/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/planar_functions.h" #include // for memset() #include "libyuv/cpu_id.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "libyuv/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Copy a plane of data LIBYUV_API void CopyPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) { CopyRow = CopyRow_NEON; } #endif #if defined(HAS_COPYROW_X86) if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) { CopyRow = CopyRow_X86; } #endif #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { CopyRow = CopyRow_SSE2; } #endif // Copy plane for (int y = 0; y < height; ++y) { CopyRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Convert I420 to I400. LIBYUV_API int I420ToI400(const uint8* src_y, int src_stride_y, uint8*, int, // src_u uint8*, int, // src_v uint8* dst_y, int dst_stride_y, int width, int height) { if (!src_y || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); return 0; } // Mirror a plane of data void MirrorPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; #if defined(HAS_MIRRORROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_NEON; } #endif #if defined(HAS_MIRRORROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_SSE2; #if defined(HAS_MIRRORROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16)) { MirrorRow = MirrorRow_SSSE3; } #endif } #endif // Mirror plane for (int y = 0; y < height; ++y) { MirrorRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Convert YUY2 to I422. LIBYUV_API int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, int pix); void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix); YUY2ToYRow = YUY2ToYRow_C; YUY2ToUV422Row = YUY2ToUV422Row_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { YUY2ToYRow = YUY2ToYRow_SSE2; } } } } #elif defined(HAS_YUY2TOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { YUY2ToYRow = YUY2ToYRow_Any_NEON; if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; } } if (IS_ALIGNED(width, 16)) { YUY2ToYRow = YUY2ToYRow_NEON; YUY2ToUV422Row = YUY2ToUV422Row_NEON; } } #endif for (int y = 0; y < height; ++y) { YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); src_yuy2 += src_stride_yuy2; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } // Convert UYVY to I422. LIBYUV_API int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToUV422Row)(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix); UYVYToYRow = UYVYToYRow_C; UYVYToUV422Row = UYVYToUV422Row_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUV422Row = UYVYToUV422Row_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToUV422Row = UYVYToUV422Row_Unaligned_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) { UYVYToUV422Row = UYVYToUV422Row_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } } } #elif defined(HAS_UYVYTOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { UYVYToYRow = UYVYToYRow_Any_NEON; if (width > 16) { UYVYToUV422Row = UYVYToUV422Row_Any_NEON; } } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_NEON; UYVYToUV422Row = UYVYToUV422Row_NEON; } } #endif for (int y = 0; y < height; ++y) { UYVYToUV422Row(src_uyvy, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); src_uyvy += src_stride_uyvy; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } // Mirror I420 with optional flipping LIBYUV_API int I420Mirror(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; if (dst_y) { MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; } // ARGB mirror. LIBYUV_API int ARGBMirror(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) = ARGBMirrorRow_C; #if defined(HAS_ARGBMIRRORROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBMirrorRow = ARGBMirrorRow_SSSE3; } #endif // Mirror plane for (int y = 0; y < height; ++y) { ARGBMirrorRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Get a blender that optimized for the CPU, alignment and pixel count. // As there are 6 blenders to choose from, the caller should try to use // the same blend function for all pixels if possible. LIBYUV_API ARGBBlendRow GetARGBBlend() { void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = ARGBBlendRow_C; #if defined(HAS_ARGBBLENDROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBBlendRow = ARGBBlendRow_SSSE3; return ARGBBlendRow; } #endif #if defined(HAS_ARGBBLENDROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBBlendRow = ARGBBlendRow_SSE2; } #endif return ARGBBlendRow; } // Alpha Blend 2 ARGB images and store to destination. LIBYUV_API int ARGBBlend(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = GetARGBBlend(); for (int y = 0; y < height; ++y) { ARGBBlendRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB to I400. LIBYUV_API int ARGBToI400(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, int width, int height) { if (!src_argb || !dst_y || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) = ARGBToYRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBToYRow(src_argb, dst_y, width); src_argb += src_stride_argb; dst_y += dst_stride_y; } return 0; } // ARGB little endian (bgra in memory) to I422 // same as I420 except UV plane is full height LIBYUV_API int ARGBToI422(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_argb || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) = ARGBToYRow_C; void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; ARGBToYRow = ARGBToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } } #endif for (int y = 0; y < height; ++y) { ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); src_argb += src_stride_argb; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } // Convert I422 to BGRA. LIBYUV_API int I422ToBGRA(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_bgra, int dst_stride_bgra, int width, int height) { if (!src_y || !src_u || !src_v || !dst_bgra || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_bgra = dst_bgra + (height - 1) * dst_stride_bgra; dst_stride_bgra = -dst_stride_bgra; } void (*I422ToBGRARow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToBGRARow_C; #if defined(HAS_I422TOBGRAROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToBGRARow = I422ToBGRARow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToBGRARow = I422ToBGRARow_NEON; } } #elif defined(HAS_I422TOBGRAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToBGRARow = I422ToBGRARow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToBGRARow = I422ToBGRARow_Unaligned_SSSE3; if (IS_ALIGNED(dst_bgra, 16) && IS_ALIGNED(dst_stride_bgra, 16)) { I422ToBGRARow = I422ToBGRARow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I422ToBGRARow(src_y, src_u, src_v, dst_bgra, width); dst_bgra += dst_stride_bgra; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I422 to ABGR. LIBYUV_API int I422ToABGR(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_abgr, int dst_stride_abgr, int width, int height) { if (!src_y || !src_u || !src_v || !dst_abgr || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_abgr = dst_abgr + (height - 1) * dst_stride_abgr; dst_stride_abgr = -dst_stride_abgr; } void (*I422ToABGRRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToABGRRow_C; #if defined(HAS_I422TOABGRROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToABGRRow = I422ToABGRRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToABGRRow = I422ToABGRRow_NEON; } } #elif defined(HAS_I422TOABGRROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToABGRRow = I422ToABGRRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToABGRRow = I422ToABGRRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_abgr, 16) && IS_ALIGNED(dst_stride_abgr, 16)) { I422ToABGRRow = I422ToABGRRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I422ToABGRRow(src_y, src_u, src_v, dst_abgr, width); dst_abgr += dst_stride_abgr; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I422 to RGBA. LIBYUV_API int I422ToRGBA(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_rgba, int dst_stride_rgba, int width, int height) { if (!src_y || !src_u || !src_v || !dst_rgba || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba; dst_stride_rgba = -dst_stride_rgba; } void (*I422ToRGBARow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToRGBARow_C; #if defined(HAS_I422TORGBAROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToRGBARow = I422ToRGBARow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToRGBARow = I422ToRGBARow_NEON; } } #elif defined(HAS_I422TORGBAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToRGBARow = I422ToRGBARow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToRGBARow = I422ToRGBARow_Unaligned_SSSE3; if (IS_ALIGNED(dst_rgba, 16) && IS_ALIGNED(dst_stride_rgba, 16)) { I422ToRGBARow = I422ToRGBARow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I422ToRGBARow(src_y, src_u, src_v, dst_rgba, width); dst_rgba += dst_stride_rgba; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert ARGB to RGBA. LIBYUV_API int ARGBToRGBA(const uint8* src_argb, int src_stride_argb, uint8* dst_rgba, int dst_stride_rgba, int width, int height) { if (!src_argb || !dst_rgba || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRGBARow)(const uint8* src_argb, uint8* dst_rgba, int pix) = ARGBToRGBARow_C; #if defined(HAS_ARGBTORGBAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_rgba, 16) && IS_ALIGNED(dst_stride_rgba, 16)) { ARGBToRGBARow = ARGBToRGBARow_SSSE3; } #endif #if defined(HAS_ARGBTORGBAROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBToRGBARow = ARGBToRGBARow_NEON; } #endif for (int y = 0; y < height; ++y) { ARGBToRGBARow(src_argb, dst_rgba, width); src_argb += src_stride_argb; dst_rgba += dst_stride_rgba; } return 0; } // Convert ARGB To RGB24. LIBYUV_API int ARGBToRGB24(const uint8* src_argb, int src_stride_argb, uint8* dst_rgb24, int dst_stride_rgb24, int width, int height) { if (!src_argb || !dst_rgb24 || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRGB24Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB24Row_C; #if defined(HAS_ARGBTORGB24ROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 3 <= kMaxStride) { ARGBToRGB24Row = ARGBToRGB24Row_Any_SSSE3; } if (IS_ALIGNED(width, 16) && IS_ALIGNED(dst_rgb24, 16) && IS_ALIGNED(dst_stride_rgb24, 16)) { ARGBToRGB24Row = ARGBToRGB24Row_SSSE3; } } #endif #if defined(HAS_ARGBTORGB24ROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width * 3 <= kMaxStride) { ARGBToRGB24Row = ARGBToRGB24Row_Any_NEON; } if (IS_ALIGNED(width, 8)) { ARGBToRGB24Row = ARGBToRGB24Row_NEON; } } #endif for (int y = 0; y < height; ++y) { ARGBToRGB24Row(src_argb, dst_rgb24, width); src_argb += src_stride_argb; dst_rgb24 += dst_stride_rgb24; } return 0; } // Convert ARGB To RAW. LIBYUV_API int ARGBToRAW(const uint8* src_argb, int src_stride_argb, uint8* dst_raw, int dst_stride_raw, int width, int height) { if (!src_argb || !dst_raw || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRAWRow)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRAWRow_C; #if defined(HAS_ARGBTORAWROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 3 <= kMaxStride) { ARGBToRAWRow = ARGBToRAWRow_Any_SSSE3; } if (IS_ALIGNED(width, 16) && IS_ALIGNED(dst_raw, 16) && IS_ALIGNED(dst_stride_raw, 16)) { ARGBToRAWRow = ARGBToRAWRow_SSSE3; } } #endif #if defined(HAS_ARGBTORAWROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width * 3 <= kMaxStride) { ARGBToRAWRow = ARGBToRAWRow_Any_NEON; } if (IS_ALIGNED(width, 8)) { ARGBToRAWRow = ARGBToRAWRow_NEON; } } #endif for (int y = 0; y < height; ++y) { ARGBToRAWRow(src_argb, dst_raw, width); src_argb += src_stride_argb; dst_raw += dst_stride_raw; } return 0; } // Convert ARGB To RGB565. LIBYUV_API int ARGBToRGB565(const uint8* src_argb, int src_stride_argb, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { if (!src_argb || !dst_rgb565 || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToRGB565Row = ARGBToRGB565Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToRGB565Row(src_argb, dst_rgb565, width); src_argb += src_stride_argb; dst_rgb565 += dst_stride_rgb565; } return 0; } // Convert ARGB To ARGB1555. LIBYUV_API int ARGBToARGB1555(const uint8* src_argb, int src_stride_argb, uint8* dst_argb1555, int dst_stride_argb1555, int width, int height) { if (!src_argb || !dst_argb1555 || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToARGB1555Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToARGB1555Row_C; #if defined(HAS_ARGBTOARGB1555ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToARGB1555Row = ARGBToARGB1555Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToARGB1555Row = ARGBToARGB1555Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToARGB1555Row(src_argb, dst_argb1555, width); src_argb += src_stride_argb; dst_argb1555 += dst_stride_argb1555; } return 0; } // Convert ARGB To ARGB4444. LIBYUV_API int ARGBToARGB4444(const uint8* src_argb, int src_stride_argb, uint8* dst_argb4444, int dst_stride_argb4444, int width, int height) { if (!src_argb || !dst_argb4444 || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToARGB4444Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToARGB4444Row_C; #if defined(HAS_ARGBTOARGB4444ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToARGB4444Row = ARGBToARGB4444Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToARGB4444Row = ARGBToARGB4444Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToARGB4444Row(src_argb, dst_argb4444, width); src_argb += src_stride_argb; dst_argb4444 += dst_stride_argb4444; } return 0; } // Convert NV12 to RGB565. // TODO(fbarchard): (Re) Optimize for Neon. LIBYUV_API int NV12ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { if (!src_y || !src_uv || !dst_rgb565 || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; dst_stride_rgb565 = -dst_stride_rgb565; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } #endif #if defined(HAS_NV12TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON) && width * 4 <= kMaxStride) { NV12ToARGBRow = NV12ToARGBRow_NEON; } #endif SIMD_ALIGNED(uint8 row[kMaxStride]); void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } #endif for (int y = 0; y < height; ++y) { NV12ToARGBRow(src_y, src_uv, row, width); ARGBToRGB565Row(row, dst_rgb565, width); dst_rgb565 += dst_stride_rgb565; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert NV21 to RGB565. LIBYUV_API int NV21ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_vu, int src_stride_vu, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { if (!src_y || !src_vu || !dst_rgb565 || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; dst_stride_rgb565 = -dst_stride_rgb565; } void (*NV21ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV21ToARGBRow_C; #if defined(HAS_NV21TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) { NV21ToARGBRow = NV21ToARGBRow_SSSE3; } #endif SIMD_ALIGNED(uint8 row[kMaxStride]); void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } #endif for (int y = 0; y < height; ++y) { NV21ToARGBRow(src_y, src_vu, row, width); ARGBToRGB565Row(row, dst_rgb565, width); dst_rgb565 += dst_stride_rgb565; src_y += src_stride_y; if (y & 1) { src_vu += src_stride_vu; } } return 0; } LIBYUV_API void SetPlane(uint8* dst_y, int dst_stride_y, int width, int height, uint32 value) { void (*SetRow)(uint8* dst, uint32 value, int pix) = SetRow8_C; #if defined(HAS_SETROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { SetRow = SetRow8_NEON; } #endif #if defined(HAS_SETROW_X86) if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) { SetRow = SetRow8_X86; } #endif uint32 v32 = value | (value << 8) | (value << 16) | (value << 24); // Set plane for (int y = 0; y < height; ++y) { SetRow(dst_y, v32, width); dst_y += dst_stride_y; } } // Draw a rectangle into I420 LIBYUV_API int I420Rect(uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int x, int y, int width, int height, int value_y, int value_u, int value_v) { if (!dst_y || !dst_u || !dst_v || width <= 0 || height <= 0 || x < 0 || y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 || value_v < 0 || value_v > 255) { return -1; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; uint8* start_y = dst_y + y * dst_stride_y + x; uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); SetPlane(start_y, dst_stride_y, width, height, value_y); SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); return 0; } // Draw a rectangle into ARGB LIBYUV_API int ARGBRect(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height, uint32 value) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; #if defined(HAS_SETROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) { SetRows32_NEON(dst, value, width, dst_stride_argb, height); return 0; } #endif #if defined(HAS_SETROW_X86) if (TestCpuFlag(kCpuHasX86)) { SetRows32_X86(dst, value, width, dst_stride_argb, height); return 0; } #endif SetRows32_C(dst, value, width, dst_stride_argb, height); return 0; } // Convert unattentuated ARGB to preattenuated ARGB. // An unattenutated ARGB alpha blend uses the formula // p = a * f + (1 - a) * b // where // p is output pixel // f is foreground pixel // b is background pixel // a is alpha value from foreground pixel // An preattenutated ARGB alpha blend uses the formula // p = f + (1 - a) * b // where // f is foreground pixel premultiplied by alpha LIBYUV_API int ARGBAttenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBAttenuateRow_C; #if defined(HAS_ARGBATTENUATE_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBAttenuateRow = ARGBAttenuateRow_SSE2; } #endif #if defined(HAS_ARGBATTENUATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBAttenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Convert preattentuated ARGB to unattenuated ARGB. LIBYUV_API int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBUnattenuateRow_C; #if defined(HAS_ARGBUNATTENUATEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGBUnattenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB to Grayed ARGB. LIBYUV_API int ARGBGrayTo(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBGrayRow_C; #if defined(HAS_ARGBGRAYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBGrayRow = ARGBGrayRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBGrayRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Make a rectangle of ARGB gray scale. LIBYUV_API int ARGBGray(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBGrayRow_C; #if defined(HAS_ARGBGRAYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBGrayRow = ARGBGrayRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBGrayRow(dst, dst, width); dst += dst_stride_argb; } return 0; } // Make a rectangle of ARGB Sepia tone. LIBYUV_API int ARGBSepia(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C; #if defined(HAS_ARGBSEPIAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBSepiaRow = ARGBSepiaRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBSepiaRow(dst, width); dst += dst_stride_argb; } return 0; } // Apply a 4x3 matrix rotation to each ARGB pixel. LIBYUV_API int ARGBColorMatrix(uint8* dst_argb, int dst_stride_argb, const int8* matrix_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || !matrix_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBColorMatrixRow)(uint8* dst_argb, const int8* matrix_argb, int width) = ARGBColorMatrixRow_C; #if defined(HAS_ARGBCOLORMATRIXROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBColorMatrixRow(dst, matrix_argb, width); dst += dst_stride_argb; } return 0; } // Apply a color table each ARGB pixel. // Table contains 256 ARGB values. LIBYUV_API int ARGBColorTable(uint8* dst_argb, int dst_stride_argb, const uint8* table_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, int width) = ARGBColorTableRow_C; #if defined(HAS_ARGBCOLORTABLEROW_X86) if (TestCpuFlag(kCpuHasX86)) { ARGBColorTableRow = ARGBColorTableRow_X86; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBColorTableRow(dst, table_argb, width); dst += dst_stride_argb; } return 0; } // ARGBQuantize is used to posterize art. // e.g. rgb / qvalue * qvalue + qvalue / 2 // But the low levels implement efficiently with 3 parameters, and could be // used for other high level operations. // The divide is replaces with a multiply by reciprocal fixed point multiply. // Caveat - although SSE2 saturates, the C function does not and should be used // with care if doing anything but quantization. LIBYUV_API int ARGBQuantize(uint8* dst_argb, int dst_stride_argb, int scale, int interval_size, int interval_offset, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 || interval_size < 1 || interval_size > 255) { return -1; } void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size, int interval_offset, int width) = ARGBQuantizeRow_C; #if defined(HAS_ARGBQUANTIZEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBQuantizeRow = ARGBQuantizeRow_SSE2; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width); dst += dst_stride_argb; } return 0; } // Computes table of cumulative sum for image where the value is the sum // of all values above and to the left of the entry. Used by ARGBBlur. LIBYUV_API int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height) { if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) { return -1; } void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; #if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; } #endif memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel. int32* previous_cumsum = dst_cumsum; for (int y = 0; y < height; ++y) { ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width); previous_cumsum = dst_cumsum; dst_cumsum += dst_stride32_cumsum; src_argb += src_stride_argb; } return 0; } // Blur ARGB image. // Caller should allocate CumulativeSum table of width * height * 16 bytes // aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory // as the buffer is treated as circular. LIBYUV_API int ARGBBlur(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height, int radius) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; void (*CumulativeSumToAverage)(const int32* topleft, const int32* botleft, int width, int area, uint8* dst, int count) = CumulativeSumToAverage_C; #if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; CumulativeSumToAverage = CumulativeSumToAverage_SSE2; } #endif // Compute enough CumulativeSum for first row to be blurred. After this // one row of CumulativeSum is updated at a time. ARGBComputeCumulativeSum(src_argb, src_stride_argb, dst_cumsum, dst_stride32_cumsum, width, radius); src_argb = src_argb + radius * src_stride_argb; int32* cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum]; const int32* max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum]; const int32* cumsum_top_row = &dst_cumsum[0]; for (int y = 0; y < height; ++y) { int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0; int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1); int area = radius * (bot_y - top_y); // Increment cumsum_top_row pointer with circular buffer wrap around. if (top_y) { cumsum_top_row += dst_stride32_cumsum; if (cumsum_top_row >= max_cumsum_bot_row) { cumsum_top_row = dst_cumsum; } } // Increment cumsum_bot_row pointer with circular buffer wrap around and // then fill in a row of CumulativeSum. if ((y + radius) < height) { const int32* prev_cumsum_bot_row = cumsum_bot_row; cumsum_bot_row += dst_stride32_cumsum; if (cumsum_bot_row >= max_cumsum_bot_row) { cumsum_bot_row = dst_cumsum; } ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row, width); src_argb += src_stride_argb; } // Left clipped. int boxwidth = radius * 4; int x; for (x = 0; x < radius + 1; ++x) { CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], 1); area += (bot_y - top_y); boxwidth += 4; } // Middle unclipped. int n = (width - 1) - radius - x + 1; CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], n); // Right clipped. for (x += n; x <= width - 1; ++x) { area -= (bot_y - top_y); boxwidth -= 4; CumulativeSumToAverage(cumsum_top_row + (x - radius - 1) * 4, cumsum_bot_row + (x - radius - 1) * 4, boxwidth, area, &dst_argb[x * 4], 1); } dst_argb += dst_stride_argb; } return 0; } // Multiply ARGB image by a specified ARGB value. LIBYUV_API int ARGBShade(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height, uint32 value) { if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb, int width, uint32 value) = ARGBShadeRow_C; #if defined(HAS_ARGBSHADE_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBShadeRow = ARGBShadeRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGBShadeRow(src_argb, dst_argb, width, value); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Interpolate 2 ARGB images by specified amount (0 to 255). LIBYUV_API int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height, int interpolation) { if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*ARGBInterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = ARGBInterpolateRow_C; #if defined(HAS_ARGBINTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_argb0, 16) && IS_ALIGNED(src_stride_argb0, 16) && IS_ALIGNED(src_argb1, 16) && IS_ALIGNED(src_stride_argb1, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBInterpolateRow = ARGBInterpolateRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBInterpolateRow(dst_argb, src_argb0, src_argb1 - src_argb0, width, interpolation); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif