// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #include #include #include "base/compiler_specific.h" #include "base/logging.h" #include "base/macros.h" #include "base/strings/stringprintf.h" #include "build/build_config.h" namespace base { namespace { // Specialized test fixture allowing time strings without timezones to be // tested by comparing them to a known time in the local zone. // See also pr_time_unittests.cc class TimeTest : public testing::Test { protected: void SetUp() override { // Use mktime to get a time_t, and turn it into a PRTime by converting // seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This // must be a time guaranteed to be outside of a DST fallback hour in // any timezone. struct tm local_comparison_tm = { 0, // second 45, // minute 12, // hour 15, // day of month 10 - 1, // month 2007 - 1900, // year 0, // day of week (ignored, output only) 0, // day of year (ignored, output only) -1 // DST in effect, -1 tells mktime to figure it out }; time_t converted_time = mktime(&local_comparison_tm); ASSERT_GT(converted_time, 0); comparison_time_local_ = Time::FromTimeT(converted_time); // time_t representation of 15th Oct 2007 12:45:00 PDT comparison_time_pdt_ = Time::FromTimeT(1192477500); } Time comparison_time_local_; Time comparison_time_pdt_; }; // Test conversions to/from time_t and exploding/unexploding. TEST_F(TimeTest, TimeT) { // C library time and exploded time. time_t now_t_1 = time(NULL); struct tm tms; #if defined(OS_WIN) localtime_s(&tms, &now_t_1); #elif defined(OS_POSIX) localtime_r(&now_t_1, &tms); #endif // Convert to ours. Time our_time_1 = Time::FromTimeT(now_t_1); Time::Exploded exploded; our_time_1.LocalExplode(&exploded); // This will test both our exploding and our time_t -> Time conversion. EXPECT_EQ(tms.tm_year + 1900, exploded.year); EXPECT_EQ(tms.tm_mon + 1, exploded.month); EXPECT_EQ(tms.tm_mday, exploded.day_of_month); EXPECT_EQ(tms.tm_hour, exploded.hour); EXPECT_EQ(tms.tm_min, exploded.minute); EXPECT_EQ(tms.tm_sec, exploded.second); // Convert exploded back to the time struct. Time our_time_2 = Time::FromLocalExploded(exploded); EXPECT_TRUE(our_time_1 == our_time_2); time_t now_t_2 = our_time_2.ToTimeT(); EXPECT_EQ(now_t_1, now_t_2); EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); // Conversions of 0 should stay 0. EXPECT_EQ(0, Time().ToTimeT()); EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); } // Test conversions to/from javascript time. TEST_F(TimeTest, JsTime) { Time epoch = Time::FromJsTime(0.0); EXPECT_EQ(epoch, Time::UnixEpoch()); Time t = Time::FromJsTime(700000.3); EXPECT_EQ(700.0003, t.ToDoubleT()); t = Time::FromDoubleT(800.73); EXPECT_EQ(800730.0, t.ToJsTime()); } #if defined(OS_POSIX) TEST_F(TimeTest, FromTimeVal) { Time now = Time::Now(); Time also_now = Time::FromTimeVal(now.ToTimeVal()); EXPECT_EQ(now, also_now); } #endif // OS_POSIX TEST_F(TimeTest, FromExplodedWithMilliseconds) { // Some platform implementations of FromExploded are liable to drop // milliseconds if we aren't careful. Time now = Time::NowFromSystemTime(); Time::Exploded exploded1 = {0}; now.UTCExplode(&exploded1); exploded1.millisecond = 500; Time time = Time::FromUTCExploded(exploded1); Time::Exploded exploded2 = {0}; time.UTCExplode(&exploded2); EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); } TEST_F(TimeTest, ZeroIsSymmetric) { Time zero_time(Time::FromTimeT(0)); EXPECT_EQ(0, zero_time.ToTimeT()); EXPECT_EQ(0.0, zero_time.ToDoubleT()); } TEST_F(TimeTest, LocalExplode) { Time a = Time::Now(); Time::Exploded exploded; a.LocalExplode(&exploded); Time b = Time::FromLocalExploded(exploded); // The exploded structure doesn't have microseconds, and on Mac & Linux, the // internal OS conversion uses seconds, which will cause truncation. So we // can only make sure that the delta is within one second. EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, UTCExplode) { Time a = Time::Now(); Time::Exploded exploded; a.UTCExplode(&exploded); Time b = Time::FromUTCExploded(exploded); EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, LocalMidnight) { Time::Exploded exploded; Time::Now().LocalMidnight().LocalExplode(&exploded); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); } TEST_F(TimeTest, ExplodeBeforeUnixEpoch) { static const int kUnixEpochYear = 1970; // In case this changes (ha!). Time t; Time::Exploded exploded; t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(998, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:58 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(58, exploded.second); EXPECT_EQ(999, exploded.millisecond); // Make sure we still handle at/after Unix epoch correctly. t = Time::UnixEpoch(); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-12-31 00:00:00 0 milliseconds. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond). EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(1, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(1, exploded.millisecond); } TEST_F(TimeTest, Max) { Time max = Time::Max(); EXPECT_TRUE(max.is_max()); EXPECT_EQ(max, Time::Max()); EXPECT_GT(max, Time::Now()); EXPECT_GT(max, Time()); } TEST_F(TimeTest, MaxConversions) { Time t = Time::Max(); EXPECT_EQ(std::numeric_limits::max(), t.ToInternalValue()); t = Time::FromDoubleT(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToDoubleT()); t = Time::FromJsTime(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToJsTime()); t = Time::FromTimeT(std::numeric_limits::max()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::max(), t.ToTimeT()); #if defined(OS_POSIX) struct timeval tval; tval.tv_sec = std::numeric_limits::max(); tval.tv_usec = static_cast(Time::kMicrosecondsPerSecond) - 1; t = Time::FromTimeVal(tval); EXPECT_TRUE(t.is_max()); tval = t.ToTimeVal(); EXPECT_EQ(std::numeric_limits::max(), tval.tv_sec); EXPECT_EQ(static_cast(Time::kMicrosecondsPerSecond) - 1, tval.tv_usec); #endif #if defined(OS_MACOSX) t = Time::FromCFAbsoluteTime(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToCFAbsoluteTime()); #endif #if defined(OS_WIN) FILETIME ftime; ftime.dwHighDateTime = std::numeric_limits::max(); ftime.dwLowDateTime = std::numeric_limits::max(); t = Time::FromFileTime(ftime); EXPECT_TRUE(t.is_max()); ftime = t.ToFileTime(); EXPECT_EQ(std::numeric_limits::max(), ftime.dwHighDateTime); EXPECT_EQ(std::numeric_limits::max(), ftime.dwLowDateTime); #endif } #if defined(OS_MACOSX) TEST_F(TimeTest, TimeTOverflow) { Time t = Time::FromInternalValue(std::numeric_limits::max() - 1); EXPECT_FALSE(t.is_max()); EXPECT_EQ(std::numeric_limits::max(), t.ToTimeT()); } #endif #if defined(OS_ANDROID) TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) { // This crashed inside Time:: FromLocalExploded() on Android 4.1.2. // See http://crbug.com/287821 Time::Exploded midnight = {2013, // year 10, // month 0, // day_of_week 13, // day_of_month 0, // hour 0, // minute 0, // second }; // The string passed to putenv() must be a char* and the documentation states // that it 'becomes part of the environment', so use a static buffer. static char buffer[] = "TZ=America/Santiago"; putenv(buffer); tzset(); Time t = Time::FromLocalExploded(midnight); EXPECT_EQ(1381633200, t.ToTimeT()); } #endif // OS_ANDROID static void HighResClockTest(TimeTicks (*GetTicks)()) { // IsHighResolution() is false on some systems. Since the product still works // even if it's false, it makes this entire test questionable. if (!TimeTicks::IsHighResolution()) return; // Why do we loop here? // We're trying to measure that intervals increment in a VERY small amount // of time -- less than 15ms. Unfortunately, if we happen to have a // context switch in the middle of our test, the context switch could easily // exceed our limit. So, we iterate on this several times. As long as we're // able to detect the fine-granularity timers at least once, then the test // has succeeded. const int kTargetGranularityUs = 15000; // 15ms bool success = false; int retries = 100; // Arbitrary. TimeDelta delta; while (!success && retries--) { TimeTicks ticks_start = GetTicks(); // Loop until we can detect that the clock has changed. Non-HighRes timers // will increment in chunks, e.g. 15ms. By spinning until we see a clock // change, we detect the minimum time between measurements. do { delta = GetTicks() - ticks_start; } while (delta.InMilliseconds() == 0); if (delta.InMicroseconds() <= kTargetGranularityUs) success = true; } // In high resolution mode, we expect to see the clock increment // in intervals less than 15ms. EXPECT_TRUE(success); } TEST(TimeTicks, HighRes) { HighResClockTest(&TimeTicks::Now); } TEST(TimeTicks, SnappedToNextTickBasic) { base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000); base::TimeDelta interval = base::TimeDelta::FromMicroseconds(1000); base::TimeTicks timestamp; // Timestamp in previous interval. timestamp = base::TimeTicks::FromInternalValue(3500); EXPECT_EQ(4000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp in next interval. timestamp = base::TimeTicks::FromInternalValue(4500); EXPECT_EQ(5000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp multiple intervals before. timestamp = base::TimeTicks::FromInternalValue(2500); EXPECT_EQ(3000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp multiple intervals after. timestamp = base::TimeTicks::FromInternalValue(6500); EXPECT_EQ(7000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp on previous interval. timestamp = base::TimeTicks::FromInternalValue(3000); EXPECT_EQ(3000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp on next interval. timestamp = base::TimeTicks::FromInternalValue(5000); EXPECT_EQ(5000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp equal to phase. timestamp = base::TimeTicks::FromInternalValue(4000); EXPECT_EQ(4000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); } TEST(TimeTicks, SnappedToNextTickOverflow) { // int(big_timestamp / interval) < 0, so this causes a crash if the number of // intervals elapsed is attempted to be stored in an int. base::TimeTicks phase = base::TimeTicks::FromInternalValue(0); base::TimeDelta interval = base::TimeDelta::FromMicroseconds(4000); base::TimeTicks big_timestamp = base::TimeTicks::FromInternalValue(8635916564000); EXPECT_EQ(8635916564000, big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); EXPECT_EQ(8635916564000, big_timestamp.SnappedToNextTick(big_timestamp, interval) .ToInternalValue()); } TEST(TimeDelta, FromAndIn) { EXPECT_TRUE(TimeDelta::FromDays(2) == TimeDelta::FromHours(48)); EXPECT_TRUE(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180)); EXPECT_TRUE(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120)); EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000)); EXPECT_TRUE(TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000)); EXPECT_TRUE(TimeDelta::FromSecondsD(2.3) == TimeDelta::FromMilliseconds(2300)); EXPECT_TRUE(TimeDelta::FromMillisecondsD(2.5) == TimeDelta::FromMicroseconds(2500)); EXPECT_EQ(13, TimeDelta::FromDays(13).InDays()); EXPECT_EQ(13, TimeDelta::FromHours(13).InHours()); EXPECT_EQ(13, TimeDelta::FromMinutes(13).InMinutes()); EXPECT_EQ(13, TimeDelta::FromSeconds(13).InSeconds()); EXPECT_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF()); EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).InMilliseconds()); EXPECT_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF()); EXPECT_EQ(13, TimeDelta::FromSecondsD(13.1).InSeconds()); EXPECT_EQ(13.1, TimeDelta::FromSecondsD(13.1).InSecondsF()); EXPECT_EQ(13, TimeDelta::FromMillisecondsD(13.3).InMilliseconds()); EXPECT_EQ(13.3, TimeDelta::FromMillisecondsD(13.3).InMillisecondsF()); EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).InMicroseconds()); EXPECT_EQ(3.456, TimeDelta::FromMillisecondsD(3.45678).InMillisecondsF()); } #if defined(OS_POSIX) TEST(TimeDelta, TimeSpecConversion) { struct timespec result = TimeDelta::FromSeconds(0).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromSeconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromMicroseconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 1000); result = TimeDelta::FromMicroseconds( Time::kMicrosecondsPerSecond + 1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 1000); } #endif // OS_POSIX // Our internal time format is serialized in things like databases, so it's // important that it's consistent across all our platforms. We use the 1601 // Windows epoch as the internal format across all platforms. TEST(TimeDelta, WindowsEpoch) { Time::Exploded exploded; exploded.year = 1970; exploded.month = 1; exploded.day_of_week = 0; // Should be unusued. exploded.day_of_month = 1; exploded.hour = 0; exploded.minute = 0; exploded.second = 0; exploded.millisecond = 0; Time t = Time::FromUTCExploded(exploded); // Unix 1970 epoch. EXPECT_EQ(11644473600000000ll, t.ToInternalValue()); // We can't test 1601 epoch, since the system time functions on Linux // only compute years starting from 1900. } // We could define this separately for Time, TimeTicks and TimeDelta but the // definitions would be identical anyway. template std::string AnyToString(Any any) { std::ostringstream oss; oss << any; return oss.str(); } TEST(TimeDelta, Magnitude) { const int64_t zero = 