/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/convert_argb.h" #include // for memset() #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "libyuv/rotate_argb.h" #include "libyuv/video_common.h" #include "libyuv/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Copy ARGB with optional flipping LIBYUV_API int ARGBCopy(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb, width * 4, height); return 0; } // Convert I444 to ARGB. LIBYUV_API int I444ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !src_u || !src_v || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I444ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I444ToARGBRow_C; #if defined(HAS_I444TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I444ToARGBRow = I444ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I444ToARGBRow = I444ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I444ToARGBRow = I444ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I444ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I422 to ARGB. LIBYUV_API int I422ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !src_u || !src_v || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I422ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I411 to ARGB. LIBYUV_API int I411ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !src_u || !src_v || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I411ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I411ToARGBRow_C; #if defined(HAS_I411TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I411ToARGBRow = I411ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I411ToARGBRow = I411ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I411ToARGBRow = I411ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I411ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I400 to ARGB. LIBYUV_API int I400ToARGB_Reference(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*YToARGBRow)(const uint8* y_buf, uint8* rgb_buf, int width) = YToARGBRow_C; #if defined(HAS_YTOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { YToARGBRow = YToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { YToARGBRow(src_y, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; } return 0; } // Convert I400 to ARGB. LIBYUV_API int I400ToARGB(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix) = I400ToARGBRow_C; #if defined(HAS_I400TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I400ToARGBRow = I400ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { I400ToARGBRow(src_y, dst_argb, width); src_y += src_stride_y; dst_argb += dst_stride_argb; } return 0; } // Convert BGRA to ARGB. LIBYUV_API int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_bgra || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix) = BGRAToARGBRow_C; #if defined(HAS_BGRATOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { BGRAToARGBRow = BGRAToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { BGRAToARGBRow(src_bgra, dst_argb, width); src_bgra += src_stride_bgra; dst_argb += dst_stride_argb; } return 0; } // Convert ABGR to ARGB. LIBYUV_API int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_abgr || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_abgr = src_abgr + (height - 1) * src_stride_abgr; src_stride_abgr = -src_stride_abgr; } void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix) = ABGRToARGBRow_C; #if defined(HAS_ABGRTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ABGRToARGBRow = ABGRToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ABGRToARGBRow(src_abgr, dst_argb, width); src_abgr += src_stride_abgr; dst_argb += dst_stride_argb; } return 0; } // Convert RGBA to ARGB. LIBYUV_API int RGBAToARGB(const uint8* src_rgba, int src_stride_rgba, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_rgba || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgba = src_rgba + (height - 1) * src_stride_rgba; src_stride_rgba = -src_stride_rgba; } void (*RGBAToARGBRow)(const uint8* src_rgba, uint8* dst_argb, int pix) = RGBAToARGBRow_C; #if defined(HAS_RGBATOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_rgba, 16) && IS_ALIGNED(src_stride_rgba, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RGBAToARGBRow = RGBAToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { RGBAToARGBRow(src_rgba, dst_argb, width); src_rgba += src_stride_rgba; dst_argb += dst_stride_argb; } return 0; } // Convert RAW to ARGB. LIBYUV_API int RAWToARGB(const uint8* src_raw, int src_stride_raw, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_raw || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix) = RAWToARGBRow_C; #if defined(HAS_RAWTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RAWToARGBRow = RAWToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { RAWToARGBRow(src_raw, dst_argb, width); src_raw += src_stride_raw; dst_argb += dst_stride_argb; } return 0; } // Convert RGB24 to ARGB. LIBYUV_API int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_rgb24 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; src_stride_rgb24 = -src_stride_rgb24; } void (*RGB24ToARGBRow)(const uint8* src_rgb24, uint8* dst_argb, int pix) = RGB24ToARGBRow_C; #if defined(HAS_RGB24TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { RGB24ToARGBRow(src_rgb24, dst_argb, width); src_rgb24 += src_stride_rgb24; dst_argb += dst_stride_argb; } return 0; } // Convert RGB565 to ARGB. LIBYUV_API int RGB565ToARGB(const uint8* src_rgb565, int src_stride_rgb565, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_rgb565 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; src_stride_rgb565 = -src_stride_rgb565; } void (*RGB565ToARGBRow)(const uint8* src_rgb565, uint8* dst_argb, int pix) = RGB565ToARGBRow_C; #if defined(HAS_RGB565TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RGB565ToARGBRow = RGB565ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { RGB565ToARGBRow(src_rgb565, dst_argb, width); src_rgb565 += src_stride_rgb565; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB1555 to ARGB. LIBYUV_API int ARGB1555ToARGB(const uint8* src_argb1555, int src_stride_argb1555, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb1555 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; src_stride_argb1555 = -src_stride_argb1555; } void (*ARGB1555ToARGBRow)(const uint8* src_argb1555, uint8* dst_argb, int pix) = ARGB1555ToARGBRow_C; #if defined(HAS_ARGB1555TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGB1555ToARGBRow(src_argb1555, dst_argb, width); src_argb1555 += src_stride_argb1555; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB4444 to ARGB. LIBYUV_API int ARGB4444ToARGB(const uint8* src_argb4444, int src_stride_argb4444, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb4444 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; src_stride_argb4444 = -src_stride_argb4444; } void (*ARGB4444ToARGBRow)(const uint8* src_argb4444, uint8* dst_argb, int pix) = ARGB4444ToARGBRow_C; #if defined(HAS_ARGB4444TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGB4444ToARGBRow(src_argb4444, dst_argb, width); src_argb4444 += src_stride_argb4444; dst_argb += dst_stride_argb; } return 0; } // Convert NV12 to ARGB. LIBYUV_API int NV12ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !src_uv || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } } } #endif #if defined(HAS_NV12TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON) && width >= 8) { NV12ToARGBRow = NV12ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 8)) { NV12ToARGBRow = NV12ToARGBRow_NEON; } } #endif for (int y = 0; y < height; ++y) { NV12ToARGBRow(src_y, src_uv, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert NV21 to ARGB. LIBYUV_API int NV21ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_y || !src_uv || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV21ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV21ToARGBRow_C; #if defined(HAS_NV21TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV21ToARGBRow = NV21ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV21ToARGBRow = NV21ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV21ToARGBRow = NV21ToARGBRow_SSSE3; } } } #endif #if defined(HAS_NV21TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON) && width >= 8) { NV21ToARGBRow = NV21ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 8)) { NV21ToARGBRow = NV21ToARGBRow_NEON; } } #endif for (int y = 0; y < height; ++y) { NV21ToARGBRow(src_y, src_uv, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert M420 to ARGB. LIBYUV_API int M420ToARGB(const uint8* src_m420, int src_stride_m420, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_m420 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width); NV12ToARGBRow(src_m420 + src_stride_m420, src_m420 + src_stride_m420 * 2, dst_argb + dst_stride_argb, width); dst_argb += dst_stride_argb * 2; src_m420 += src_stride_m420 * 3; } if (height & 1) { NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width); } return 0; } // Convert YUY2 to ARGB. LIBYUV_API int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_yuy2 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, int pix) = YUY2ToUV422Row_C; void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix) = YUY2ToYRow_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_SSE2; YUY2ToYRow = YUY2ToYRow_SSE2; } } } #elif defined(HAS_YUY2TOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { YUY2ToYRow = YUY2ToYRow_Any_NEON; if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; } } if (IS_ALIGNED(width, 8)) { YUY2ToYRow = YUY2ToYRow_NEON; if (IS_ALIGNED(width, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_NEON; } } } #endif void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* argb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } #endif SIMD_ALIGNED(uint8 rowy[kMaxStride]); SIMD_ALIGNED(uint8 rowu[kMaxStride]); SIMD_ALIGNED(uint8 rowv[kMaxStride]); for (int y = 0; y < height; ++y) { YUY2ToUV422Row(src_yuy2, rowu, rowv, width); YUY2ToYRow(src_yuy2, rowy, width); I422ToARGBRow(rowy, rowu, rowv, dst_argb, width); src_yuy2 += src_stride_yuy2; dst_argb += dst_stride_argb; } return 0; } // Convert UYVY to ARGB. LIBYUV_API int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_uyvy || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToUV422Row)(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, int pix) = UYVYToUV422Row_C; void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix) = UYVYToYRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUV422Row = UYVYToUV422Row_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToUV422Row = UYVYToUV422Row_Unaligned_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) { UYVYToUV422Row = UYVYToUV422Row_SSE2; UYVYToYRow = UYVYToYRow_SSE2; } } } #endif void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* argb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } #endif SIMD_ALIGNED(uint8 rowy[kMaxStride]); SIMD_ALIGNED(uint8 rowu[kMaxStride]); SIMD_ALIGNED(uint8 rowv[kMaxStride]); for (int y = 0; y < height; ++y) { UYVYToUV422Row(src_uyvy, rowu, rowv, width); UYVYToYRow(src_uyvy, rowy, width); I422ToARGBRow(rowy, rowu, rowv, dst_argb, width); src_uyvy += src_stride_uyvy; dst_argb += dst_stride_argb; } return 0; } #ifdef HAVE_JPEG struct ARGBBuffers { uint8* argb; int argb_stride; int w; int h; }; static void JpegI420ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I420ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI422ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I422ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI444ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I444ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI411ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I411ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI400ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I400ToARGB(data[0], strides[0], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } // MJPG (Motion JPeg) to ARGB // TODO(fbarchard): review w and h requirement. dw and dh may be enough. LIBYUV_API int MJPGToARGB(const uint8* sample, size_t sample_size, uint8* argb, int argb_stride, int w, int h, int dw, int dh) { if (sample_size == kUnknownDataSize) { // ERROR: MJPEG frame size unknown return -1; } // TODO(fbarchard): Port to C MJpegDecoder mjpeg_decoder; bool ret = mjpeg_decoder.LoadFrame(sample, sample_size); if (ret && (mjpeg_decoder.GetWidth() != w || mjpeg_decoder.GetHeight() != h)) { // ERROR: MJPEG frame has unexpected dimensions mjpeg_decoder.UnloadFrame(); return 1; // runtime failure } if (ret) { ARGBBuffers bufs = { argb, argb_stride, dw, dh }; // YUV420 if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 2 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI420ToARGB, &bufs, dw, dh); // YUV422 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToARGB, &bufs, dw, dh); // YUV444 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToARGB, &bufs, dw, dh); // YUV411 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 4 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToARGB, &bufs, dw, dh); // YUV400 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceGrayscale && mjpeg_decoder.GetNumComponents() == 1 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToARGB, &bufs, dw, dh); } else { // TODO(fbarchard): Implement conversion for any other colorspace/sample // factors that occur in practice. 411 is supported by libjpeg // ERROR: Unable to convert MJPEG frame because format is not supported mjpeg_decoder.UnloadFrame(); return 1; } } return 0; } #endif // Convert camera sample to I420 with cropping, rotation and vertical flip. // src_width is used for source stride computation // src_height is used to compute location of planes, and indicate inversion // sample_size is measured in bytes and is the size of the frame. // With MJPEG it is the compressed size of the frame. LIBYUV_API int ConvertToARGB(const uint8* sample, size_t sample_size, uint8* dst_argb, int argb_stride, int crop_x, int crop_y, int src_width, int src_height, int dst_width, int dst_height, RotationMode rotation, uint32 format) { if (dst_argb == NULL || sample == NULL || src_width <= 0 || dst_width <= 0 || src_height == 0 || dst_height == 0) { return -1; } int aligned_src_width = (src_width + 1) & ~1; const uint8* src; const uint8* src_uv; int abs_src_height = (src_height < 0) ? -src_height : src_height; int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (src_height < 0) { inv_dst_height = -inv_dst_height; } int r = 0; // One pass rotation is available for some formats. For the rest, convert // to I420 (with optional vertical flipping) into a temporary I420 buffer, // and then rotate the I420 to the final destination buffer. // For in-place conversion, if destination dst_argb is same as source sample, // also enable temporary buffer. bool need_buf = (rotation && format != FOURCC_ARGB) || dst_argb == sample; uint8* tmp_argb = dst_argb; int tmp_argb_stride = argb_stride; uint8* buf = NULL; int abs_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (need_buf) { int argb_size = dst_width * abs_dst_height * 4; buf = new uint8[argb_size]; if (!buf) { return 1; // Out of memory runtime error. } dst_argb = buf; argb_stride = dst_width; } switch (format) { // Single plane formats case FOURCC_YUY2: src = sample + (aligned_src_width * crop_y + crop_x) * 2; r = YUY2ToARGB(src, aligned_src_width * 2, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_UYVY: src = sample + (aligned_src_width * crop_y + crop_x) * 2; r = UYVYToARGB(src, aligned_src_width * 2, dst_argb, argb_stride, dst_width, inv_dst_height); break; // case FOURCC_V210: // stride is multiple of 48 pixels (128 bytes). // pixels come in groups of 6 = 16 bytes // src = sample + (aligned_src_width + 47) / 48 * 128 * crop_y + // crop_x / 6 * 16; // r = V210ToARGB(src, (aligned_src_width + 47) / 48 * 128, // dst_argb, argb_stride, // dst_width, inv_dst_height); // break; case FOURCC_24BG: src = sample + (src_width * crop_y + crop_x) * 3; r = RGB24ToARGB(src, src_width * 3, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_RAW: src = sample + (src_width * crop_y + crop_x) * 3; r = RAWToARGB(src, src_width * 3, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_ARGB: src = sample + (src_width * crop_y + crop_x) * 4; r = ARGBToARGB(src, src_width * 4, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_BGRA: src = sample + (src_width * crop_y + crop_x) * 4; r = BGRAToARGB(src, src_width * 4, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_ABGR: src = sample + (src_width * crop_y + crop_x) * 4; r = ABGRToARGB(src, src_width * 4, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_RGBA: src = sample + (src_width * crop_y + crop_x) * 4; r = RGBAToARGB(src, src_width * 4, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_RGBP: src = sample + (src_width * crop_y + crop_x) * 2; r = RGB565ToARGB(src, src_width * 2, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_RGBO: src = sample + (src_width * crop_y + crop_x) * 2; r = ARGB1555ToARGB(src, src_width * 2, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_R444: src = sample + (src_width * crop_y + crop_x) * 2; r = ARGB4444ToARGB(src, src_width * 2, dst_argb, argb_stride, dst_width, inv_dst_height); break; // TODO(fbarchard): Support cropping Bayer by odd numbers // by adjusting fourcc. case FOURCC_BGGR: src = sample + (src_width * crop_y + crop_x); r = BayerBGGRToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_GBRG: src = sample + (src_width * crop_y + crop_x); r = BayerGBRGToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_GRBG: src = sample + (src_width * crop_y + crop_x); r = BayerGRBGToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_RGGB: src = sample + (src_width * crop_y + crop_x); r = BayerRGGBToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_I400: src = sample + src_width * crop_y + crop_x; r = I400ToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; // Biplanar formats case FOURCC_NV12: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; r = NV12ToARGB(src, src_width, src_uv, aligned_src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_NV21: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; // Call NV12 but with u and v parameters swapped. r = NV21ToARGB(src, src_width, src_uv, aligned_src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; case FOURCC_M420: src = sample + (src_width * crop_y) * 12 / 8 + crop_x; r = M420ToARGB(src, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; // case FOURCC_Q420: // src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x; // src_uv = sample + (src_width + aligned_src_width * 2) * crop_y + // src_width + crop_x * 2; // r = Q420ToARGB(src, src_width * 3, // src_uv, src_width * 3, // dst_argb, argb_stride, // dst_width, inv_dst_height); // break; // Triplanar formats case FOURCC_I420: case FOURCC_YU12: case FOURCC_YV12: { const uint8* src_y = sample + (src_width * crop_y + crop_x); const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; int halfheight = (abs_src_height + 1) / 2; if (format == FOURCC_YV12) { src_v = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_u = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } else { src_u = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_v = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } r = I420ToARGB(src_y, src_width, src_u, halfwidth, src_v, halfwidth, dst_argb, argb_stride, dst_width, inv_dst_height); break; } case FOURCC_I422: case FOURCC_YV16: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; if (format == FOURCC_YV16) { src_v = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_u = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } else { src_u = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_v = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } r = I422ToARGB(src_y, src_width, src_u, halfwidth, src_v, halfwidth, dst_argb, argb_stride, dst_width, inv_dst_height); break; } case FOURCC_I444: case FOURCC_YV24: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; if (format == FOURCC_YV24) { src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } else { src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } r = I444ToARGB(src_y, src_width, src_u, src_width, src_v, src_width, dst_argb, argb_stride, dst_width, inv_dst_height); break; } case FOURCC_I411: { int quarterwidth = (src_width + 3) / 4; const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u = sample + src_width * abs_src_height + quarterwidth * crop_y + crop_x / 4; const uint8* src_v = sample + src_width * abs_src_height + quarterwidth * (abs_src_height + crop_y) + crop_x / 4; r = I411ToARGB(src_y, src_width, src_u, quarterwidth, src_v, quarterwidth, dst_argb, argb_stride, dst_width, inv_dst_height); break; } #ifdef HAVE_JPEG case FOURCC_MJPG: r = MJPGToARGB(sample, sample_size, dst_argb, argb_stride, src_width, abs_src_height, dst_width, inv_dst_height); break; #endif default: r = -1; // unknown fourcc - return failure code. } if (need_buf) { if (!r) { r = ARGBRotate(dst_argb, argb_stride, tmp_argb, tmp_argb_stride, dst_width, abs_dst_height, rotation); } delete buf; } return r; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif