintf(3, "checking shadow region %p-%p\n", beg, end); for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { for (int x = -1; x <= 1; x++) { const uptr p = p0 + x; if (p < beg || p >= end) continue; const uptr s = MemToShadow(p); const uptr m = (uptr)MemToMeta(p); VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); CHECK(IsAppMem(p)); CHECK(IsShadowMem(s)); CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s)); CHECK(IsMetaMem(m)); } } } } void Initialize(ThreadState *thr) { // Thread safe because done before all threads exist. static bool is_initialized = false; if (is_initialized) return; is_initialized = true; // We are not ready to handle interceptors yet. ScopedIgnoreInterceptors ignore; SanitizerToolName = "ThreadSanitizer"; // Install tool-specific callbacks in sanitizer_common. SetCheckFailedCallback(TsanCheckFailed); ctx = new(ctx_placeholder) Context; const char *options = GetEnv(kTsanOptionsEnv); CacheBinaryName(); InitializeFlags(&ctx->flags, options); InitializePlatformEarly(); #ifndef SANITIZER_GO // Re-exec ourselves if we need to set additional env or command line args. MaybeReexec(); InitializeAllocator(); ReplaceSystemMalloc(); #endif InitializeInterceptors(); CheckShadowMapping(); InitializePlatform(); InitializeMutex(); InitializeDynamicAnnotations(); #ifndef SANITIZER_GO InitializeShadowMemory(); #endif // Setup correct file descriptor for error reports. __sanitizer_set_report_path(common_flags()->log_path); InitializeSuppressions(); #ifndef SANITIZER_GO InitializeLibIgnore(); Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); // On MIPS, TSan initialization is run before // __pthread_initialize_minimal_internal() is finished, so we can not spawn // new threads. #ifndef __mips__ StartBackgroundThread(); SetSandboxingCallback(StopBackgroundThread); #endif #endif if (common_flags()->detect_deadlocks) ctx->dd = DDetector::Create(flags()); VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", (int)internal_getpid()); // Initialize thread 0. int tid = ThreadCreate(thr, 0, 0, true); CHECK_EQ(tid, 0); ThreadStart(thr, tid, internal_getpid()); #if TSAN_CONTAINS_UBSAN __ubsan::InitAsPlugin(); #endif ctx->initialized = true; if (flags()->stop_on_start) { Printf("ThreadSanitizer is suspended at startup (pid %d)." " Call __tsan_resume().\n", (int)internal_getpid()); while (__tsan_resumed == 0) {} } OnInitialize(); } int Finalize(ThreadState *thr) { bool failed = false; if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) SleepForMillis(flags()->atexit_sleep_ms); // Wait for pending reports. ctx->report_mtx.Lock(); CommonSanitizerReportMutex.Lock(); CommonSanitizerReportMutex.Unlock(); ctx->report_mtx.Unlock(); #ifndef SANITIZER_GO if (Verbosity()) AllocatorPrintStats(); #endif ThreadFinalize(thr); if (ctx->nreported) { failed = true; #ifndef SANITIZER_GO Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); #else Printf("Found %d data race(s)\n", ctx->nreported); #endif } if (ctx->nmissed_expected) { failed = true; Printf("ThreadSanitizer: missed %d expected races\n", ctx->nmissed_expected); } if (common_flags()->print_suppressions) PrintMatchedSuppressions(); #ifndef SANITIZER_GO if (flags()->print_benign) PrintMatchedBenignRaces(); #endif failed = OnFinalize(failed); #if TSAN_COLLECT_STATS StatAggregate(ctx->stat, thr->stat); StatOutput(ctx->stat); #endif return failed ? common_flags()->exitcode : 0; } #ifndef SANITIZER_GO void ForkBefore(ThreadState *thr, uptr pc) { ctx->thread_registry->Lock(); ctx->report_mtx.Lock(); } void ForkParentAfter(ThreadState *thr, uptr pc) { ctx->report_mtx.Unlock(); ctx->thread_registry->Unlock(); } void ForkChildAfter(ThreadState *thr, uptr pc) { ctx->report_mtx.Unlock(); ctx->thread_registry->Unlock(); uptr nthread = 0; ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); VPrintf(1, "ThreadSanitizer: forked new process with pid %d," " parent had %d threads\n", (int)internal_getpid(), (int)nthread); if (nthread == 1) { StartBackgroundThread(); } else { // We've just forked a multi-threaded process. We cannot reasonably function // after that (some mutexes may be locked before fork). So just enable // ignores for everything in the hope that we will exec soon. ctx->after_multithreaded_fork = true; thr->ignore_interceptors++; ThreadIgnoreBegin(thr, pc); ThreadIgnoreSyncBegin(thr, pc); } } #endif #ifdef SANITIZER_GO NOINLINE void GrowShadowStack(ThreadState *thr) { const int sz = thr->shadow_stack_end - thr->shadow_stack; const int newsz = 2 * sz; uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, newsz * sizeof(uptr)); internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); internal_free(thr->shadow_stack); thr->shadow_stack = newstack; thr->shadow_stack_pos = newstack + sz; thr->shadow_stack_end = newstack + newsz; } #endif u32 CurrentStackId(ThreadState *thr, uptr pc) { if (!thr->is_inited) // May happen during bootstrap. return 0; if (pc != 0) { #ifndef SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) GrowShadowStack(thr); #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } u32 id = StackDepotPut( StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); if (pc != 0) thr->shadow_stack_pos--; return id; } void TraceSwitch(ThreadState *thr) { thr->nomalloc++; Trace *thr_trace = ThreadTrace(thr->tid); Lock l(&thr_trace->mtx); unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); TraceHeader *hdr = &thr_trace->headers[trace]; hdr->epoch0 = thr->fast_state.epoch(); ObtainCurrentStack(thr, 0, &hdr->stack0); hdr->mset0 = thr->mset; thr->nomalloc--; } Trace *ThreadTrace(int tid) { return (Trace*)GetThreadTraceHeader(tid); } uptr TraceTopPC(ThreadState *thr) { Event *events = (Event*)GetThreadTrace(thr->tid); uptr pc = events[thr->fast_state.GetTracePos()]; return pc; } uptr TraceSize() { return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); } uptr TraceParts() { return TraceSize() / kTracePartSize; } #ifndef SANITIZER_GO extern "C" void __tsan_trace_switch() { TraceSwitch(cur_thread()); } extern "C" void __tsan_report_race() { ReportRace(cur_thread()); } #endif ALWAYS_INLINE Shadow LoadShadow(u64 *p) { u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); return Shadow(raw); } ALWAYS_INLINE void StoreShadow(u64 *sp, u64 s) { atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); } ALWAYS_INLINE void StoreIfNotYetStored(u64 *sp, u64 *s) { StoreShadow(sp, *s); *s = 0; } ALWAYS_INLINE void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) { thr->racy_state[0] = cur.raw(); thr->racy_state[1] = old.raw(); thr->racy_shadow_addr = shadow_mem; #ifndef SANITIZER_GO HACKY_CALL(__tsan_report_race); #else ReportRace(thr); #endif } static inline bool HappensBefore(Shadow old, ThreadState *thr) { return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); } ALWAYS_INLINE void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); // This potentially can live in an MMX/SSE scratch register. // The required intrinsics are: // __m128i _mm_move_epi64(__m128i*); // _mm_storel_epi64(u64*, __m128i); u64 store_word = cur.raw(); // scan all the shadow values and dispatch to 4 categories: // same, replace, candidate and race (see comments below). // we consider only 3 cases regarding access sizes: // equal, intersect and not intersect. initially I considered // larger and smaller as well, it allowed to replace some // 'candidates' with 'same' or 'replace', but I think // it's just not worth it (performance- and complexity-wise). Shadow old(0); // It release mode we manually unroll the loop, // because empirically gcc generates better code this way. // However, we can't afford unrolling in debug mode, because the function // consumes almost 4K of stack. Gtest gives only 4K of stack to death test // threads, which is not enough for the unrolled loop. #if SANITIZER_DEBUG for (int idx = 0; idx < 4; idx++) { #include "tsan_update_shadow_word_inl.h" } #else int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" idx = 2; #include "tsan_update_shadow_word_inl.h" idx = 3; #include "tsan_update_shadow_word_inl.h" #endif // we did not find any races and had already stored // the current access info, so we are done if (LIKELY(store_word == 0)) return; // choose a random candidate slot and replace it StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); StatInc(thr, StatShadowReplace); return; RACE: HandleRace(thr, shadow_mem, cur, old); return; } void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, int size, bool kAccessIsWrite, bool kIsAtomic) { while (size) { int size1 = 1; int kAccessSizeLog = kSizeLog1; if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { size1 = 8; kAccessSizeLog = kSizeLog8; } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { size1 = 4; kAccessSizeLog = kSizeLog4; } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { size1 = 2; kAccessSizeLog = kSizeLog2; } MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); addr += size1; size -= size1; } } ALWAYS_INLINE bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { Shadow cur(a); for (uptr i = 0; i < kShadowCnt; i++) { Shadow old(LoadShadow(&s[i])); if (Shadow::Addr0AndSizeAreEqual(cur, old) && old.TidWithIgnore() == cur.TidWithIgnore() && old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() && old.IsRead() <= cur.IsRead()) return true; } return false; } #if defined(__SSE3__) #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) ALWAYS_INLINE bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { // This is an optimized version of ContainsSameAccessSlow. // load current access into access[0:63] const m128 access = _mm_cvtsi64_si128(a); // duplicate high part of access in addr0: // addr0[0:31] = access[32:63] // addr0[32:63] = access[32:63] // addr0[64:95] = access[32:63] // addr0[96:127] = access[32:63] const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); // load 4 shadow slots const m128 shadow0 = _mm_load_si128((__m128i*)s); const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); // load high parts of 4 shadow slots into addr_vect: // addr_vect[0:31] = shadow0[32:63] // addr_vect[32:63] = shadow0[96:127] // addr_vect[64:95] = shadow1[32:63] // addr_vect[96:127] = shadow1[96:127] m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); if (!is_write) { // set IsRead bit in addr_vect const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); addr_vect = _mm_or_si128(addr_vect, rw_mask); } // addr0 == addr_vect? const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); // epoch1[0:63] = sync_epoch const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); // epoch[0:31] = sync_epoch[0:31] // epoch[32:63] = sync_epoch[0:31] // epoch[64:95] = sync_epoch[0:31] // epoch[96:127] = sync_epoch[0:31] const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); // load low parts of shadow cell epochs into epoch_vect: // epoch_vect[0:31] = shadow0[0:31] // epoch_vect[32:63] = shadow0[64:95] // epoch_vect[64:95] = shadow1[0:31] // epoch_vect[96:127] = shadow1[64:95] const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); // epoch_vect >= sync_epoch? const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); // addr_res & epoch_res const m128 res = _mm_and_si128(addr_res, epoch_res); // mask[0] = res[7] // mask[1] = res[15] // ... // mask[15] = res[127] const int mask = _mm_movemask_epi8(res); return mask != 0; } #endif ALWAYS_INLINE bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { #if defined(__SSE3__) bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); // NOTE: this check can fail if the shadow is concurrently mutated // by other threads. But it still can be useful if you modify // ContainsSameAccessFast and want to ensure that it's not completely broken. // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); return res; #else return ContainsSameAccessSlow(s, a, sync_epoch, is_write); #endif } ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { u64 *shadow_mem = (u64*)MemToShadow(addr); DPrintf2("#%d: MemoryAccess: @%p %p size=%d" " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", (int)thr->fast_state.tid(), (void*)pc, (void*)addr, (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2], (uptr)shadow_mem[3]); #if SANITIZER_DEBUG if (!IsAppMem(addr)) { Printf("Access to non app mem %zx\n", addr); DCHECK(IsAppMem(addr)); } if (!IsShadowMem((uptr)shadow_mem)) { Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); DCHECK(IsShadowMem((uptr)shadow_mem)); } #endif if (kCppMode && *shadow_mem == kShadowRodata) { // Access to .rodata section, no races here. // Measurements show that it can be 10-20% of all memory accesses. StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); StatInc(thr, StatMopRodata); return; } FastState fast_state = thr->fast_state; if (fast_state.GetIgnoreBit()) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); StatInc(thr, StatMopIgnored); return; } Shadow cur(fast_state); cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); cur.SetWrite(kAccessIsWrite); cur.SetAtomic(kIsAtomic); if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, kAccessIsWrite))) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); StatInc(thr, StatMopSame); return; } if (kCollectHistory) { fast_state.IncrementEpoch(); thr->fast_state = fast_state; TraceAddEvent(thr, fast_state, EventTypeMop, pc); cur.IncrementEpoch(); } MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, shadow_mem, cur); } // Called by MemoryAccessRange in tsan_rtl_thread.cc ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur) { if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, kAccessIsWrite))) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); StatInc(thr, StatMopSame); return; } MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, shadow_mem, cur); } static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, u64 val) { (void)thr; (void)pc; if (size == 0) return; // FIXME: fix me. uptr offset = addr % kShadowCell; if (offset) { offset = kShadowCell - offset; if (size <= offset) return; addr += offset; size -= offset; } DCHECK_EQ(addr % 8, 0); // If a user passes some insane arguments (memset(0)), // let it just crash as usual. if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) return; // Don't want to touch lots of shadow memory. // If a program maps 10MB stack, there is no need reset the whole range. size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); // UnmapOrDie/MmapFixedNoReserve does not work on Windows, // so we do it only for C/C++. if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) { u64 *p = (u64*)MemToShadow(addr); CHECK(IsShadowMem((uptr)p)); CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); // FIXME: may overwrite a part outside the region for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { p[i++] = val; for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0; } } else { // The region is big, reset only beginning and end. const uptr kPageSize = GetPageSizeCached(); u64 *begin = (u64*)MemToShadow(addr); u64 *end = begin + size / kShadowCell * kShadowCnt; u64 *p = begin; // Set at least first kPageSize/2 to page boundary. while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } // Reset middle part. u64 *p1 = p; p = RoundDown(end, kPageSize); UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); // Set the ending. while (p < end) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } } } void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { MemoryRangeSet(thr, pc, addr, size, 0); } void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { // Processing more than 1k (4k of shadow) is expensive, // can cause excessive memory consumption (user does not necessary touch // the whole range) and most likely unnecessary. if (size > 1024) size = 1024; CHECK_EQ(thr->is_freeing, false); thr->is_freeing = true; MemoryAccessRange(thr, pc, addr, size, true); thr->is_freeing = false; if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); } Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.MarkAsFreed(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); } Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } ALWAYS_INLINE USED void FuncEntry(ThreadState *thr, uptr pc) { StatInc(thr, StatFuncEnter); DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); } // Shadow stack maintenance can be replaced with // stack unwinding during trace switch (which presumably must be faster). DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); #ifndef SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) GrowShadowStack(thr); #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } ALWAYS_INLINE USED void FuncExit(ThreadState *thr) { StatInc(thr, StatFuncExit); DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); } DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); #ifndef SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #endif thr->shadow_stack_pos--; } void ThreadIgnoreBegin(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); thr->ignore_reads_and_writes++; CHECK_GT(thr->ignore_reads_and_writes, 0); thr->fast_state.SetIgnoreBit(); #ifndef SANITIZER_GO if (!ctx->after_multithreaded_fork) thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); thr->ignore_reads_and_writes--; CHECK_GE(thr->ignore_reads_and_writes, 0); if (thr->ignore_reads_and_writes == 0) { thr->fast_state.ClearIgnoreBit(); #ifndef SANITIZER_GO thr->mop_ignore_set.Reset(); #endif } } void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); thr->ignore_sync++; CHECK_GT(thr->ignore_sync, 0); #ifndef SANITIZER_GO if (!ctx->after_multithreaded_fork) thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); thr->ignore_sync--; CHECK_GE(thr->ignore_sync, 0); #ifndef SANITIZER_GO if (thr->ignore_sync == 0) thr->sync_ignore_set.Reset(); #endif } bool MD5Hash::operator==(const MD5Hash &other) const { return hash[0] == other.hash[0] && hash[1] == other.hash[1]; } #if SANITIZER_DEBUG void build_consistency_debug() {} #else void build_consistency_release() {} #endif #if TSAN_COLLECT_STATS void build_consistency_stats() {} #else void build_consistency_nostats() {} #endif } // namespace __tsan #ifndef SANITIZER_GO // Must be included in this file to make sure everything is inlined. #include "tsan_interface_inl.h" #endif