0; EXPECT_EQ(TimeDelta::FromMicroseconds(zero), TimeDelta::FromMicroseconds(zero).magnitude()); const int64_t one = 1; const int64_t negative_one = -1; EXPECT_EQ(TimeDelta::FromMicroseconds(one), TimeDelta::FromMicroseconds(one).magnitude()); EXPECT_EQ(TimeDelta::FromMicroseconds(one), TimeDelta::FromMicroseconds(negative_one).magnitude()); const int64_t max_int64_minus_one = std::numeric_limits::max() - 1; const int64_t min_int64_plus_two = std::numeric_limits::min() + 2; EXPECT_EQ(TimeDelta::FromMicroseconds(max_int64_minus_one), TimeDelta::FromMicroseconds(max_int64_minus_one).magnitude()); EXPECT_EQ(TimeDelta::FromMicroseconds(max_int64_minus_one), TimeDelta::FromMicroseconds(min_int64_plus_two).magnitude()); } TEST(TimeDelta, Max) { TimeDelta max = TimeDelta::Max(); EXPECT_TRUE(max.is_max()); EXPECT_EQ(max, TimeDelta::Max()); EXPECT_GT(max, TimeDelta::FromDays(100 * 365)); EXPECT_GT(max, TimeDelta()); } bool IsMin(TimeDelta delta) { return (-delta).is_max(); } TEST(TimeDelta, MaxConversions) { TimeDelta t = TimeDelta::Max(); EXPECT_EQ(std::numeric_limits::max(), t.ToInternalValue()); EXPECT_EQ(std::numeric_limits::max(), t.InDays()); EXPECT_EQ(std::numeric_limits::max(), t.InHours()); EXPECT_EQ(std::numeric_limits::max(), t.InMinutes()); EXPECT_EQ(std::numeric_limits::infinity(), t.InSecondsF()); EXPECT_EQ(std::numeric_limits::max(), t.InSeconds()); EXPECT_EQ(std::numeric_limits::infinity(), t.InMillisecondsF()); EXPECT_EQ(std::numeric_limits::max(), t.InMilliseconds()); EXPECT_EQ(std::numeric_limits::max(), t.InMillisecondsRoundedUp()); t = TimeDelta::FromDays(std::numeric_limits::max()); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromHours(std::numeric_limits::max()); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromMinutes(std::numeric_limits::max()); EXPECT_TRUE(t.is_max()); int64_t max_int = std::numeric_limits::max(); t = TimeDelta::FromSeconds(max_int / Time::kMicrosecondsPerSecond + 1); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromMilliseconds(max_int / Time::kMillisecondsPerSecond + 1); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromMicroseconds(max_int); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromSeconds(-max_int / Time::kMicrosecondsPerSecond - 1); EXPECT_TRUE(IsMin(t)); t = TimeDelta::FromMilliseconds(-max_int / Time::kMillisecondsPerSecond - 1); EXPECT_TRUE(IsMin(t)); t = TimeDelta::FromMicroseconds(-max_int); EXPECT_TRUE(IsMin(t)); t = -TimeDelta::FromMicroseconds(std::numeric_limits::min()); EXPECT_FALSE(IsMin(t)); t = TimeDelta::FromSecondsD(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); double max_d = max_int; t = TimeDelta::FromSecondsD(max_d / Time::kMicrosecondsPerSecond + 1); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromMillisecondsD(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromMillisecondsD(max_d / Time::kMillisecondsPerSecond * 2); EXPECT_TRUE(t.is_max()); t = TimeDelta::FromSecondsD(-max_d / Time::kMicrosecondsPerSecond - 1); EXPECT_TRUE(IsMin(t)); t = TimeDelta::FromMillisecondsD(-max_d / Time::kMillisecondsPerSecond * 2); EXPECT_TRUE(IsMin(t)); } TEST(TimeDelta, NumericOperators) { double d = 0.5; EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) * d); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) / d); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) *= d); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) /= d); EXPECT_EQ(TimeDelta::FromMilliseconds(500), d * TimeDelta::FromMilliseconds(1000)); float f = 0.5; EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) * f); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) / f); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) *= f); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) /= f); EXPECT_EQ(TimeDelta::FromMilliseconds(500), f * TimeDelta::FromMilliseconds(1000)); int i = 2; EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) * i); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) / i); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) *= i); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) /= i); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), i * TimeDelta::FromMilliseconds(1000)); int64_t i64 = 2; EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) * i64); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) / i64); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) *= i64); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) /= i64); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), i64 * TimeDelta::FromMilliseconds(1000)); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) * 0.5); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) / 0.5); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) *= 0.5); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) /= 0.5); EXPECT_EQ(TimeDelta::FromMilliseconds(500), 0.5 * TimeDelta::FromMilliseconds(1000)); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) * 2); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) / 2); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), TimeDelta::FromMilliseconds(1000) *= 2); EXPECT_EQ(TimeDelta::FromMilliseconds(500), TimeDelta::FromMilliseconds(1000) /= 2); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), 2 * TimeDelta::FromMilliseconds(1000)); } TEST(TimeDelta, Overflows) { // Some sanity checks. EXPECT_TRUE(TimeDelta::Max().is_max()); EXPECT_TRUE(IsMin(-TimeDelta::Max())); EXPECT_GT(TimeDelta(), -TimeDelta::Max()); TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1); TimeDelta large_negative = -large_delta; EXPECT_GT(TimeDelta(), large_negative); EXPECT_FALSE(large_delta.is_max()); EXPECT_FALSE(IsMin(-large_negative)); TimeDelta one_second = TimeDelta::FromSeconds(1); // Test +, -, * and / operators. EXPECT_TRUE((large_delta + one_second).is_max()); EXPECT_TRUE(IsMin(large_negative + (-one_second))); EXPECT_TRUE(IsMin(large_negative - one_second)); EXPECT_TRUE((large_delta - (-one_second)).is_max()); EXPECT_TRUE((large_delta * 2).is_max()); EXPECT_TRUE(IsMin(large_delta * -2)); EXPECT_TRUE((large_delta / 0.5).is_max()); EXPECT_TRUE(IsMin(large_delta / -0.5)); // Test +=, -=, *= and /= operators. TimeDelta delta = large_delta; delta += one_second; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta += -one_second; EXPECT_TRUE(IsMin(delta)); delta = large_negative; delta -= one_second; EXPECT_TRUE(IsMin(delta)); delta = large_delta; delta -= -one_second; EXPECT_TRUE(delta.is_max()); delta = large_delta; delta *= 2; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta *= 1.5; EXPECT_TRUE(IsMin(delta)); delta = large_delta; delta /= 0.5; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta /= 0.5; EXPECT_TRUE(IsMin(delta)); // Test operations with Time and TimeTicks. EXPECT_TRUE((large_delta + Time::Now()).is_max()); EXPECT_TRUE((large_delta + TimeTicks::Now()).is_max()); EXPECT_TRUE((Time::Now() + large_delta).is_max()); EXPECT_TRUE((TimeTicks::Now() + large_delta).is_max()); Time time_now = Time::Now(); EXPECT_EQ(one_second, (time_now + one_second) - time_now); EXPECT_EQ(-one_second, (time_now - one_second) - time_now); TimeTicks ticks_now = TimeTicks::Now(); EXPECT_EQ(-one_second, (ticks_now - one_second) - ticks_now); EXPECT_EQ(one_second, (ticks_now + one_second) - ticks_now); } TEST(TimeDeltaLogging, DCheckEqCompiles) { DCHECK_EQ(TimeDelta(), TimeDelta()); } TEST(TimeDeltaLogging, EmptyIsZero) { TimeDelta zero; EXPECT_EQ("0s", AnyToString(zero)); } TEST(TimeDeltaLogging, FiveHundredMs) { TimeDelta five_hundred_ms = TimeDelta::FromMilliseconds(500); EXPECT_EQ("0.5s", AnyToString(five_hundred_ms)); } TEST(TimeDeltaLogging, MinusTenSeconds) { TimeDelta minus_ten_seconds = TimeDelta::FromSeconds(-10); EXPECT_EQ("-10s", AnyToString(minus_ten_seconds)); } TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << TimeDelta(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeDeltaLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << TimeDelta(); EXPECT_TRUE(oss.good()); } TEST(TimeLogging, DCheckEqCompiles) { DCHECK_EQ(Time(), Time()); } TEST(TimeLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << Time(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << Time(); EXPECT_TRUE(oss.good()); } TEST(TimeTicksLogging, DCheckEqCompiles) { DCHECK_EQ(TimeTicks(), TimeTicks()); } TEST(TimeTicksLogging, ZeroTime) { TimeTicks zero; EXPECT_EQ("0 bogo-microseconds", AnyToString(zero)); } TEST(TimeTicksLogging, FortyYearsLater) { TimeTicks forty_years_later = TimeTicks() + TimeDelta::FromDays(365.25 * 40); EXPECT_EQ("1262304000000000 bogo-microseconds", AnyToString(forty_years_later)); } TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << TimeTicks(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeTicksLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << TimeTicks(); EXPECT_TRUE(oss.good()); } } // namespace } // namespace base