/*------------------------------------------------------------------------- * drawElements Base Portability Library * ------------------------------------- * * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief SHA1 hash functions. *//*--------------------------------------------------------------------*/ #include "deSha1.h" #include "deMemory.h" DE_BEGIN_EXTERN_C enum { CHUNK_BIT_SIZE = 512, CHUNK_BYTE_SIZE = CHUNK_BIT_SIZE / 8 }; static deUint32 leftRotate (deUint32 val, deUint32 count) { DE_ASSERT(count < 32); return (val << count) | (val >> (32 - count)); } void deSha1Stream_init (deSha1Stream* stream) { stream->size = 0; /* Set the initial 16 deUint32s that contain real data to zeros. */ deMemset(stream->data, 0, 16 * sizeof(deUint32)); stream->hash[0] = 0x67452301u; stream->hash[1] = 0xEFCDAB89u; stream->hash[2] = 0x98BADCFEu; stream->hash[3] = 0x10325476u; stream->hash[4] = 0xC3D2E1F0u; } static void deSha1Stream_flushChunk (deSha1Stream* stream) { DE_ASSERT(stream->size % CHUNK_BYTE_SIZE == 0 && stream->size > 0); { size_t ndx; /* Expand the 16 uint32s that contain the data to 80. */ for (ndx = 16; ndx < DE_LENGTH_OF_ARRAY(stream->data); ndx++) { stream->data[ndx] = leftRotate(stream->data[ndx - 3] ^ stream->data[ndx - 8] ^ stream->data[ndx - 14] ^ stream->data[ndx - 16], 1); } } { deUint32 a = stream->hash[0]; deUint32 b = stream->hash[1]; deUint32 c = stream->hash[2]; deUint32 d = stream->hash[3]; deUint32 e = stream->hash[4]; size_t ndx; for (ndx = 0; ndx < DE_LENGTH_OF_ARRAY(stream->data); ndx++) { deUint32 f; deUint32 k; if (ndx < 20) { f = (b & c) | ((~b) & d); k = 0x5A827999u; } else if (ndx < 40) { f = b ^ c ^ d; k = 0x6ED9EBA1u; } else if (ndx < 60) { f = (b & c) | (b & d) | (c & d); k = 0x8F1BBCDCu; } else { f = b ^ c ^ d; k = 0xCA62C1D6u; } { const deUint32 tmp = leftRotate(a, 5) + f + e + k + stream->data[ndx]; e = d; d = c; c = leftRotate(b, 30); b = a; a = tmp; } } stream->hash[0] += a; stream->hash[1] += b; stream->hash[2] += c; stream->hash[3] += d; stream->hash[4] += e; /* Set the initial 16 deUint32s that contain the real data to zeros. */ deMemset(stream->data, 0, 16 * sizeof(deUint32)); } } void deSha1Stream_process (deSha1Stream* stream, size_t size, const void* data_) { const deUint8* const data = (const deUint8*)data_; size_t bytesProcessed = 0; while (bytesProcessed < size) { do { const size_t bitOffset = 8 * (4 - (1 + (stream->size % 4))); stream->data[(stream->size / 4) % 16] |= ((deUint32)data[bytesProcessed]) << (deUint32)bitOffset; stream->size++; bytesProcessed++; } while (stream->size % CHUNK_BYTE_SIZE != 0 && bytesProcessed < size); if (stream->size % CHUNK_BYTE_SIZE == 0) deSha1Stream_flushChunk(stream); } DE_ASSERT(bytesProcessed == size); } void deSha1Stream_finalize (deSha1Stream* stream, deSha1* hash) { /* \note First element is initialized to 0x80u and rest to 0x0. */ static const deUint8 padding[CHUNK_BYTE_SIZE] = { 0x80u }; const deUint64 length = stream->size * 8; deUint8 lengthData[sizeof(deUint64)]; size_t ndx; DE_ASSERT(padding[0] == 0x80u); DE_ASSERT(padding[1] == 0x0u); for (ndx = 0; ndx < sizeof(deUint64); ndx++) lengthData[ndx] = (deUint8)(0xffu & (length >> (8 * (sizeof(deUint64) - 1 - ndx)))); { const deUint64 spaceLeftInChunk = CHUNK_BYTE_SIZE - (stream->size % CHUNK_BYTE_SIZE); if (spaceLeftInChunk >= 1 + sizeof(lengthData)) deSha1Stream_process(stream, (size_t)(spaceLeftInChunk - sizeof(lengthData)), padding); else deSha1Stream_process(stream, (size_t)(CHUNK_BYTE_SIZE - (sizeof(lengthData)) - spaceLeftInChunk), padding); } deSha1Stream_process(stream, sizeof(lengthData), lengthData); DE_ASSERT(stream->size % CHUNK_BYTE_SIZE == 0); deMemcpy(hash->hash, stream->hash, sizeof(hash->hash)); } void deSha1_compute (deSha1* hash, size_t size, const void* data) { deSha1Stream stream; deSha1Stream_init(&stream); deSha1Stream_process(&stream, size, data); deSha1Stream_finalize(&stream, hash); } void deSha1_render (const deSha1* hash, char* buffer) { size_t charNdx; for (charNdx = 0; charNdx < 40; charNdx++) { const deUint32 val32 = hash->hash[charNdx / 8]; const deUint8 val8 = (deUint8)(0x0fu & (val32 >> (4 * (8 - 1 - (charNdx % 8))))); if (val8 < 10) buffer[charNdx] = (char)('0' + val8); else buffer[charNdx] = (char)('a' + val8 - 10); } } deBool deSha1_parse (deSha1* hash, const char* buffer) { size_t charNdx; deMemset(hash->hash, 0, sizeof(hash->hash)); for (charNdx = 0; charNdx < 40; charNdx++) { deUint8 val4; if (buffer[charNdx] >= '0' && buffer[charNdx] <= '9') val4 = (deUint8)(buffer[charNdx] - '0'); else if (buffer[charNdx] >= 'a' && buffer[charNdx] <= 'f') val4 = (deUint8)(10 + (buffer[charNdx] - 'a')); else if (buffer[charNdx] >= 'A' && buffer[charNdx] <= 'F') val4 = (deUint8)(10 + (buffer[charNdx] - 'A')); else return DE_FALSE; hash->hash[charNdx / 8] |= ((deUint32)val4) << (4 * (8u - 1u - (charNdx % 8u))); } return DE_TRUE; } deBool deSha1_equal (const deSha1* a, const deSha1* b) { /* \note deMemcmp() can only be used for equality. It doesn't provide correct ordering between hashes. */ return deMemCmp(a->hash, b->hash, sizeof(b->hash)) == 0; } void deSha1_selfTest (void) { const char* const validHashStrings[] = { "ac890cfca05717c05dc831996b2289251da2984e", "0f87ba807acb3e6effe617249f30453a524a2ea3", "6f483cc3fa820e58ed9f83c83bdf8d213293b3ad" }; const char* const invalidHashStrings[] = { " c890cfca05717c05dc831996b2289251da2984e", "0f87ba807acb3e6 ffe617249f30453a524a2ea3", "6f483cc3fa820e58ed9f83c83bdf8d213293b3a ", "mc890cfca05717c05dc831996b2289251da2984e", "0f87ba807acb3e6effe617249fm0453a524a2ea3", "6f483cc3fa820e58ed9f83c83bdf8d213293b3an", "ac890cfca05717c05dc83\n996b2289251da2984e", "0f87ba807acb3e6effe617\t49f30453a524a2ea3", "ac890cfca05717c05dc831\096b2289251da2984e", "6f483cc3fa{20e58ed9f83c83bdf8d213293b3ad" }; const struct { const char* const hash; const char* const data; } stringHashPairs[] = { /* Generated using sha1sum. */ { "da39a3ee5e6b4b0d3255bfef95601890afd80709", "" }, { "aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d", "hello" }, { "ec1919e856540f42bd0e6f6c1ffe2fbd73419975", "Cherry is a browser-based GUI for controlling deqp test runs and analysing the test results." } }; const int garbage = 0xde; /* Test parsing valid sha1 strings. */ { size_t stringNdx; for (stringNdx = 0; stringNdx < DE_LENGTH_OF_ARRAY(validHashStrings); stringNdx++) { deSha1 hash; deMemset(&hash, garbage, sizeof(deSha1)); DE_TEST_ASSERT(deSha1_parse(&hash, validHashStrings[stringNdx])); } } /* Test parsing invalid sha1 strings. */ { size_t stringNdx; for (stringNdx = 0; stringNdx < DE_LENGTH_OF_ARRAY(invalidHashStrings); stringNdx++) { deSha1 hash; deMemset(&hash, garbage, sizeof(deSha1)); DE_TEST_ASSERT(!deSha1_parse(&hash, invalidHashStrings[stringNdx])); } } /* Compare valid hash strings for equality. */ { size_t stringNdx; for (stringNdx = 0; stringNdx < DE_LENGTH_OF_ARRAY(validHashStrings); stringNdx++) { deSha1 hashA; deSha1 hashB; deMemset(&hashA, garbage, sizeof(deSha1)); deMemset(&hashB, garbage, sizeof(deSha1)); DE_TEST_ASSERT(deSha1_parse(&hashA, validHashStrings[stringNdx])); DE_TEST_ASSERT(deSha1_parse(&hashB, validHashStrings[stringNdx])); DE_TEST_ASSERT(deSha1_equal(&hashA, &hashA)); DE_TEST_ASSERT(deSha1_equal(&hashA, &hashB)); DE_TEST_ASSERT(deSha1_equal(&hashB, &hashA)); } } /* Compare valid different hash strings for equality. */ { size_t stringANdx; size_t stringBNdx; for (stringANdx = 0; stringANdx < DE_LENGTH_OF_ARRAY(validHashStrings); stringANdx++) for (stringBNdx = 0; stringBNdx < DE_LENGTH_OF_ARRAY(validHashStrings); stringBNdx++) { deSha1 hashA; deSha1 hashB; if (stringANdx == stringBNdx) continue; deMemset(&hashA, garbage, sizeof(deSha1)); deMemset(&hashB, garbage, sizeof(deSha1)); DE_TEST_ASSERT(deSha1_parse(&hashA, validHashStrings[stringANdx])); DE_TEST_ASSERT(deSha1_parse(&hashB, validHashStrings[stringBNdx])); DE_TEST_ASSERT(!deSha1_equal(&hashA, &hashB)); DE_TEST_ASSERT(!deSha1_equal(&hashB, &hashA)); } } /* Test rendering hash as string. */ { size_t stringNdx; for (stringNdx = 0; stringNdx < DE_LENGTH_OF_ARRAY(validHashStrings); stringNdx++) { char result[40]; deSha1 hash; deMemset(&hash, garbage, sizeof(hash)); deMemset(&result, garbage, sizeof(result)); DE_TEST_ASSERT(deSha1_parse(&hash, validHashStrings[stringNdx])); deSha1_render(&hash, result); DE_TEST_ASSERT(strncmp(result, validHashStrings[stringNdx], 40) == 0); } } /* Test hash against few pre-computed cases. */ { size_t ndx; for (ndx = 0; ndx < DE_LENGTH_OF_ARRAY(stringHashPairs); ndx++) { deSha1 result; deSha1 reference; deSha1_compute(&result, strlen(stringHashPairs[ndx].data), stringHashPairs[ndx].data); DE_TEST_ASSERT(deSha1_parse(&reference, stringHashPairs[ndx].hash)); DE_TEST_ASSERT(deSha1_equal(&reference, &result)); } } /* Test hash stream against few pre-computed cases. */ { size_t ndx; for (ndx = 0; ndx < DE_LENGTH_OF_ARRAY(stringHashPairs); ndx++) { const char* const data = stringHashPairs[ndx].data; const size_t size = strlen(data); deSha1Stream stream; deSha1 result; deSha1 reference; deSha1Stream_init(&stream); deSha1Stream_process(&stream, size/2, data); deSha1Stream_process(&stream, size - (size/2), data + size/2); deSha1Stream_finalize(&stream, &result); deSha1_compute(&result, strlen(stringHashPairs[ndx].data), stringHashPairs[ndx].data); DE_TEST_ASSERT(deSha1_parse(&reference, stringHashPairs[ndx].hash)); DE_TEST_ASSERT(deSha1_equal(&reference, &result)); } } } DE_END_EXTERN_C