//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Operator.h" #include "llvm/IR/FunctionInfo.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/DataStream.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; namespace { enum { SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex }; class BitcodeReaderValueList { std::vector ValuePtrs; /// As we resolve forward-referenced constants, we add information about them /// to this vector. This allows us to resolve them in bulk instead of /// resolving each reference at a time. See the code in /// ResolveConstantForwardRefs for more information about this. /// /// The key of this vector is the placeholder constant, the value is the slot /// number that holds the resolved value. typedef std::vector > ResolveConstantsTy; ResolveConstantsTy ResolveConstants; LLVMContext &Context; public: BitcodeReaderValueList(LLVMContext &C) : Context(C) {} ~BitcodeReaderValueList() { assert(ResolveConstants.empty() && "Constants not resolved?"); } // vector compatibility methods unsigned size() const { return ValuePtrs.size(); } void resize(unsigned N) { ValuePtrs.resize(N); } void push_back(Value *V) { ValuePtrs.emplace_back(V); } void clear() { assert(ResolveConstants.empty() && "Constants not resolved?"); ValuePtrs.clear(); } Value *operator[](unsigned i) const { assert(i < ValuePtrs.size()); return ValuePtrs[i]; } Value *back() const { return ValuePtrs.back(); } void pop_back() { ValuePtrs.pop_back(); } bool empty() const { return ValuePtrs.empty(); } void shrinkTo(unsigned N) { assert(N <= size() && "Invalid shrinkTo request!"); ValuePtrs.resize(N); } Constant *getConstantFwdRef(unsigned Idx, Type *Ty); Value *getValueFwdRef(unsigned Idx, Type *Ty); void assignValue(Value *V, unsigned Idx); /// Once all constants are read, this method bulk resolves any forward /// references. void resolveConstantForwardRefs(); }; class BitcodeReaderMDValueList { unsigned NumFwdRefs; bool AnyFwdRefs; unsigned MinFwdRef; unsigned MaxFwdRef; std::vector MDValuePtrs; LLVMContext &Context; public: BitcodeReaderMDValueList(LLVMContext &C) : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} // vector compatibility methods unsigned size() const { return MDValuePtrs.size(); } void resize(unsigned N) { MDValuePtrs.resize(N); } void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } void clear() { MDValuePtrs.clear(); } Metadata *back() const { return MDValuePtrs.back(); } void pop_back() { MDValuePtrs.pop_back(); } bool empty() const { return MDValuePtrs.empty(); } Metadata *operator[](unsigned i) const { assert(i < MDValuePtrs.size()); return MDValuePtrs[i]; } void shrinkTo(unsigned N) { assert(N <= size() && "Invalid shrinkTo request!"); MDValuePtrs.resize(N); } Metadata *getValueFwdRef(unsigned Idx); void assignValue(Metadata *MD, unsigned Idx); void tryToResolveCycles(); }; class BitcodeReader : public GVMaterializer { LLVMContext &Context; Module *TheModule = nullptr; std::unique_ptr Buffer; std::unique_ptr StreamFile; BitstreamCursor Stream; // Next offset to start scanning for lazy parsing of function bodies. uint64_t NextUnreadBit = 0; // Last function offset found in the VST. uint64_t LastFunctionBlockBit = 0; bool SeenValueSymbolTable = false; uint64_t VSTOffset = 0; // Contains an arbitrary and optional string identifying the bitcode producer std::string ProducerIdentification; // Number of module level metadata records specified by the // MODULE_CODE_METADATA_VALUES record. unsigned NumModuleMDs = 0; // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. bool SeenModuleValuesRecord = false; std::vector TypeList; BitcodeReaderValueList ValueList; BitcodeReaderMDValueList MDValueList; std::vector ComdatList; SmallVector InstructionList; std::vector > GlobalInits; std::vector > AliasInits; std::vector > FunctionPrefixes; std::vector > FunctionPrologues; std::vector > FunctionPersonalityFns; SmallVector InstsWithTBAATag; /// The set of attributes by index. Index zero in the file is for null, and /// is thus not represented here. As such all indices are off by one. std::vector MAttributes; /// The set of attribute groups. std::map MAttributeGroups; /// While parsing a function body, this is a list of the basic blocks for the /// function. std::vector FunctionBBs; // When reading the module header, this list is populated with functions that // have bodies later in the file. std::vector FunctionsWithBodies; // When intrinsic functions are encountered which require upgrading they are // stored here with their replacement function. typedef DenseMap UpgradedIntrinsicMap; UpgradedIntrinsicMap UpgradedIntrinsics; // Map the bitcode's custom MDKind ID to the Module's MDKind ID. DenseMap MDKindMap; // Several operations happen after the module header has been read, but // before function bodies are processed. This keeps track of whether // we've done this yet. bool SeenFirstFunctionBody = false; /// When function bodies are initially scanned, this map contains info about /// where to find deferred function body in the stream. DenseMap DeferredFunctionInfo; /// When Metadata block is initially scanned when parsing the module, we may /// choose to defer parsing of the metadata. This vector contains info about /// which Metadata blocks are deferred. std::vector DeferredMetadataInfo; /// These are basic blocks forward-referenced by block addresses. They are /// inserted lazily into functions when they're loaded. The basic block ID is /// its index into the vector. DenseMap> BasicBlockFwdRefs; std::deque BasicBlockFwdRefQueue; /// Indicates that we are using a new encoding for instruction operands where /// most operands in the current FUNCTION_BLOCK are encoded relative to the /// instruction number, for a more compact encoding. Some instruction /// operands are not relative to the instruction ID: basic block numbers, and /// types. Once the old style function blocks have been phased out, we would /// not need this flag. bool UseRelativeIDs = false; /// True if all functions will be materialized, negating the need to process /// (e.g.) blockaddress forward references. bool WillMaterializeAllForwardRefs = false; /// True if any Metadata block has been materialized. bool IsMetadataMaterialized = false; bool StripDebugInfo = false; /// Functions that need to be matched with subprograms when upgrading old /// metadata. SmallDenseMap FunctionsWithSPs; std::vector BundleTags; public: std::error_code error(BitcodeError E, const Twine &Message); std::error_code error(BitcodeError E); std::error_code error(const Twine &Message); BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); BitcodeReader(LLVMContext &Context); ~BitcodeReader() override { freeState(); } std::error_code materializeForwardReferencedFunctions(); void freeState(); void releaseBuffer(); std::error_code materialize(GlobalValue *GV) override; std::error_code materializeModule() override; std::vector getIdentifiedStructTypes() const override; /// \brief Main interface to parsing a bitcode buffer. /// \returns true if an error occurred. std::error_code parseBitcodeInto(std::unique_ptr Streamer, Module *M, bool ShouldLazyLoadMetadata = false); /// \brief Cheap mechanism to just extract module triple /// \returns true if an error occurred. ErrorOr parseTriple(); /// Cheap mechanism to just extract the identification block out of bitcode. ErrorOr parseIdentificationBlock(); static uint64_t decodeSignRotatedValue(uint64_t V); /// Materialize any deferred Metadata block. std::error_code materializeMetadata() override; void setStripDebugInfo() override; /// Save the mapping between the metadata values and the corresponding /// value id that were recorded in the MDValueList during parsing. If /// OnlyTempMD is true, then only record those entries that are still /// temporary metadata. This interface is used when metadata linking is /// performed as a postpass, such as during function importing. void saveMDValueList(DenseMap &MDValueToValIDMap, bool OnlyTempMD) override; private: /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the // ProducerIdentification data member, and do some basic enforcement on the // "epoch" encoded in the bitcode. std::error_code parseBitcodeVersion(); std::vector IdentifiedStructTypes; StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); StructType *createIdentifiedStructType(LLVMContext &Context); Type *getTypeByID(unsigned ID); Value *getFnValueByID(unsigned ID, Type *Ty) { if (Ty && Ty->isMetadataTy()) return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); return ValueList.getValueFwdRef(ID, Ty); } Metadata *getFnMetadataByID(unsigned ID) { return MDValueList.getValueFwdRef(ID); } BasicBlock *getBasicBlock(unsigned ID) const { if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID return FunctionBBs[ID]; } AttributeSet getAttributes(unsigned i) const { if (i-1 < MAttributes.size()) return MAttributes[i-1]; return AttributeSet(); } /// Read a value/type pair out of the specified record from slot 'Slot'. /// Increment Slot past the number of slots used in the record. Return true on /// failure. bool getValueTypePair(SmallVectorImpl &Record, unsigned &Slot, unsigned InstNum, Value *&ResVal) { if (Slot == Record.size()) return true; unsigned ValNo = (unsigned)Record[Slot++]; // Adjust the ValNo, if it was encoded relative to the InstNum. if (UseRelativeIDs) ValNo = InstNum - ValNo; if (ValNo < InstNum) { // If this is not a forward reference, just return the value we already // have. ResVal = getFnValueByID(ValNo, nullptr); return ResVal == nullptr; } if (Slot == Record.size()) return true; unsigned TypeNo = (unsigned)Record[Slot++]; ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); return ResVal == nullptr; } /// Read a value out of the specified record from slot 'Slot'. Increment Slot /// past the number of slots used by the value in the record. Return true if /// there is an error. bool popValue(SmallVectorImpl &Record, unsigned &Slot, unsigned InstNum, Type *Ty, Value *&ResVal) { if (getValue(Record, Slot, InstNum, Ty, ResVal)) return true; // All values currently take a single record slot. ++Slot; return false; } /// Like popValue, but does not increment the Slot number. bool getValue(SmallVectorImpl &Record, unsigned Slot, unsigned InstNum, Type *Ty, Value *&ResVal) { ResVal = getValue(Record, Slot, InstNum, Ty); return ResVal == nullptr; } /// Version of getValue that returns ResVal directly, or 0 if there is an /// error. Value *getValue(SmallVectorImpl &Record, unsigned Slot, unsigned InstNum, Type *Ty) { if (Slot == Record.size()) return nullptr; unsigned ValNo = (unsigned)Record[Slot]; // Adjust the ValNo, if it was encoded relative to the InstNum. if (UseRelativeIDs) ValNo = InstNum - ValNo; return getFnValueByID(ValNo, Ty); } /// Like getValue, but decodes signed VBRs. Value *getValueSigned(SmallVectorImpl &Record, unsigned Slot, unsigned InstNum, Type *Ty) { if (Slot == Record.size()) return nullptr; unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); // Adjust the ValNo, if it was encoded relative to the InstNum. if (UseRelativeIDs) ValNo = InstNum - ValNo; return getFnValueByID(ValNo, Ty); } /// Converts alignment exponent (i.e. power of two (or zero)) to the /// corresponding alignment to use. If alignment is too large, returns /// a corresponding error code. std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); std::error_code parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); std::error_code parseAttributeBlock(); std::error_code parseAttributeGroupBlock(); std::error_code parseTypeTable(); std::error_code parseTypeTableBody(); std::error_code parseOperandBundleTags(); ErrorOr recordValue(SmallVectorImpl &Record, unsigned NameIndex, Triple &TT); std::error_code parseValueSymbolTable(uint64_t Offset = 0); std::error_code parseConstants(); std::error_code rememberAndSkipFunctionBodies(); std::error_code rememberAndSkipFunctionBody(); /// Save the positions of the Metadata blocks and skip parsing the blocks. std::error_code rememberAndSkipMetadata(); std::error_code parseFunctionBody(Function *F); std::error_code globalCleanup(); std::error_code resolveGlobalAndAliasInits(); std::error_code parseMetadata(bool ModuleLevel = false); std::error_code parseMetadataKinds(); std::error_code parseMetadataKindRecord(SmallVectorImpl &Record); std::error_code parseMetadataAttachment(Function &F); ErrorOr parseModuleTriple(); std::error_code parseUseLists(); std::error_code initStream(std::unique_ptr Streamer); std::error_code initStreamFromBuffer(); std::error_code initLazyStream(std::unique_ptr Streamer); std::error_code findFunctionInStream( Function *F, DenseMap::iterator DeferredFunctionInfoIterator); }; /// Class to manage reading and parsing function summary index bitcode /// files/sections. class FunctionIndexBitcodeReader { DiagnosticHandlerFunction DiagnosticHandler; /// Eventually points to the function index built during parsing. FunctionInfoIndex *TheIndex = nullptr; std::unique_ptr Buffer; std::unique_ptr StreamFile; BitstreamCursor Stream; /// \brief Used to indicate whether we are doing lazy parsing of summary data. /// /// If false, the summary section is fully parsed into the index during /// the initial parse. Otherwise, if true, the caller is expected to /// invoke \a readFunctionSummary for each summary needed, and the summary /// section is thus parsed lazily. bool IsLazy = false; /// Used to indicate whether caller only wants to check for the presence /// of the function summary bitcode section. All blocks are skipped, /// but the SeenFuncSummary boolean is set. bool CheckFuncSummaryPresenceOnly = false; /// Indicates whether we have encountered a function summary section /// yet during parsing, used when checking if file contains function /// summary section. bool SeenFuncSummary = false; /// \brief Map populated during function summary section parsing, and /// consumed during ValueSymbolTable parsing. /// /// Used to correlate summary records with VST entries. For the per-module /// index this maps the ValueID to the parsed function summary, and /// for the combined index this maps the summary record's bitcode /// offset to the function summary (since in the combined index the /// VST records do not hold value IDs but rather hold the function /// summary record offset). DenseMap> SummaryMap; /// Map populated during module path string table parsing, from the /// module ID to a string reference owned by the index's module /// path string table, used to correlate with combined index function /// summary records. DenseMap ModuleIdMap; public: std::error_code error(BitcodeError E, const Twine &Message); std::error_code error(BitcodeError E); std::error_code error(const Twine &Message); FunctionIndexBitcodeReader(MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, bool CheckFuncSummaryPresenceOnly = false); FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, bool CheckFuncSummaryPresenceOnly = false); ~FunctionIndexBitcodeReader() { freeState(); } void freeState(); void releaseBuffer(); /// Check if the parser has encountered a function summary section. bool foundFuncSummary() { return SeenFuncSummary; } /// \brief Main interface to parsing a bitcode buffer. /// \returns true if an error occurred. std::error_code parseSummaryIndexInto(std::unique_ptr Streamer, FunctionInfoIndex *I); /// \brief Interface for parsing a function summary lazily. std::error_code parseFunctionSummary(std::unique_ptr Streamer, FunctionInfoIndex *I, size_t FunctionSummaryOffset); private: std::error_code parseModule(); std::error_code parseValueSymbolTable(); std::error_code parseEntireSummary(); std::error_code parseModuleStringTable(); std::error_code initStream(std::unique_ptr Streamer); std::error_code initStreamFromBuffer(); std::error_code initLazyStream(std::unique_ptr Streamer); }; } // namespace BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, DiagnosticSeverity Severity, const Twine &Msg) : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, std::error_code EC, const Twine &Message) { BitcodeDiagnosticInfo DI(EC, DS_Error, Message); DiagnosticHandler(DI); return EC; } static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, std::error_code EC) { return error(DiagnosticHandler, EC, EC.message()); } static std::error_code error(LLVMContext &Context, std::error_code EC, const Twine &Message) { return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, Message); } static std::error_code error(LLVMContext &Context, std::error_code EC) { return error(Context, EC, EC.message()); } static std::error_code error(LLVMContext &Context, const Twine &Message) { return error(Context, make_error_code(BitcodeError::CorruptedBitcode), Message); } std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { if (!ProducerIdentification.empty()) { return ::error(Context, make_error_code(E), Message + " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); } return ::error(Context, make_error_code(E), Message); } std::error_code BitcodeReader::error(const Twine &Message) { if (!ProducerIdentification.empty()) { return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), Message + " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); } return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), Message); } std::error_code BitcodeReader::error(BitcodeError E) { return ::error(Context, make_error_code(E)); } BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) : Context(Context), Buffer(Buffer), ValueList(Context), MDValueList(Context) {} BitcodeReader::BitcodeReader(LLVMContext &Context) : Context(Context), Buffer(nullptr), ValueList(Context), MDValueList(Context) {} std::error_code BitcodeReader::materializeForwardReferencedFunctions() { if (WillMaterializeAllForwardRefs) return std::error_code(); // Prevent recursion. WillMaterializeAllForwardRefs = true; while (!BasicBlockFwdRefQueue.empty()) { Function *F = BasicBlockFwdRefQueue.front(); BasicBlockFwdRefQueue.pop_front(); assert(F && "Expected valid function"); if (!BasicBlockFwdRefs.count(F)) // Already materialized. continue; // Check for a function that isn't materializable to prevent an infinite // loop. When parsing a blockaddress stored in a global variable, there // isn't a trivial way to check if a function will have a body without a // linear search through FunctionsWithBodies, so just check it here. if (!F->isMaterializable()) return error("Never resolved function from blockaddress"); // Try to materialize F. if (std::error_code EC = materialize(F)) return EC; } assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); // Reset state. WillMaterializeAllForwardRefs = false; return std::error_code(); } void BitcodeReader::freeState() { Buffer = nullptr; std::vector().swap(TypeList); ValueList.clear(); MDValueList.clear(); std::vector().swap(ComdatList); std::vector().swap(MAttributes); std::vector().swap(FunctionBBs); std::vector().swap(FunctionsWithBodies); DeferredFunctionInfo.clear(); DeferredMetadataInfo.clear(); MDKindMap.clear(); assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); BasicBlockFwdRefQueue.clear(); } //===----------------------------------------------------------------------===// // Helper functions to implement forward reference resolution, etc. //===----------------------------------------------------------------------===// /// Convert a string from a record into an std::string, return true on failure. template static bool convertToString(ArrayRef Record, unsigned Idx, StrTy &Result) { if (Idx > Record.size()) return true; for (unsigned i = Idx, e = Record.size(); i != e; ++i) Result += (char)Record[i]; return false; } static bool hasImplicitComdat(size_t Val) { switch (Val) { default: return false; case 1: // Old WeakAnyLinkage case 4: // Old LinkOnceAnyLinkage case 10: // Old WeakODRLinkage case 11: // Old LinkOnceODRLinkage return true; } } static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { switch (Val) { default: // Map unknown/new linkages to external case 0: return GlobalValue::ExternalLinkage; case 2: return GlobalValue::AppendingLinkage; case 3: return GlobalValue::InternalLinkage; case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage case 7: return GlobalValue::ExternalWeakLinkage; case 8: return GlobalValue::CommonLinkage; case 9: return GlobalValue::PrivateLinkage; case 12: return GlobalValue::AvailableExternallyLinkage; case 13: return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage case 14: return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage case 15: return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage case 1: // Old value with implicit comdat. case 16: return GlobalValue::WeakAnyLinkage; case 10: // Old value with implicit comdat. case 17: return GlobalValue::WeakODRLinkage; case 4: // Old value with implicit comdat. case 18: return GlobalValue::LinkOnceAnyLinkage; case 11: // Old value with implicit comdat. case 19: return GlobalValue::LinkOnceODRLinkage; } } static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { switch (Val) { default: // Map unknown visibilities to default. case 0: return GlobalValue::DefaultVisibility; case 1: return GlobalValue::HiddenVisibility; case 2: return GlobalValue::ProtectedVisibility; } } static GlobalValue::DLLStorageClassTypes getDecodedDLLStorageClass(unsigned Val) { switch (Val) { default: // Map unknown values to default. case 0: return GlobalValue::DefaultStorageClass; case 1: return GlobalValue::DLLImportStorageClass; case 2: return GlobalValue::DLLExportStorageClass; } } static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { switch (Val) { case 0: return GlobalVariable::NotThreadLocal; default: // Map unknown non-zero value to general dynamic. case 1: return GlobalVariable::GeneralDynamicTLSModel; case 2: return GlobalVariable::LocalDynamicTLSModel; case 3: return GlobalVariable::InitialExecTLSModel; case 4: return GlobalVariable::LocalExecTLSModel; } } static int getDecodedCastOpcode(unsigned Val) { switch (Val) { default: return -1; case bitc::CAST_TRUNC : return Instruction::Trunc; case bitc::CAST_ZEXT : return Instruction::ZExt; case bitc::CAST_SEXT : return Instruction::SExt; case bitc::CAST_FPTOUI : return Instruction::FPToUI; case bitc::CAST_FPTOSI : return Instruction::FPToSI; case bitc::CAST_UITOFP : return Instruction::UIToFP; case bitc::CAST_SITOFP : return Instruction::SIToFP; case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; case bitc::CAST_FPEXT : return Instruction::FPExt; case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; case bitc::CAST_BITCAST : return Instruction::BitCast; case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; } } static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { bool IsFP = Ty->isFPOrFPVectorTy(); // BinOps are only valid for int/fp or vector of int/fp types if (!IsFP && !Ty->isIntOrIntVectorTy()) return -1; switch (Val) { default: return -1; case bitc::BINOP_ADD: return IsFP ? Instruction::FAdd : Instruction::Add; case bitc::BINOP_SUB: return IsFP ? Instruction::FSub : Instruction::Sub; case bitc::BINOP_MUL: return IsFP ? Instruction::FMul : Instruction::Mul; case bitc::BINOP_UDIV: return IsFP ? -1 : Instruction::UDiv; case bitc::BINOP_SDIV: return IsFP ? Instruction::FDiv : Instruction::SDiv; case bitc::BINOP_UREM: return IsFP ? -1 : Instruction::URem; case bitc::BINOP_SREM: return IsFP ? Instruction::FRem : Instruction::SRem; case bitc::BINOP_SHL: return IsFP ? -1 : Instruction::Shl; case bitc::BINOP_LSHR: return IsFP ? -1 : Instruction::LShr; case bitc::BINOP_ASHR: return IsFP ? -1 : Instruction::AShr; case bitc::BINOP_AND: return IsFP ? -1 : Instruction::And; case bitc::BINOP_OR: return IsFP ? -1 : Instruction::Or; case bitc::BINOP_XOR: return IsFP ? -1 : Instruction::Xor; } } static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { switch (Val) { default: return AtomicRMWInst::BAD_BINOP; case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; case bitc::RMW_ADD: return AtomicRMWInst::Add; case bitc::RMW_SUB: return AtomicRMWInst::Sub; case bitc::RMW_AND: return AtomicRMWInst::And; case bitc::RMW_NAND: return AtomicRMWInst::Nand; case bitc::RMW_OR: return AtomicRMWInst::Or; case bitc::RMW_XOR: return AtomicRMWInst::Xor; case bitc::RMW_MAX: return AtomicRMWInst::Max; case bitc::RMW_MIN: return AtomicRMWInst::Min; case bitc::RMW_UMAX: return AtomicRMWInst::UMax; case bitc::RMW_UMIN: return AtomicRMWInst::UMin; } } static AtomicOrdering getDecodedOrdering(unsigned Val) { switch (Val) { case bitc::ORDERING_NOTATOMIC: return NotAtomic; case bitc::ORDERING_UNORDERED: return Unordered; case bitc::ORDERING_MONOTONIC: return Monotonic; case bitc::ORDERING_ACQUIRE: return Acquire; case bitc::ORDERING_RELEASE: return Release; case bitc::ORDERING_ACQREL: return AcquireRelease; default: // Map unknown orderings to sequentially-consistent. case bitc::ORDERING_SEQCST: return SequentiallyConsistent; } } static SynchronizationScope getDecodedSynchScope(unsigned Val) { switch (Val) { case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; default: // Map unknown scopes to cross-thread. case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; } } static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { switch (Val) { default: // Map unknown selection kinds to any. case bitc::COMDAT_SELECTION_KIND_ANY: return Comdat::Any; case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: return Comdat::ExactMatch; case bitc::COMDAT_SELECTION_KIND_LARGEST: return Comdat::Largest; case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: return Comdat::NoDuplicates; case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: return Comdat::SameSize; } } static FastMathFlags getDecodedFastMathFlags(unsigned Val) { FastMathFlags FMF; if (0 != (Val & FastMathFlags::UnsafeAlgebra)) FMF.setUnsafeAlgebra(); if (0 != (Val & FastMathFlags::NoNaNs)) FMF.setNoNaNs(); if (0 != (Val & FastMathFlags::NoInfs)) FMF.setNoInfs(); if (0 != (Val & FastMathFlags::NoSignedZeros)) FMF.setNoSignedZeros(); if (0 != (Val & FastMathFlags::AllowReciprocal)) FMF.setAllowReciprocal(); return FMF; } static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { switch (Val) { case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; } } namespace llvm { namespace { /// \brief A class for maintaining the slot number definition /// as a placeholder for the actual definition for forward constants defs. class ConstantPlaceHolder : public ConstantExpr { void operator=(const ConstantPlaceHolder &) = delete; public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); } /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return isa(V) && cast(V)->getOpcode() == Instruction::UserOp1; } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; } // FIXME: can we inherit this from ConstantExpr? template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) } void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = ValuePtrs[Idx]; if (!OldV) { OldV = V; return; } // Handle constants and non-constants (e.g. instrs) differently for // efficiency. if (Constant *PHC = dyn_cast(&*OldV)) { ResolveConstants.push_back(std::make_pair(PHC, Idx)); OldV = V; } else { // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; OldV->replaceAllUsesWith(V); delete PrevVal; } return; } Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, Type *Ty) { if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { if (Ty != V->getType()) report_fatal_error("Type mismatch in constant table!"); return cast(V); } // Create and return a placeholder, which will later be RAUW'd. Constant *C = new ConstantPlaceHolder(Ty, Context); ValuePtrs[Idx] = C; return C; } Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { // Bail out for a clearly invalid value. This would make us call resize(0) if (Idx == UINT_MAX) return nullptr; if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { // If the types don't match, it's invalid. if (Ty && Ty != V->getType()) return nullptr; return V; } // No type specified, must be invalid reference. if (!Ty) return nullptr; // Create and return a placeholder, which will later be RAUW'd. Value *V = new Argument(Ty); ValuePtrs[Idx] = V; return V; } /// Once all constants are read, this method bulk resolves any forward /// references. The idea behind this is that we sometimes get constants (such /// as large arrays) which reference *many* forward ref constants. Replacing /// each of these causes a lot of thrashing when building/reuniquing the /// constant. Instead of doing this, we look at all the uses and rewrite all /// the place holders at once for any constant that uses a placeholder. void BitcodeReaderValueList::resolveConstantForwardRefs() { // Sort the values by-pointer so that they are efficient to look up with a // binary search. std::sort(ResolveConstants.begin(), ResolveConstants.end()); SmallVector NewOps; while (!ResolveConstants.empty()) { Value *RealVal = operator[](ResolveConstants.back().second); Constant *Placeholder = ResolveConstants.back().first; ResolveConstants.pop_back(); // Loop over all users of the placeholder, updating them to reference the // new value. If they reference more than one placeholder, update them all // at once. while (!Placeholder->use_empty()) { auto UI = Placeholder->user_begin(); User *U = *UI; // If the using object isn't uniqued, just update the operands. This // handles instructions and initializers for global variables. if (!isa(U) || isa(U)) { UI.getUse().set(RealVal); continue; } // Otherwise, we have a constant that uses the placeholder. Replace that // constant with a new constant that has *all* placeholder uses updated. Constant *UserC = cast(U); for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); I != E; ++I) { Value *NewOp; if (!isa(*I)) { // Not a placeholder reference. NewOp = *I; } else if (*I == Placeholder) { // Common case is that it just references this one placeholder. NewOp = RealVal; } else { // Otherwise, look up the placeholder in ResolveConstants. ResolveConstantsTy::iterator It = std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), std::pair(cast(*I), 0)); assert(It != ResolveConstants.end() && It->first == *I); NewOp = operator[](It->second); } NewOps.push_back(cast(NewOp)); } // Make the new constant. Constant *NewC; if (ConstantArray *UserCA = dyn_cast(UserC)) { NewC = ConstantArray::get(UserCA->getType(), NewOps); } else if (ConstantStruct *UserCS = dyn_cast(UserC)) { NewC = ConstantStruct::get(UserCS->getType(), NewOps); } else if (isa(UserC)) { NewC = ConstantVector::get(NewOps); } else { assert(isa(UserC) && "Must be a ConstantExpr."); NewC = cast(UserC)->getWithOperands(NewOps); } UserC->replaceAllUsesWith(NewC); UserC->destroyConstant(); NewOps.clear(); } // Update all ValueHandles, they should be the only users at this point. Placeholder->replaceAllUsesWith(RealVal); delete Placeholder; } } void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { if (Idx == size()) { push_back(MD); return; } if (Idx >= size()) resize(Idx+1); TrackingMDRef &OldMD = MDValuePtrs[Idx]; if (!OldMD) { OldMD.reset(MD); return; } // If there was a forward reference to this value, replace it. TempMDTuple PrevMD(cast(OldMD.get())); PrevMD->replaceAllUsesWith(MD); --NumFwdRefs; } Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { if (Idx >= size()) resize(Idx + 1); if (Metadata *MD = MDValuePtrs[Idx]) return MD; // Track forward refs to be resolved later. if (AnyFwdRefs) { MinFwdRef = std::min(MinFwdRef, Idx); MaxFwdRef = std::max(MaxFwdRef, Idx); } else { AnyFwdRefs = true; MinFwdRef = MaxFwdRef = Idx; } ++NumFwdRefs; // Create and return a placeholder, which will later be RAUW'd. Metadata *MD = MDNode::getTemporary(Context, None).release(); MDValuePtrs[Idx].reset(MD); return MD; } void BitcodeReaderMDValueList::tryToResolveCycles() { if (!AnyFwdRefs) // Nothing to do. return; if (NumFwdRefs) // Still forward references... can't resolve cycles. return; // Resolve any cycles. for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { auto &MD = MDValuePtrs[I]; auto *N = dyn_cast_or_null(MD); if (!N) continue; assert(!N->isTemporary() && "Unexpected forward reference"); N->resolveCycles(); } // Make sure we return early again until there's another forward ref. AnyFwdRefs = false; } Type *BitcodeReader::getTypeByID(unsigned ID) { // The type table size is always specified correctly. if (ID >= TypeList.size()) return nullptr; if (Type *Ty = TypeList[ID]) return Ty; // If we have a forward reference, the only possible case is when it is to a // named struct. Just create a placeholder for now. return TypeList[ID] = createIdentifiedStructType(Context); } StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, StringRef Name) { auto *Ret = StructType::create(Context, Name); IdentifiedStructTypes.push_back(Ret); return Ret; } StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { auto *Ret = StructType::create(Context); IdentifiedStructTypes.push_back(Ret); return Ret; } //===----------------------------------------------------------------------===// // Functions for parsing blocks from the bitcode file //===----------------------------------------------------------------------===// /// \brief This fills an AttrBuilder object with the LLVM attributes that have /// been decoded from the given integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. static void decodeLLVMAttributesForBitcode(AttrBuilder &B, uint64_t EncodedAttrs) { // FIXME: Remove in 4.0. // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); if (Alignment) B.addAlignmentAttr(Alignment); B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | (EncodedAttrs & 0xffff)); } std::error_code BitcodeReader::parseAttributeBlock() { if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) return error("Invalid record"); if (!MAttributes.empty()) return error("Invalid multiple blocks"); SmallVector Record; SmallVector Attrs; // Read all the records. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] // FIXME: Remove in 4.0. if (Record.size() & 1) return error("Invalid record"); for (unsigned i = 0, e = Record.size(); i != e; i += 2) { AttrBuilder B; decodeLLVMAttributesForBitcode(B, Record[i+1]); Attrs.push_back(AttributeSet::get(Context, Record[i], B)); } MAttributes.push_back(AttributeSet::get(Context, Attrs)); Attrs.clear(); break; } case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] for (unsigned i = 0, e = Record.size(); i != e; ++i) Attrs.push_back(MAttributeGroups[Record[i]]); MAttributes.push_back(AttributeSet::get(Context, Attrs)); Attrs.clear(); break; } } } } // Returns Attribute::None on unrecognized codes. static Attribute::AttrKind getAttrFromCode(uint64_t Code) { switch (Code) { default: return Attribute::None; case bitc::ATTR_KIND_ALIGNMENT: return Attribute::Alignment; case bitc::ATTR_KIND_ALWAYS_INLINE: return Attribute::AlwaysInline; case bitc::ATTR_KIND_ARGMEMONLY: return Attribute::ArgMemOnly; case bitc::ATTR_KIND_BUILTIN: return Attribute::Builtin; case bitc::ATTR_KIND_BY_VAL: return Attribute::ByVal; case bitc::ATTR_KIND_IN_ALLOCA: return Attribute::InAlloca; case bitc::ATTR_KIND_COLD: return Attribute::Cold; case bitc::ATTR_KIND_CONVERGENT: return Attribute::Convergent; case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: return Attribute::InaccessibleMemOnly; case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: return Attribute::InaccessibleMemOrArgMemOnly; case bitc::ATTR_KIND_INLINE_HINT: return Attribute::InlineHint; case bitc::ATTR_KIND_IN_REG: return Attribute::InReg; case bitc::ATTR_KIND_JUMP_TABLE: return Attribute::JumpTable; case bitc::ATTR_KIND_MIN_SIZE: return Attribute::MinSize; case bitc::ATTR_KIND_NAKED: return Attribute::Naked; case bitc::ATTR_KIND_NEST: return Attribute::Nest; case bitc::ATTR_KIND_NO_ALIAS: return Attribute::NoAlias; case bitc::ATTR_KIND_NO_BUILTIN: return Attribute::NoBuiltin; case bitc::ATTR_KIND_NO_CAPTURE: return Attribute::NoCapture; case bitc::ATTR_KIND_NO_DUPLICATE: return Attribute::NoDuplicate; case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: return Attribute::NoImplicitFloat; case bitc::ATTR_KIND_NO_INLINE: return Attribute::NoInline; case bitc::ATTR_KIND_NO_RECURSE: return Attribute::NoRecurse; case bitc::ATTR_KIND_NON_LAZY_BIND: return Attribute::NonLazyBind; case bitc::ATTR_KIND_NON_NULL: return Attribute::NonNull; case bitc::ATTR_KIND_DEREFERENCEABLE: return Attribute::Dereferenceable; case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: return Attribute::DereferenceableOrNull; case bitc::ATTR_KIND_NO_RED_ZONE: return Attribute::NoRedZone; case bitc::ATTR_KIND_NO_RETURN: return Attribute::NoReturn; case bitc::ATTR_KIND_NO_UNWIND: return Attribute::NoUnwind; case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: return Attribute::OptimizeForSize; case bitc::ATTR_KIND_OPTIMIZE_NONE: return Attribute::OptimizeNone; case bitc::ATTR_KIND_READ_NONE: return Attribute::ReadNone; case bitc::ATTR_KIND_READ_ONLY: return Attribute::ReadOnly; case bitc::ATTR_KIND_RETURNED: return Attribute::Returned; case bitc::ATTR_KIND_RETURNS_TWICE: return Attribute::ReturnsTwice; case bitc::ATTR_KIND_S_EXT: return Attribute::SExt; case bitc::ATTR_KIND_STACK_ALIGNMENT: return Attribute::StackAlignment; case bitc::ATTR_KIND_STACK_PROTECT: return Attribute::StackProtect; case bitc::ATTR_KIND_STACK_PROTECT_REQ: return Attribute::StackProtectReq; case bitc::ATTR_KIND_STACK_PROTECT_STRONG: return Attribute::StackProtectStrong; case bitc::ATTR_KIND_SAFESTACK: return Attribute::SafeStack; case bitc::ATTR_KIND_STRUCT_RET: return Attribute::StructRet; case bitc::ATTR_KIND_SANITIZE_ADDRESS: return Attribute::SanitizeAddress; case bitc::ATTR_KIND_SANITIZE_THREAD: return Attribute::SanitizeThread; case bitc::ATTR_KIND_SANITIZE_MEMORY: return Attribute::SanitizeMemory; case bitc::ATTR_KIND_UW_TABLE: return Attribute::UWTable; case bitc::ATTR_KIND_Z_EXT: return Attribute::ZExt; } } std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, unsigned &Alignment) { // Note: Alignment in bitcode files is incremented by 1, so that zero // can be used for default alignment. if (Exponent > Value::MaxAlignmentExponent + 1) return error("Invalid alignment value"); Alignment = (1 << static_cast(Exponent)) >> 1; return std::error_code(); } std::error_code BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { *Kind = getAttrFromCode(Code); if (*Kind == Attribute::None) return error(BitcodeError::CorruptedBitcode, "Unknown attribute kind (" + Twine(Code) + ")"); return std::error_code(); } std::error_code BitcodeReader::parseAttributeGroupBlock() { if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) return error("Invalid record"); if (!MAttributeGroups.empty()) return error("Invalid multiple blocks"); SmallVector Record; // Read all the records. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] if (Record.size() < 3) return error("Invalid record"); uint64_t GrpID = Record[0]; uint64_t Idx = Record[1]; // Index of the object this attribute refers to. AttrBuilder B; for (unsigned i = 2, e = Record.size(); i != e; ++i) { if (Record[i] == 0) { // Enum attribute Attribute::AttrKind Kind; if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) return EC; B.addAttribute(Kind); } else if (Record[i] == 1) { // Integer attribute Attribute::AttrKind Kind; if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) return EC; if (Kind == Attribute::Alignment) B.addAlignmentAttr(Record[++i]); else if (Kind == Attribute::StackAlignment) B.addStackAlignmentAttr(Record[++i]); else if (Kind == Attribute::Dereferenceable) B.addDereferenceableAttr(Record[++i]); else if (Kind == Attribute::DereferenceableOrNull) B.addDereferenceableOrNullAttr(Record[++i]); } else { // String attribute assert((Record[i] == 3 || Record[i] == 4) && "Invalid attribute group entry"); bool HasValue = (Record[i++] == 4); SmallString<64> KindStr; SmallString<64> ValStr; while (Record[i] != 0 && i != e) KindStr += Record[i++]; assert(Record[i] == 0 && "Kind string not null terminated"); if (HasValue) { // Has a value associated with it. ++i; // Skip the '0' that terminates the "kind" string. while (Record[i] != 0 && i != e) ValStr += Record[i++]; assert(Record[i] == 0 && "Value string not null terminated"); } B.addAttribute(KindStr.str(), ValStr.str()); } } MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); break; } } } } std::error_code BitcodeReader::parseTypeTable() { if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) return error("Invalid record"); return parseTypeTableBody(); } std::error_code BitcodeReader::parseTypeTableBody() { if (!TypeList.empty()) return error("Invalid multiple blocks"); SmallVector Record; unsigned NumRecords = 0; SmallString<64> TypeName; // Read all the records for this type table. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: if (NumRecords != TypeList.size()) return error("Malformed block"); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Type *ResultTy = nullptr; switch (Stream.readRecord(Entry.ID, Record)) { default: return error("Invalid value"); case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] // TYPE_CODE_NUMENTRY contains a count of the number of types in the // type list. This allows us to reserve space. if (Record.size() < 1) return error("Invalid record"); TypeList.resize(Record[0]); continue; case bitc::TYPE_CODE_VOID: // VOID ResultTy = Type::getVoidTy(Context); break; case bitc::TYPE_CODE_HALF: // HALF ResultTy = Type::getHalfTy(Context); break; case bitc::TYPE_CODE_FLOAT: // FLOAT ResultTy = Type::getFloatTy(Context); break; case bitc::TYPE_CODE_DOUBLE: // DOUBLE ResultTy = Type::getDoubleTy(Context); break; case bitc::TYPE_CODE_X86_FP80: // X86_FP80 ResultTy = Type::getX86_FP80Ty(Context); break; case bitc::TYPE_CODE_FP128: // FP128 ResultTy = Type::getFP128Ty(Context); break; case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 ResultTy = Type::getPPC_FP128Ty(Context); break; case bitc::TYPE_CODE_LABEL: // LABEL ResultTy = Type::getLabelTy(Context); break; case bitc::TYPE_CODE_METADATA: // METADATA ResultTy = Type::getMetadataTy(Context); break; case bitc::TYPE_CODE_X86_MMX: // X86_MMX ResultTy = Type::getX86_MMXTy(Context); break; case bitc::TYPE_CODE_TOKEN: // TOKEN ResultTy = Type::getTokenTy(Context); break; case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] if (Record.size() < 1) return error("Invalid record"); uint64_t NumBits = Record[0]; if (NumBits < IntegerType::MIN_INT_BITS || NumBits > IntegerType::MAX_INT_BITS) return error("Bitwidth for integer type out of range"); ResultTy = IntegerType::get(Context, NumBits); break; } case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or // [pointee type, address space] if (Record.size() < 1) return error("Invalid record"); unsigned AddressSpace = 0; if (Record.size() == 2) AddressSpace = Record[1]; ResultTy = getTypeByID(Record[0]); if (!ResultTy || !PointerType::isValidElementType(ResultTy)) return error("Invalid type"); ResultTy = PointerType::get(ResultTy, AddressSpace); break; } case bitc::TYPE_CODE_FUNCTION_OLD: { // FIXME: attrid is dead, remove it in LLVM 4.0 // FUNCTION: [vararg, attrid, retty, paramty x N] if (Record.size() < 3) return error("Invalid record"); SmallVector ArgTys; for (unsigned i = 3, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) ArgTys.push_back(T); else break; } ResultTy = getTypeByID(Record[2]); if (!ResultTy || ArgTys.size() < Record.size()-3) return error("Invalid type"); ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_FUNCTION: { // FUNCTION: [vararg, retty, paramty x N] if (Record.size() < 2) return error("Invalid record"); SmallVector ArgTys; for (unsigned i = 2, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) { if (!FunctionType::isValidArgumentType(T)) return error("Invalid function argument type"); ArgTys.push_back(T); } else break; } ResultTy = getTypeByID(Record[1]); if (!ResultTy || ArgTys.size() < Record.size()-2) return error("Invalid type"); ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] if (Record.size() < 1) return error("Invalid record"); SmallVector EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) EltTys.push_back(T); else break; } if (EltTys.size() != Record.size()-1) return error("Invalid type"); ResultTy = StructType::get(Context, EltTys, Record[0]); break; } case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] if (convertToString(Record, 0, TypeName)) return error("Invalid record"); continue; case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] if (Record.size() < 1) return error("Invalid record"); if (NumRecords >= TypeList.size()) return error("Invalid TYPE table"); // Check to see if this was forward referenced, if so fill in the temp. StructType *Res = cast_or_null(TypeList[NumRecords]); if (Res) { Res->setName(TypeName); TypeList[NumRecords] = nullptr; } else // Otherwise, create a new struct. Res = createIdentifiedStructType(Context, TypeName); TypeName.clear(); SmallVector EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) EltTys.push_back(T); else break; } if (EltTys.size() != Record.size()-1) return error("Invalid record"); Res->setBody(EltTys, Record[0]); ResultTy = Res; break; } case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] if (Record.size() != 1) return error("Invalid record"); if (NumRecords >= TypeList.size()) return error("Invalid TYPE table"); // Check to see if this was forward referenced, if so fill in the temp. StructType *Res = cast_or_null(TypeList[NumRecords]); if (Res) { Res->setName(TypeName); TypeList[NumRecords] = nullptr; } else // Otherwise, create a new struct with no body. Res = createIdentifiedStructType(Context, TypeName); TypeName.clear(); ResultTy = Res; break; } case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] if (Record.size() < 2) return error("Invalid record"); ResultTy = getTypeByID(Record[1]); if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) return error("Invalid type"); ResultTy = ArrayType::get(ResultTy, Record[0]); break; case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] if (Record.size() < 2) return error("Invalid record"); if (Record[0] == 0) return error("Invalid vector length"); ResultTy = getTypeByID(Record[1]); if (!ResultTy || !StructType::isValidElementType(ResultTy)) return error("Invalid type"); ResultTy = VectorType::get(ResultTy, Record[0]); break; } if (NumRecords >= TypeList.size()) return error("Invalid TYPE table"); if (TypeList[NumRecords]) return error( "Invalid TYPE table: Only named structs can be forward referenced"); assert(ResultTy && "Didn't read a type?"); TypeList[NumRecords++] = ResultTy; } } std::error_code BitcodeReader::parseOperandBundleTags() { if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) return error("Invalid record"); if (!BundleTags.empty()) return error("Invalid multiple blocks"); SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Tags are implicitly mapped to integers by their order. if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) return error("Invalid record"); // OPERAND_BUNDLE_TAG: [strchr x N] BundleTags.emplace_back(); if (convertToString(Record, 0, BundleTags.back())) return error("Invalid record"); Record.clear(); } } /// Associate a value with its name from the given index in the provided record. ErrorOr BitcodeReader::recordValue(SmallVectorImpl &Record, unsigned NameIndex, Triple &TT) { SmallString<128> ValueName; if (convertToString(Record, NameIndex, ValueName)) return error("Invalid record"); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size() || !ValueList[ValueID]) return error("Invalid record"); Value *V = ValueList[ValueID]; StringRef NameStr(ValueName.data(), ValueName.size()); if (NameStr.find_first_of(0) != StringRef::npos) return error("Invalid value name"); V->setName(NameStr); auto *GO = dyn_cast(V); if (GO) { if (GO->getComdat() == reinterpret_cast(1)) { if (TT.isOSBinFormatMachO()) GO->setComdat(nullptr); else GO->setComdat(TheModule->getOrInsertComdat(V->getName())); } } return V; } /// Parse the value symbol table at either the current parsing location or /// at the given bit offset if provided. std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { uint64_t CurrentBit; // Pass in the Offset to distinguish between calling for the module-level // VST (where we want to jump to the VST offset) and the function-level // VST (where we don't). if (Offset > 0) { // Save the current parsing location so we can jump back at the end // of the VST read. CurrentBit = Stream.GetCurrentBitNo(); Stream.JumpToBit(Offset * 32); #ifndef NDEBUG // Do some checking if we are in debug mode. BitstreamEntry Entry = Stream.advance(); assert(Entry.Kind == BitstreamEntry::SubBlock); assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); #else // In NDEBUG mode ignore the output so we don't get an unused variable // warning. Stream.advance(); #endif } // Compute the delta between the bitcode indices in the VST (the word offset // to the word-aligned ENTER_SUBBLOCK for the function block, and that // expected by the lazy reader. The reader's EnterSubBlock expects to have // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID // (size BlockIDWidth). Note that we access the stream's AbbrevID width here // just before entering the VST subblock because: 1) the EnterSubBlock // changes the AbbrevID width; 2) the VST block is nested within the same // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same // AbbrevID width before calling EnterSubBlock; and 3) when we want to // jump to the FUNCTION_BLOCK using this offset later, we don't want // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. unsigned FuncBitcodeOffsetDelta = Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) return error("Invalid record"); SmallVector Record; Triple TT(TheModule->getTargetTriple()); // Read all the records for this value table. SmallString<128> ValueName; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: if (Offset > 0) Stream.JumpToBit(CurrentBit); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: unknown type. break; case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] ErrorOr ValOrErr = recordValue(Record, 1, TT); if (std::error_code EC = ValOrErr.getError()) return EC; ValOrErr.get(); break; } case bitc::VST_CODE_FNENTRY: { // VST_FNENTRY: [valueid, offset, namechar x N] ErrorOr ValOrErr = recordValue(Record, 2, TT); if (std::error_code EC = ValOrErr.getError()) return EC; Value *V = ValOrErr.get(); auto *GO = dyn_cast(V); if (!GO) { // If this is an alias, need to get the actual Function object // it aliases, in order to set up the DeferredFunctionInfo entry below. auto *GA = dyn_cast(V); if (GA) GO = GA->getBaseObject(); assert(GO); } uint64_t FuncWordOffset = Record[1]; Function *F = dyn_cast(GO); assert(F); uint64_t FuncBitOffset = FuncWordOffset * 32; DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; // Set the LastFunctionBlockBit to point to the last function block. // Later when parsing is resumed after function materialization, // we can simply skip that last function block. if (FuncBitOffset > LastFunctionBlockBit) LastFunctionBlockBit = FuncBitOffset; break; } case bitc::VST_CODE_BBENTRY: { if (convertToString(Record, 1, ValueName)) return error("Invalid record"); BasicBlock *BB = getBasicBlock(Record[0]); if (!BB) return error("Invalid record"); BB->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } } } } /// Parse a single METADATA_KIND record, inserting result in MDKindMap. std::error_code BitcodeReader::parseMetadataKindRecord(SmallVectorImpl &Record) { if (Record.size() < 2) return error("Invalid record"); unsigned Kind = Record[0]; SmallString<8> Name(Record.begin() + 1, Record.end()); unsigned NewKind = TheModule->getMDKindID(Name.str()); if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) return error("Conflicting METADATA_KIND records"); return std::error_code(); } static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing /// module level metadata. std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { IsMetadataMaterialized = true; unsigned NextMDValueNo = MDValueList.size(); if (ModuleLevel && SeenModuleValuesRecord) { // Now that we are parsing the module level metadata, we want to restart // the numbering of the MD values, and replace temp MD created earlier // with their real values. If we saw a METADATA_VALUE record then we // would have set the MDValueList size to the number specified in that // record, to support parsing function-level metadata first, and we need // to reset back to 0 to fill the MDValueList in with the parsed module // The function-level metadata parsing should have reset the MDValueList // size back to the value reported by the METADATA_VALUE record, saved in // NumModuleMDs. assert(NumModuleMDs == MDValueList.size() && "Expected MDValueList to only contain module level values"); NextMDValueNo = 0; } if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) return error("Invalid record"); SmallVector Record; auto getMD = [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; auto getMDOrNull = [&](unsigned ID) -> Metadata *{ if (ID) return getMD(ID - 1); return nullptr; }; auto getMDString = [&](unsigned ID) -> MDString *{ // This requires that the ID is not really a forward reference. In // particular, the MDString must already have been resolved. return cast_or_null(getMDOrNull(ID)); }; #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) // Read all the records. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: MDValueList.tryToResolveCycles(); assert((!(ModuleLevel && SeenModuleValuesRecord) || NumModuleMDs == MDValueList.size()) && "Inconsistent bitcode: METADATA_VALUES mismatch"); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); unsigned Code = Stream.readRecord(Entry.ID, Record); bool IsDistinct = false; switch (Code) { default: // Default behavior: ignore. break; case bitc::METADATA_NAME: { // Read name of the named metadata. SmallString<8> Name(Record.begin(), Record.end()); Record.clear(); Code = Stream.ReadCode(); unsigned NextBitCode = Stream.readRecord(Code, Record); if (NextBitCode != bitc::METADATA_NAMED_NODE) return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); // Read named metadata elements. unsigned Size = Record.size(); NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); for (unsigned i = 0; i != Size; ++i) { MDNode *MD = dyn_cast_or_null(MDValueList.getValueFwdRef(Record[i])); if (!MD) return error("Invalid record"); NMD->addOperand(MD); } break; } case bitc::METADATA_OLD_FN_NODE: { // FIXME: Remove in 4.0. // This is a LocalAsMetadata record, the only type of function-local // metadata. if (Record.size() % 2 == 1) return error("Invalid record"); // If this isn't a LocalAsMetadata record, we're dropping it. This used // to be legal, but there's no upgrade path. auto dropRecord = [&] { MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); }; if (Record.size() != 2) { dropRecord(); break; } Type *Ty = getTypeByID(Record[0]); if (Ty->isMetadataTy() || Ty->isVoidTy()) { dropRecord(); break; } MDValueList.assignValue( LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), NextMDValueNo++); break; } case bitc::METADATA_OLD_NODE: { // FIXME: Remove in 4.0. if (Record.size() % 2 == 1) return error("Invalid record"); unsigned Size = Record.size(); SmallVector Elts; for (unsigned i = 0; i != Size; i += 2) { Type *Ty = getTypeByID(Record[i]); if (!Ty) return error("Invalid record"); if (Ty->isMetadataTy()) Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); else if (!Ty->isVoidTy()) { auto *MD = ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); assert(isa(MD) && "Expected non-function-local metadata"); Elts.push_back(MD); } else Elts.push_back(nullptr); } MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); break; } case bitc::METADATA_VALUE: { if (Record.size() != 2) return error("Invalid record"); Type *Ty = getTypeByID(Record[0]); if (Ty->isMetadataTy() || Ty->isVoidTy()) return error("Invalid record"); MDValueList.assignValue( ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), NextMDValueNo++); break; } case bitc::METADATA_DISTINCT_NODE: IsDistinct = true; // fallthrough... case bitc::METADATA_NODE: { SmallVector Elts; Elts.reserve(Record.size()); for (unsigned ID : Record) Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) : MDNode::get(Context, Elts), NextMDValueNo++); break; } case bitc::METADATA_LOCATION: { if (Record.size() != 5) return error("Invalid record"); unsigned Line = Record[1]; unsigned Column = Record[2]; MDNode *Scope = cast(MDValueList.getValueFwdRef(Record[3])); Metadata *InlinedAt = Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; MDValueList.assignValue( GET_OR_DISTINCT(DILocation, Record[0], (Context, Line, Column, Scope, InlinedAt)), NextMDValueNo++); break; } case bitc::METADATA_GENERIC_DEBUG: { if (Record.size() < 4) return error("Invalid record"); unsigned Tag = Record[1]; unsigned Version = Record[2]; if (Tag >= 1u << 16 || Version != 0) return error("Invalid record"); auto *Header = getMDString(Record[3]); SmallVector DwarfOps; for (unsigned I = 4, E = Record.size(); I != E; ++I) DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) : nullptr); MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], (Context, Tag, Header, DwarfOps)), NextMDValueNo++); break; } case bitc::METADATA_SUBRANGE: { if (Record.size() != 3) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DISubrange, Record[0], (Context, Record[1], unrotateSign(Record[2]))), NextMDValueNo++); break; } case bitc::METADATA_ENUMERATOR: { if (Record.size() != 3) return error("Invalid record"); MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], (Context, unrotateSign(Record[1]), getMDString(Record[2]))), NextMDValueNo++); break; } case bitc::METADATA_BASIC_TYPE: { if (Record.size() != 6) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIBasicType, Record[0], (Context, Record[1], getMDString(Record[2]), Record[3], Record[4], Record[5])), NextMDValueNo++); break; } case bitc::METADATA_DERIVED_TYPE: { if (Record.size() != 12) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIDerivedType, Record[0], (Context, Record[1], getMDString(Record[2]), getMDOrNull(Record[3]), Record[4], getMDOrNull(Record[5]), getMDOrNull(Record[6]), Record[7], Record[8], Record[9], Record[10], getMDOrNull(Record[11]))), NextMDValueNo++); break; } case bitc::METADATA_COMPOSITE_TYPE: { if (Record.size() != 16) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DICompositeType, Record[0], (Context, Record[1], getMDString(Record[2]), getMDOrNull(Record[3]), Record[4], getMDOrNull(Record[5]), getMDOrNull(Record[6]), Record[7], Record[8], Record[9], Record[10], getMDOrNull(Record[11]), Record[12], getMDOrNull(Record[13]), getMDOrNull(Record[14]), getMDString(Record[15]))), NextMDValueNo++); break; } case bitc::METADATA_SUBROUTINE_TYPE: { if (Record.size() != 3) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DISubroutineType, Record[0], (Context, Record[1], getMDOrNull(Record[2]))), NextMDValueNo++); break; } case bitc::METADATA_MODULE: { if (Record.size() != 6) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIModule, Record[0], (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDString(Record[4]), getMDString(Record[5]))), NextMDValueNo++); break; } case bitc::METADATA_FILE: { if (Record.size() != 3) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), getMDString(Record[2]))), NextMDValueNo++); break; } case bitc::METADATA_COMPILE_UNIT: { if (Record.size() < 14 || Record.size() > 16) return error("Invalid record"); // Ignore Record[0], which indicates whether this compile unit is // distinct. It's always distinct. MDValueList.assignValue( DICompileUnit::getDistinct( Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), getMDOrNull(Record[11]), getMDOrNull(Record[12]), getMDOrNull(Record[13]), Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), Record.size() <= 14 ? 0 : Record[14]), NextMDValueNo++); break; } case bitc::METADATA_SUBPROGRAM: { if (Record.size() != 18 && Record.size() != 19) return error("Invalid record"); bool HasFn = Record.size() == 19; DISubprogram *SP = GET_OR_DISTINCT( DISubprogram, Record[0] || Record[8], // All definitions should be distinct. (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], getMDOrNull(Record[6]), Record[7], Record[8], Record[9], getMDOrNull(Record[10]), Record[11], Record[12], Record[13], Record[14], getMDOrNull(Record[15 + HasFn]), getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); MDValueList.assignValue(SP, NextMDValueNo++); // Upgrade sp->function mapping to function->sp mapping. if (HasFn && Record[15]) { if (auto *CMD = dyn_cast(getMDOrNull(Record[15]))) if (auto *F = dyn_cast(CMD->getValue())) { if (F->isMaterializable()) // Defer until materialized; unmaterialized functions may not have // metadata. FunctionsWithSPs[F] = SP; else if (!F->empty()) F->setSubprogram(SP); } } break; } case bitc::METADATA_LEXICAL_BLOCK: { if (Record.size() != 5) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DILexicalBlock, Record[0], (Context, getMDOrNull(Record[1]), getMDOrNull(Record[2]), Record[3], Record[4])), NextMDValueNo++); break; } case bitc::METADATA_LEXICAL_BLOCK_FILE: { if (Record.size() != 4) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DILexicalBlockFile, Record[0], (Context, getMDOrNull(Record[1]), getMDOrNull(Record[2]), Record[3])), NextMDValueNo++); break; } case bitc::METADATA_NAMESPACE: { if (Record.size() != 5) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DINamespace, Record[0], (Context, getMDOrNull(Record[1]), getMDOrNull(Record[2]), getMDString(Record[3]), Record[4])), NextMDValueNo++); break; } case bitc::METADATA_MACRO: { if (Record.size() != 5) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIMacro, Record[0], (Context, Record[1], Record[2], getMDString(Record[3]), getMDString(Record[4]))), NextMDValueNo++); break; } case bitc::METADATA_MACRO_FILE: { if (Record.size() != 5) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIMacroFile, Record[0], (Context, Record[1], Record[2], getMDOrNull(Record[3]), getMDOrNull(Record[4]))), NextMDValueNo++); break; } case bitc::METADATA_TEMPLATE_TYPE: { if (Record.size() != 3) return error("Invalid record"); MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, Record[0], (Context, getMDString(Record[1]), getMDOrNull(Record[2]))), NextMDValueNo++); break; } case bitc::METADATA_TEMPLATE_VALUE: { if (Record.size() != 5) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DITemplateValueParameter, Record[0], (Context, Record[1], getMDString(Record[2]), getMDOrNull(Record[3]), getMDOrNull(Record[4]))), NextMDValueNo++); break; } case bitc::METADATA_GLOBAL_VAR: { if (Record.size() != 11) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIGlobalVariable, Record[0], (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], getMDOrNull(Record[6]), Record[7], Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]))), NextMDValueNo++); break; } case bitc::METADATA_LOCAL_VAR: { // 10th field is for the obseleted 'inlinedAt:' field. if (Record.size() < 8 || Record.size() > 10) return error("Invalid record"); // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or // DW_TAG_arg_variable. bool HasTag = Record.size() > 8; MDValueList.assignValue( GET_OR_DISTINCT(DILocalVariable, Record[0], (Context, getMDOrNull(Record[1 + HasTag]), getMDString(Record[2 + HasTag]), getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], Record[7 + HasTag])), NextMDValueNo++); break; } case bitc::METADATA_EXPRESSION: { if (Record.size() < 1) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIExpression, Record[0], (Context, makeArrayRef(Record).slice(1))), NextMDValueNo++); break; } case bitc::METADATA_OBJC_PROPERTY: { if (Record.size() != 8) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIObjCProperty, Record[0], (Context, getMDString(Record[1]), getMDOrNull(Record[2]), Record[3], getMDString(Record[4]), getMDString(Record[5]), Record[6], getMDOrNull(Record[7]))), NextMDValueNo++); break; } case bitc::METADATA_IMPORTED_ENTITY: { if (Record.size() != 6) return error("Invalid record"); MDValueList.assignValue( GET_OR_DISTINCT(DIImportedEntity, Record[0], (Context, Record[1], getMDOrNull(Record[2]), getMDOrNull(Record[3]), Record[4], getMDString(Record[5]))), NextMDValueNo++); break; } case bitc::METADATA_STRING: { std::string String(Record.begin(), Record.end()); llvm::UpgradeMDStringConstant(String); Metadata *MD = MDString::get(Context, String); MDValueList.assignValue(MD, NextMDValueNo++); break; } case bitc::METADATA_KIND: { // Support older bitcode files that had METADATA_KIND records in a // block with METADATA_BLOCK_ID. if (std::error_code EC = parseMetadataKindRecord(Record)) return EC; break; } } } #undef GET_OR_DISTINCT } /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. std::error_code BitcodeReader::parseMetadataKinds() { if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) return error("Invalid record"); SmallVector Record; // Read all the records. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); unsigned Code = Stream.readRecord(Entry.ID, Record); switch (Code) { default: // Default behavior: ignore. break; case bitc::METADATA_KIND: { if (std::error_code EC = parseMetadataKindRecord(Record)) return EC; break; } } } } /// Decode a signed value stored with the sign bit in the LSB for dense VBR /// encoding. uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { if ((V & 1) == 0) return V >> 1; if (V != 1) return -(V >> 1); // There is no such thing as -0 with integers. "-0" really means MININT. return 1ULL << 63; } /// Resolve all of the initializers for global values and aliases that we can. std::error_code BitcodeReader::resolveGlobalAndAliasInits() { std::vector > GlobalInitWorklist; std::vector > AliasInitWorklist; std::vector > FunctionPrefixWorklist; std::vector > FunctionPrologueWorklist; std::vector > FunctionPersonalityFnWorklist; GlobalInitWorklist.swap(GlobalInits); AliasInitWorklist.swap(AliasInits); FunctionPrefixWorklist.swap(FunctionPrefixes); FunctionPrologueWorklist.swap(FunctionPrologues); FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); while (!GlobalInitWorklist.empty()) { unsigned ValID = GlobalInitWorklist.back().second; if (ValID >= ValueList.size()) { // Not ready to resolve this yet, it requires something later in the file. GlobalInits.push_back(GlobalInitWorklist.back()); } else { if (Constant *C = dyn_cast_or_null(ValueList[ValID])) GlobalInitWorklist.back().first->setInitializer(C); else return error("Expected a constant"); } GlobalInitWorklist.pop_back(); } while (!AliasInitWorklist.empty()) { unsigned ValID = AliasInitWorklist.back().second; if (ValID >= ValueList.size()) { AliasInits.push_back(AliasInitWorklist.back()); } else { Constant *C = dyn_cast_or_null(ValueList[ValID]); if (!C) return error("Expected a constant"); GlobalAlias *Alias = AliasInitWorklist.back().first; if (C->getType() != Alias->getType()) return error("Alias and aliasee types don't match"); Alias->setAliasee(C); } AliasInitWorklist.pop_back(); } while (!FunctionPrefixWorklist.empty()) { unsigned ValID = FunctionPrefixWorklist.back().second; if (ValID >= ValueList.size()) { FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); } else { if (Constant *C = dyn_cast_or_null(ValueList[ValID])) FunctionPrefixWorklist.back().first->setPrefixData(C); else return error("Expected a constant"); } FunctionPrefixWorklist.pop_back(); } while (!FunctionPrologueWorklist.empty()) { unsigned ValID = FunctionPrologueWorklist.back().second; if (ValID >= ValueList.size()) { FunctionPrologues.push_back(FunctionPrologueWorklist.back()); } else { if (Constant *C = dyn_cast_or_null(ValueList[ValID])) FunctionPrologueWorklist.back().first->setPrologueData(C); else return error("Expected a constant"); } FunctionPrologueWorklist.pop_back(); } while (!FunctionPersonalityFnWorklist.empty()) { unsigned ValID = FunctionPersonalityFnWorklist.back().second; if (ValID >= ValueList.size()) { FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); } else { if (Constant *C = dyn_cast_or_null(ValueList[ValID])) FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); else return error("Expected a constant"); } FunctionPersonalityFnWorklist.pop_back(); } return std::error_code(); } static APInt readWideAPInt(ArrayRef Vals, unsigned TypeBits) { SmallVector Words(Vals.size()); std::transform(Vals.begin(), Vals.end(), Words.begin(), BitcodeReader::decodeSignRotatedValue); return APInt(TypeBits, Words); } std::error_code BitcodeReader::parseConstants() { if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) return error("Invalid record"); SmallVector Record; // Read all the records for this value table. Type *CurTy = Type::getInt32Ty(Context); unsigned NextCstNo = ValueList.size(); while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: if (NextCstNo != ValueList.size()) return error("Invalid ronstant reference"); // Once all the constants have been read, go through and resolve forward // references. ValueList.resolveConstantForwardRefs(); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Value *V = nullptr; unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: // Default behavior: unknown constant case bitc::CST_CODE_UNDEF: // UNDEF V = UndefValue::get(CurTy); break; case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] if (Record.empty()) return error("Invalid record"); if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) return error("Invalid record"); CurTy = TypeList[Record[0]]; continue; // Skip the ValueList manipulation. case bitc::CST_CODE_NULL: // NULL V = Constant::getNullValue(CurTy); break; case bitc::CST_CODE_INTEGER: // INTEGER: [intval] if (!CurTy->isIntegerTy() || Record.empty()) return error("Invalid record"); V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); break; case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] if (!CurTy->isIntegerTy() || Record.empty()) return error("Invalid record"); APInt VInt = readWideAPInt(Record, cast(CurTy)->getBitWidth()); V = ConstantInt::get(Context, VInt); break; } case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] if (Record.empty()) return error("Invalid record"); if (CurTy->isHalfTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, APInt(16, (uint16_t)Record[0]))); else if (CurTy->isFloatTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, APInt(32, (uint32_t)Record[0]))); else if (CurTy->isDoubleTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, APInt(64, Record[0]))); else if (CurTy->isX86_FP80Ty()) { // Bits are not stored the same way as a normal i80 APInt, compensate. uint64_t Rearrange[2]; Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); Rearrange[1] = Record[0] >> 48; V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, APInt(80, Rearrange))); } else if (CurTy->isFP128Ty()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, APInt(128, Record))); else if (CurTy->isPPC_FP128Ty()) V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, APInt(128, Record))); else V = UndefValue::get(CurTy); break; } case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] if (Record.empty()) return error("Invalid record"); unsigned Size = Record.size(); SmallVector Elts; if (StructType *STy = dyn_cast(CurTy)) { for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], STy->getElementType(i))); V = ConstantStruct::get(STy, Elts); } else if (ArrayType *ATy = dyn_cast(CurTy)) { Type *EltTy = ATy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantArray::get(ATy, Elts); } else if (VectorType *VTy = dyn_cast(CurTy)) { Type *EltTy = VTy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantVector::get(Elts); } else { V = UndefValue::get(CurTy); } break; } case bitc::CST_CODE_STRING: // STRING: [values] case bitc::CST_CODE_CSTRING: { // CSTRING: [values] if (Record.empty()) return error("Invalid record"); SmallString<16> Elts(Record.begin(), Record.end()); V = ConstantDataArray::getString(Context, Elts, BitCode == bitc::CST_CODE_CSTRING); break; } case bitc::CST_CODE_DATA: {// DATA: [n x value] if (Record.empty()) return error("Invalid record"); Type *EltTy = cast(CurTy)->getElementType(); if (EltTy->isIntegerTy(8)) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::get(Context, Elts); else V = ConstantDataArray::get(Context, Elts); } else if (EltTy->isIntegerTy(16)) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::get(Context, Elts); else V = ConstantDataArray::get(Context, Elts); } else if (EltTy->isIntegerTy(32)) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::get(Context, Elts); else V = ConstantDataArray::get(Context, Elts); } else if (EltTy->isIntegerTy(64)) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::get(Context, Elts); else V = ConstantDataArray::get(Context, Elts); } else if (EltTy->isHalfTy()) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::getFP(Context, Elts); else V = ConstantDataArray::getFP(Context, Elts); } else if (EltTy->isFloatTy()) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::getFP(Context, Elts); else V = ConstantDataArray::getFP(Context, Elts); } else if (EltTy->isDoubleTy()) { SmallVector Elts(Record.begin(), Record.end()); if (isa(CurTy)) V = ConstantDataVector::getFP(Context, Elts); else V = ConstantDataArray::getFP(Context, Elts); } else { return error("Invalid type for value"); } break; } case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] if (Record.size() < 3) return error("Invalid record"); int Opc = getDecodedBinaryOpcode(Record[0], CurTy); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown binop. } else { Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); unsigned Flags = 0; if (Record.size() >= 4) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoSignedWrap; if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (Record[3] & (1 << bitc::PEO_EXACT)) Flags |= SDivOperator::IsExact; } } V = ConstantExpr::get(Opc, LHS, RHS, Flags); } break; } case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] if (Record.size() < 3) return error("Invalid record"); int Opc = getDecodedCastOpcode(Record[0]); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown cast. } else { Type *OpTy = getTypeByID(Record[1]); if (!OpTy) return error("Invalid record"); Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); V = UpgradeBitCastExpr(Opc, Op, CurTy); if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); } break; } case bitc::CST_CODE_CE_INBOUNDS_GEP: case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] unsigned OpNum = 0; Type *PointeeType = nullptr; if (Record.size() % 2) PointeeType = getTypeByID(Record[OpNum++]); SmallVector Elts; while (OpNum != Record.size()) { Type *ElTy = getTypeByID(Record[OpNum++]); if (!ElTy) return error("Invalid record"); Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); } if (PointeeType && PointeeType != cast(Elts[0]->getType()->getScalarType()) ->getElementType()) return error("Explicit gep operator type does not match pointee type " "of pointer operand"); ArrayRef Indices(Elts.begin() + 1, Elts.end()); V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP); break; } case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] if (Record.size() < 3) return error("Invalid record"); Type *SelectorTy = Type::getInt1Ty(Context); // The selector might be an i1 or an // Get the type from the ValueList before getting a forward ref. if (VectorType *VTy = dyn_cast(CurTy)) if (Value *V = ValueList[Record[0]]) if (SelectorTy != V->getType()) SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], SelectorTy), ValueList.getConstantFwdRef(Record[1],CurTy), ValueList.getConstantFwdRef(Record[2],CurTy)); break; } case bitc::CST_CODE_CE_EXTRACTELT : { // CE_EXTRACTELT: [opty, opval, opty, opval] if (Record.size() < 3) return error("Invalid record"); VectorType *OpTy = dyn_cast_or_null(getTypeByID(Record[0])); if (!OpTy) return error("Invalid record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = nullptr; if (Record.size() == 4) { Type *IdxTy = getTypeByID(Record[2]); if (!IdxTy) return error("Invalid record"); Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); } else // TODO: Remove with llvm 4.0 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); if (!Op1) return error("Invalid record"); V = ConstantExpr::getExtractElement(Op0, Op1); break; } case bitc::CST_CODE_CE_INSERTELT : { // CE_INSERTELT: [opval, opval, opty, opval] VectorType *OpTy = dyn_cast(CurTy); if (Record.size() < 3 || !OpTy) return error("Invalid record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy->getElementType()); Constant *Op2 = nullptr; if (Record.size() == 4) { Type *IdxTy = getTypeByID(Record[2]); if (!IdxTy) return error("Invalid record"); Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); } else // TODO: Remove with llvm 4.0 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); if (!Op2) return error("Invalid record"); V = ConstantExpr::getInsertElement(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] VectorType *OpTy = dyn_cast(CurTy); if (Record.size() < 3 || !OpTy) return error("Invalid record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), OpTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] VectorType *RTy = dyn_cast(CurTy); VectorType *OpTy = dyn_cast_or_null(getTypeByID(Record[0])); if (Record.size() < 4 || !RTy || !OpTy) return error("Invalid record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), RTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] if (Record.size() < 4) return error("Invalid record"); Type *OpTy = getTypeByID(Record[0]); if (!OpTy) return error("Invalid record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); if (OpTy->isFPOrFPVectorTy()) V = ConstantExpr::getFCmp(Record[3], Op0, Op1); else V = ConstantExpr::getICmp(Record[3], Op0, Op1); break; } // This maintains backward compatibility, pre-asm dialect keywords. // FIXME: Remove with the 4.0 release. case bitc::CST_CODE_INLINEASM_OLD: { if (Record.size() < 2) return error("Invalid record"); std::string AsmStr, ConstrStr; bool HasSideEffects = Record[0] & 1; bool IsAlignStack = Record[0] >> 1; unsigned AsmStrSize = Record[1]; if (2+AsmStrSize >= Record.size()) return error("Invalid record"); unsigned ConstStrSize = Record[2+AsmStrSize]; if (3+AsmStrSize+ConstStrSize > Record.size()) return error("Invalid record"); for (unsigned i = 0; i != AsmStrSize; ++i) AsmStr += (char)Record[2+i]; for (unsigned i = 0; i != ConstStrSize; ++i) ConstrStr += (char)Record[3+AsmStrSize+i]; PointerType *PTy = cast(CurTy); V = InlineAsm::get(cast(PTy->getElementType()), AsmStr, ConstrStr, HasSideEffects, IsAlignStack); break; } // This version adds support for the asm dialect keywords (e.g., // inteldialect). case bitc::CST_CODE_INLINEASM: { if (Record.size() < 2) return error("Invalid record"); std::string AsmStr, ConstrStr; bool HasSideEffects = Record[0] & 1; bool IsAlignStack = (Record[0] >> 1) & 1; unsigned AsmDialect = Record[0] >> 2; unsigned AsmStrSize = Record[1]; if (2+AsmStrSize >= Record.size()) return error("Invalid record"); unsigned ConstStrSize = Record[2+AsmStrSize]; if (3+AsmStrSize+ConstStrSize > Record.size()) return error("Invalid record"); for (unsigned i = 0; i != AsmStrSize; ++i) AsmStr += (char)Record[2+i]; for (unsigned i = 0; i != ConstStrSize; ++i) ConstrStr += (char)Record[3+AsmStrSize+i]; PointerType *PTy = cast(CurTy); V = InlineAsm::get(cast(PTy->getElementType()), AsmStr, ConstrStr, HasSideEffects, IsAlignStack, InlineAsm::AsmDialect(AsmDialect)); break; } case bitc::CST_CODE_BLOCKADDRESS:{ if (Record.size() < 3) return error("Invalid record"); Type *FnTy = getTypeByID(Record[0]); if (!FnTy) return error("Invalid record"); Function *Fn = dyn_cast_or_null(ValueList.getConstantFwdRef(Record[1],FnTy)); if (!Fn) return error("Invalid record"); // If the function is already parsed we can insert the block address right // away. BasicBlock *BB; unsigned BBID = Record[2]; if (!BBID) // Invalid reference to entry block. return error("Invalid ID"); if (!Fn->empty()) { Function::iterator BBI = Fn->begin(), BBE = Fn->end(); for (size_t I = 0, E = BBID; I != E; ++I) { if (BBI == BBE) return error("Invalid ID"); ++BBI; } BB = &*BBI; } else { // Otherwise insert a placeholder and remember it so it can be inserted // when the function is parsed. auto &FwdBBs = BasicBlockFwdRefs[Fn]; if (FwdBBs.empty()) BasicBlockFwdRefQueue.push_back(Fn); if (FwdBBs.size() < BBID + 1) FwdBBs.resize(BBID + 1); if (!FwdBBs[BBID]) FwdBBs[BBID] = BasicBlock::Create(Context); BB = FwdBBs[BBID]; } V = BlockAddress::get(Fn, BB); break; } } ValueList.assignValue(V, NextCstNo); ++NextCstNo; } } std::error_code BitcodeReader::parseUseLists() { if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) return error("Invalid record"); // Read all the records. SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a use list record. Record.clear(); bool IsBB = false; switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: unknown type. break; case bitc::USELIST_CODE_BB: IsBB = true; // fallthrough case bitc::USELIST_CODE_DEFAULT: { unsigned RecordLength = Record.size(); if (RecordLength < 3) // Records should have at least an ID and two indexes. return error("Invalid record"); unsigned ID = Record.back(); Record.pop_back(); Value *V; if (IsBB) { assert(ID < FunctionBBs.size() && "Basic block not found"); V = FunctionBBs[ID]; } else V = ValueList[ID]; unsigned NumUses = 0; SmallDenseMap Order; for (const Use &U : V->materialized_uses()) { if (++NumUses > Record.size()) break; Order[&U] = Record[NumUses - 1]; } if (Order.size() != Record.size() || NumUses > Record.size()) // Mismatches can happen if the functions are being materialized lazily // (out-of-order), or a value has been upgraded. break; V->sortUseList([&](const Use &L, const Use &R) { return Order.lookup(&L) < Order.lookup(&R); }); break; } } } } /// When we see the block for metadata, remember where it is and then skip it. /// This lets us lazily deserialize the metadata. std::error_code BitcodeReader::rememberAndSkipMetadata() { // Save the current stream state. uint64_t CurBit = Stream.GetCurrentBitNo(); DeferredMetadataInfo.push_back(CurBit); // Skip over the block for now. if (Stream.SkipBlock()) return error("Invalid record"); return std::error_code(); } std::error_code BitcodeReader::materializeMetadata() { for (uint64_t BitPos : DeferredMetadataInfo) { // Move the bit stream to the saved position. Stream.JumpToBit(BitPos); if (std::error_code EC = parseMetadata(true)) return EC; } DeferredMetadataInfo.clear(); return std::error_code(); } void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } void BitcodeReader::saveMDValueList( DenseMap &MDValueToValIDMap, bool OnlyTempMD) { for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) { Metadata *MD = MDValueList[ValID]; auto *N = dyn_cast_or_null(MD); // Save all values if !OnlyTempMD, otherwise just the temporary metadata. if (!OnlyTempMD || (N && N->isTemporary())) { // Will call this after materializing each function, in order to // handle remapping of the function's instructions/metadata. // See if we already have an entry in that case. if (OnlyTempMD && MDValueToValIDMap.count(MD)) { assert(MDValueToValIDMap[MD] == ValID && "Inconsistent metadata value id"); continue; } MDValueToValIDMap[MD] = ValID; } } } /// When we see the block for a function body, remember where it is and then /// skip it. This lets us lazily deserialize the functions. std::error_code BitcodeReader::rememberAndSkipFunctionBody() { // Get the function we are talking about. if (FunctionsWithBodies.empty()) return error("Insufficient function protos"); Function *Fn = FunctionsWithBodies.back(); FunctionsWithBodies.pop_back(); // Save the current stream state. uint64_t CurBit = Stream.GetCurrentBitNo(); assert( (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"); DeferredFunctionInfo[Fn] = CurBit; // Skip over the function block for now. if (Stream.SkipBlock()) return error("Invalid record"); return std::error_code(); } std::error_code BitcodeReader::globalCleanup() { // Patch the initializers for globals and aliases up. resolveGlobalAndAliasInits(); if (!GlobalInits.empty() || !AliasInits.empty()) return error("Malformed global initializer set"); // Look for intrinsic functions which need to be upgraded at some point for (Function &F : *TheModule) { Function *NewFn; if (UpgradeIntrinsicFunction(&F, NewFn)) UpgradedIntrinsics[&F] = NewFn; } // Look for global variables which need to be renamed. for (GlobalVariable &GV : TheModule->globals()) UpgradeGlobalVariable(&GV); // Force deallocation of memory for these vectors to favor the client that // want lazy deserialization. std::vector >().swap(GlobalInits); std::vector >().swap(AliasInits); return std::error_code(); } /// Support for lazy parsing of function bodies. This is required if we /// either have an old bitcode file without a VST forward declaration record, /// or if we have an anonymous function being materialized, since anonymous /// functions do not have a name and are therefore not in the VST. std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { Stream.JumpToBit(NextUnreadBit); if (Stream.AtEndOfStream()) return error("Could not find function in stream"); if (!SeenFirstFunctionBody) return error("Trying to materialize functions before seeing function blocks"); // An old bitcode file with the symbol table at the end would have // finished the parse greedily. assert(SeenValueSymbolTable); SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { default: return error("Expect SubBlock"); case BitstreamEntry::SubBlock: switch (Entry.ID) { default: return error("Expect function block"); case bitc::FUNCTION_BLOCK_ID: if (std::error_code EC = rememberAndSkipFunctionBody()) return EC; NextUnreadBit = Stream.GetCurrentBitNo(); return std::error_code(); } } } } std::error_code BitcodeReader::parseBitcodeVersion() { if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) return error("Invalid record"); // Read all the records. SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { default: case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: // Default behavior: reject return error("Invalid value"); case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x // N] convertToString(Record, 0, ProducerIdentification); break; } case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] unsigned epoch = (unsigned)Record[0]; if (epoch != bitc::BITCODE_CURRENT_EPOCH) { return error( Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); } } } } } std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata) { if (ResumeBit) Stream.JumpToBit(ResumeBit); else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return error("Invalid record"); SmallVector Record; std::vector SectionTable; std::vector GCTable; // Read all the records for this module. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return globalCleanup(); case BitstreamEntry::SubBlock: switch (Entry.ID) { default: // Skip unknown content. if (Stream.SkipBlock()) return error("Invalid record"); break; case bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return error("Malformed block"); break; case bitc::PARAMATTR_BLOCK_ID: if (std::error_code EC = parseAttributeBlock()) return EC; break; case bitc::PARAMATTR_GROUP_BLOCK_ID: if (std::error_code EC = parseAttributeGroupBlock()) return EC; break; case bitc::TYPE_BLOCK_ID_NEW: if (std::error_code EC = parseTypeTable()) return EC; break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (!SeenValueSymbolTable) { // Either this is an old form VST without function index and an // associated VST forward declaration record (which would have caused // the VST to be jumped to and parsed before it was encountered // normally in the stream), or there were no function blocks to // trigger an earlier parsing of the VST. assert(VSTOffset == 0 || FunctionsWithBodies.empty()); if (std::error_code EC = parseValueSymbolTable()) return EC; SeenValueSymbolTable = true; } else { // We must have had a VST forward declaration record, which caused // the parser to jump to and parse the VST earlier. assert(VSTOffset > 0); if (Stream.SkipBlock()) return error("Invalid record"); } break; case bitc::CONSTANTS_BLOCK_ID: if (std::error_code EC = parseConstants()) return EC; if (std::error_code EC = resolveGlobalAndAliasInits()) return EC; break; case bitc::METADATA_BLOCK_ID: if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { if (std::error_code EC = rememberAndSkipMetadata()) return EC; break; } assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); if (std::error_code EC = parseMetadata(true)) return EC; break; case bitc::METADATA_KIND_BLOCK_ID: if (std::error_code EC = parseMetadataKinds()) return EC; break; case bitc::FUNCTION_BLOCK_ID: // If this is the first function body we've seen, reverse the // FunctionsWithBodies list. if (!SeenFirstFunctionBody) { std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); if (std::error_code EC = globalCleanup()) return EC; SeenFirstFunctionBody = true; } if (VSTOffset > 0) { // If we have a VST forward declaration record, make sure we // parse the VST now if we haven't already. It is needed to // set up the DeferredFunctionInfo vector for lazy reading. if (!SeenValueSymbolTable) { if (std::error_code EC = BitcodeReader::parseValueSymbolTable(VSTOffset)) return EC; SeenValueSymbolTable = true; // Fall through so that we record the NextUnreadBit below. // This is necessary in case we have an anonymous function that // is later materialized. Since it will not have a VST entry we // need to fall back to the lazy parse to find its offset. } else { // If we have a VST forward declaration record, but have already // parsed the VST (just above, when the first function body was // encountered here), then we are resuming the parse after // materializing functions. The ResumeBit points to the // start of the last function block recorded in the // DeferredFunctionInfo map. Skip it. if (Stream.SkipBlock()) return error("Invalid record"); continue; } } // Support older bitcode files that did not have the function // index in the VST, nor a VST forward declaration record, as // well as anonymous functions that do not have VST entries. // Build the DeferredFunctionInfo vector on the fly. if (std::error_code EC = rememberAndSkipFunctionBody()) return EC; // Suspend parsing when we reach the function bodies. Subsequent // materialization calls will resume it when necessary. If the bitcode // file is old, the symbol table will be at the end instead and will not // have been seen yet. In this case, just finish the parse now. if (SeenValueSymbolTable) { NextUnreadBit = Stream.GetCurrentBitNo(); return std::error_code(); } break; case bitc::USELIST_BLOCK_ID: if (std::error_code EC = parseUseLists()) return EC; break; case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: if (std::error_code EC = parseOperandBundleTags()) return EC; break; } continue; case BitstreamEntry::Record: // The interesting case. break; } // Read a record. auto BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: break; // Default behavior, ignore unknown content. case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] if (Record.size() < 1) return error("Invalid record"); // Only version #0 and #1 are supported so far. unsigned module_version = Record[0]; switch (module_version) { default: return error("Invalid value"); case 0: UseRelativeIDs = false; break; case 1: UseRelativeIDs = true; break; } break; } case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); TheModule->setTargetTriple(S); break; } case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); TheModule->setDataLayout(S); break; } case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); TheModule->setModuleInlineAsm(S); break; } case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] // FIXME: Remove in 4.0. std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); // Ignore value. break; } case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); SectionTable.push_back(S); break; } case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); GCTable.push_back(S); break; } case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] if (Record.size() < 2) return error("Invalid record"); Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); unsigned ComdatNameSize = Record[1]; std::string ComdatName; ComdatName.reserve(ComdatNameSize); for (unsigned i = 0; i != ComdatNameSize; ++i) ComdatName += (char)Record[2 + i]; Comdat *C = TheModule->getOrInsertComdat(ComdatName); C->setSelectionKind(SK); ComdatList.push_back(C); break; } // GLOBALVAR: [pointer type, isconst, initid, // linkage, alignment, section, visibility, threadlocal, // unnamed_addr, externally_initialized, dllstorageclass, // comdat] case bitc::MODULE_CODE_GLOBALVAR: { if (Record.size() < 6) return error("Invalid record"); Type *Ty = getTypeByID(Record[0]); if (!Ty) return error("Invalid record"); bool isConstant = Record[1] & 1; bool explicitType = Record[1] & 2; unsigned AddressSpace; if (explicitType) { AddressSpace = Record[1] >> 2; } else { if (!Ty->isPointerTy()) return error("Invalid type for value"); AddressSpace = cast(Ty)->getAddressSpace(); Ty = cast(Ty)->getElementType(); } uint64_t RawLinkage = Record[3]; GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); unsigned Alignment; if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) return EC; std::string Section; if (Record[5]) { if (Record[5]-1 >= SectionTable.size()) return error("Invalid ID"); Section = SectionTable[Record[5]-1]; } GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; // Local linkage must have default visibility. if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) // FIXME: Change to an error if non-default in 4.0. Visibility = getDecodedVisibility(Record[6]); GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; if (Record.size() > 7) TLM = getDecodedThreadLocalMode(Record[7]); bool UnnamedAddr = false; if (Record.size() > 8) UnnamedAddr = Record[8]; bool ExternallyInitialized = false; if (Record.size() > 9) ExternallyInitialized = Record[9]; GlobalVariable *NewGV = new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, TLM, AddressSpace, ExternallyInitialized); NewGV->setAlignment(Alignment); if (!Section.empty()) NewGV->setSection(Section); NewGV->setVisibility(Visibility); NewGV->setUnnamedAddr(UnnamedAddr); if (Record.size() > 10) NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); else upgradeDLLImportExportLinkage(NewGV, RawLinkage); ValueList.push_back(NewGV); // Remember which value to use for the global initializer. if (unsigned InitID = Record[2]) GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); if (Record.size() > 11) { if (unsigned ComdatID = Record[11]) { if (ComdatID > ComdatList.size()) return error("Invalid global variable comdat ID"); NewGV->setComdat(ComdatList[ComdatID - 1]); } } else if (hasImplicitComdat(RawLinkage)) { NewGV->setComdat(reinterpret_cast(1)); } break; } // FUNCTION: [type, callingconv, isproto, linkage, paramattr, // alignment, section, visibility, gc, unnamed_addr, // prologuedata, dllstorageclass, comdat, prefixdata] case bitc::MODULE_CODE_FUNCTION: { if (Record.size() < 8) return error("Invalid record"); Type *Ty = getTypeByID(Record[0]); if (!Ty) return error("Invalid record"); if (auto *PTy = dyn_cast(Ty)) Ty = PTy->getElementType(); auto *FTy = dyn_cast(Ty); if (!FTy) return error("Invalid type for value"); auto CC = static_cast(Record[1]); if (CC & ~CallingConv::MaxID) return error("Invalid calling convention ID"); Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, "", TheModule); Func->setCallingConv(CC); bool isProto = Record[2]; uint64_t RawLinkage = Record[3]; Func->setLinkage(getDecodedLinkage(RawLinkage)); Func->setAttributes(getAttributes(Record[4])); unsigned Alignment; if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) return EC; Func->setAlignment(Alignment); if (Record[6]) { if (Record[6]-1 >= SectionTable.size()) return error("Invalid ID"); Func->setSection(SectionTable[Record[6]-1]); } // Local linkage must have default visibility. if (!Func->hasLocalLinkage()) // FIXME: Change to an error if non-default in 4.0. Func->setVisibility(getDecodedVisibility(Record[7])); if (Record.size() > 8 && Record[8]) { if (Record[8]-1 >= GCTable.size()) return error("Invalid ID"); Func->setGC(GCTable[Record[8]-1].c_str()); } bool UnnamedAddr = false; if (Record.size() > 9) UnnamedAddr = Record[9]; Func->setUnnamedAddr(UnnamedAddr); if (Record.size() > 10 && Record[10] != 0) FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); if (Record.size() > 11) Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); else upgradeDLLImportExportLinkage(Func, RawLinkage); if (Record.size() > 12) { if (unsigned ComdatID = Record[12]) { if (ComdatID > ComdatList.size()) return error("Invalid function comdat ID"); Func->setComdat(ComdatList[ComdatID - 1]); } } else if (hasImplicitComdat(RawLinkage)) { Func->setComdat(reinterpret_cast(1)); } if (Record.size() > 13 && Record[13] != 0) FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); if (Record.size() > 14 && Record[14] != 0) FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); ValueList.push_back(Func); // If this is a function with a body, remember the prototype we are // creating now, so that we can match up the body with them later. if (!isProto) { Func->setIsMaterializable(true); FunctionsWithBodies.push_back(Func); DeferredFunctionInfo[Func] = 0; } break; } // ALIAS: [alias type, addrspace, aliasee val#, linkage] // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] case bitc::MODULE_CODE_ALIAS: case bitc::MODULE_CODE_ALIAS_OLD: { bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; if (Record.size() < (3 + (unsigned)NewRecord)) return error("Invalid record"); unsigned OpNum = 0; Type *Ty = getTypeByID(Record[OpNum++]); if (!Ty) return error("Invalid record"); unsigned AddrSpace; if (!NewRecord) { auto *PTy = dyn_cast(Ty); if (!PTy) return error("Invalid type for value"); Ty = PTy->getElementType(); AddrSpace = PTy->getAddressSpace(); } else { AddrSpace = Record[OpNum++]; } auto Val = Record[OpNum++]; auto Linkage = Record[OpNum++]; auto *NewGA = GlobalAlias::create( Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); // Old bitcode files didn't have visibility field. // Local linkage must have default visibility. if (OpNum != Record.size()) { auto VisInd = OpNum++; if (!NewGA->hasLocalLinkage()) // FIXME: Change to an error if non-default in 4.0. NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); } if (OpNum != Record.size()) NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); else upgradeDLLImportExportLinkage(NewGA, Linkage); if (OpNum != Record.size()) NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); if (OpNum != Record.size()) NewGA->setUnnamedAddr(Record[OpNum++]); ValueList.push_back(NewGA); AliasInits.push_back(std::make_pair(NewGA, Val)); break; } /// MODULE_CODE_PURGEVALS: [numvals] case bitc::MODULE_CODE_PURGEVALS: // Trim down the value list to the specified size. if (Record.size() < 1 || Record[0] > ValueList.size()) return error("Invalid record"); ValueList.shrinkTo(Record[0]); break; /// MODULE_CODE_VSTOFFSET: [offset] case bitc::MODULE_CODE_VSTOFFSET: if (Record.size() < 1) return error("Invalid record"); VSTOffset = Record[0]; break; /// MODULE_CODE_METADATA_VALUES: [numvals] case bitc::MODULE_CODE_METADATA_VALUES: if (Record.size() < 1) return error("Invalid record"); assert(!IsMetadataMaterialized); // This record contains the number of metadata values in the module-level // METADATA_BLOCK. It is used to support lazy parsing of metadata as // a postpass, where we will parse function-level metadata first. // This is needed because the ids of metadata are assigned implicitly // based on their ordering in the bitcode, with the function-level // metadata ids starting after the module-level metadata ids. Otherwise, // we would have to parse the module-level metadata block to prime the // MDValueList when we are lazy loading metadata during function // importing. Initialize the MDValueList size here based on the // record value, regardless of whether we are doing lazy metadata // loading, so that we have consistent handling and assertion // checking in parseMetadata for module-level metadata. NumModuleMDs = Record[0]; SeenModuleValuesRecord = true; assert(MDValueList.size() == 0); MDValueList.resize(NumModuleMDs); break; } Record.clear(); } } /// Helper to read the header common to all bitcode files. static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { // Sniff for the signature. if (Stream.Read(8) != 'B' || Stream.Read(8) != 'C' || Stream.Read(4) != 0x0 || Stream.Read(4) != 0xC || Stream.Read(4) != 0xE || Stream.Read(4) != 0xD) return false; return true; } std::error_code BitcodeReader::parseBitcodeInto(std::unique_ptr Streamer, Module *M, bool ShouldLazyLoadMetadata) { TheModule = M; if (std::error_code EC = initStream(std::move(Streamer))) return EC; // Sniff for the signature. if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { if (Stream.AtEndOfStream()) { // We didn't really read a proper Module. return error("Malformed IR file"); } BitstreamEntry Entry = Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block"); if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { parseBitcodeVersion(); continue; } if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule(0, ShouldLazyLoadMetadata); if (Stream.SkipBlock()) return error("Invalid record"); } } ErrorOr BitcodeReader::parseModuleTriple() { if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return error("Invalid record"); SmallVector Record; std::string Triple; // Read all the records for this module. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return Triple; case BitstreamEntry::Record: // The interesting case. break; } // Read a record. switch (Stream.readRecord(Entry.ID, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] std::string S; if (convertToString(Record, 0, S)) return error("Invalid record"); Triple = S; break; } } Record.clear(); } llvm_unreachable("Exit infinite loop"); } ErrorOr BitcodeReader::parseTriple() { if (std::error_code EC = initStream(nullptr)) return EC; // Sniff for the signature. if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::SubBlock: if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModuleTriple(); // Ignore other sub-blocks. if (Stream.SkipBlock()) return error("Malformed block"); continue; case BitstreamEntry::Record: Stream.skipRecord(Entry.ID); continue; } } } ErrorOr BitcodeReader::parseIdentificationBlock() { if (std::error_code EC = initStream(nullptr)) return EC; // Sniff for the signature. if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::SubBlock: if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { if (std::error_code EC = parseBitcodeVersion()) return EC; return ProducerIdentification; } // Ignore other sub-blocks. if (Stream.SkipBlock()) return error("Malformed block"); continue; case BitstreamEntry::Record: Stream.skipRecord(Entry.ID); continue; } } } /// Parse metadata attachments. std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) return error("Invalid record"); SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a metadata attachment record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::METADATA_ATTACHMENT: { unsigned RecordLength = Record.size(); if (Record.empty()) return error("Invalid record"); if (RecordLength % 2 == 0) { // A function attachment. for (unsigned I = 0; I != RecordLength; I += 2) { auto K = MDKindMap.find(Record[I]); if (K == MDKindMap.end()) return error("Invalid ID"); Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); F.setMetadata(K->second, cast(MD)); } continue; } // An instruction attachment. Instruction *Inst = InstructionList[Record[0]]; for (unsigned i = 1; i != RecordLength; i = i+2) { unsigned Kind = Record[i]; DenseMap::iterator I = MDKindMap.find(Kind); if (I == MDKindMap.end()) return error("Invalid ID"); Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); if (isa(Node)) // Drop the attachment. This used to be legal, but there's no // upgrade path. break; Inst->setMetadata(I->second, cast(Node)); if (I->second == LLVMContext::MD_tbaa) InstsWithTBAATag.push_back(Inst); } break; } } } } static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { LLVMContext &Context = PtrType->getContext(); if (!isa(PtrType)) return error(Context, "Load/Store operand is not a pointer type"); Type *ElemType = cast(PtrType)->getElementType(); if (ValType && ValType != ElemType) return error(Context, "Explicit load/store type does not match pointee " "type of pointer operand"); if (!PointerType::isLoadableOrStorableType(ElemType)) return error(Context, "Cannot load/store from pointer"); return std::error_code(); } /// Lazily parse the specified function body block. std::error_code BitcodeReader::parseFunctionBody(Function *F) { if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) return error("Invalid record"); InstructionList.clear(); unsigned ModuleValueListSize = ValueList.size(); unsigned ModuleMDValueListSize = MDValueList.size(); // Add all the function arguments to the value table. for (Argument &I : F->args()) ValueList.push_back(&I); unsigned NextValueNo = ValueList.size(); BasicBlock *CurBB = nullptr; unsigned CurBBNo = 0; DebugLoc LastLoc; auto getLastInstruction = [&]() -> Instruction * { if (CurBB && !CurBB->empty()) return &CurBB->back(); else if (CurBBNo && FunctionBBs[CurBBNo - 1] && !FunctionBBs[CurBBNo - 1]->empty()) return &FunctionBBs[CurBBNo - 1]->back(); return nullptr; }; std::vector OperandBundles; // Read all the records. SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: goto OutOfRecordLoop; case BitstreamEntry::SubBlock: switch (Entry.ID) { default: // Skip unknown content. if (Stream.SkipBlock()) return error("Invalid record"); break; case bitc::CONSTANTS_BLOCK_ID: if (std::error_code EC = parseConstants()) return EC; NextValueNo = ValueList.size(); break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (std::error_code EC = parseValueSymbolTable()) return EC; break; case bitc::METADATA_ATTACHMENT_ID: if (std::error_code EC = parseMetadataAttachment(*F)) return EC; break; case bitc::METADATA_BLOCK_ID: if (std::error_code EC = parseMetadata()) return EC; break; case bitc::USELIST_BLOCK_ID: if (std::error_code EC = parseUseLists()) return EC; break; } continue; case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Instruction *I = nullptr; unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: // Default behavior: reject return error("Invalid value"); case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] if (Record.size() < 1 || Record[0] == 0) return error("Invalid record"); // Create all the basic blocks for the function. FunctionBBs.resize(Record[0]); // See if anything took the address of blocks in this function. auto BBFRI = BasicBlockFwdRefs.find(F); if (BBFRI == BasicBlockFwdRefs.end()) { for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) FunctionBBs[i] = BasicBlock::Create(Context, "", F); } else { auto &BBRefs = BBFRI->second; // Check for invalid basic block references. if (BBRefs.size() > FunctionBBs.size()) return error("Invalid ID"); assert(!BBRefs.empty() && "Unexpected empty array"); assert(!BBRefs.front() && "Invalid reference to entry block"); for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; ++I) if (I < RE && BBRefs[I]) { BBRefs[I]->insertInto(F); FunctionBBs[I] = BBRefs[I]; } else { FunctionBBs[I] = BasicBlock::Create(Context, "", F); } // Erase from the table. BasicBlockFwdRefs.erase(BBFRI); } CurBB = FunctionBBs[0]; continue; } case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN // This record indicates that the last instruction is at the same // location as the previous instruction with a location. I = getLastInstruction(); if (!I) return error("Invalid record"); I->setDebugLoc(LastLoc); I = nullptr; continue; case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] I = getLastInstruction(); if (!I || Record.size() < 4) return error("Invalid record"); unsigned Line = Record[0], Col = Record[1]; unsigned ScopeID = Record[2], IAID = Record[3]; MDNode *Scope = nullptr, *IA = nullptr; if (ScopeID) Scope = cast(MDValueList.getValueFwdRef(ScopeID-1)); if (IAID) IA = cast(MDValueList.getValueFwdRef(IAID-1)); LastLoc = DebugLoc::get(Line, Col, Scope, IA); I->setDebugLoc(LastLoc); I = nullptr; continue; } case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || OpNum+1 > Record.size()) return error("Invalid record"); int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); if (Opc == -1) return error("Invalid record"); I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); InstructionList.push_back(I); if (OpNum < Record.size()) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) cast(I)->setHasNoSignedWrap(true); if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) cast(I)->setHasNoUnsignedWrap(true); } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (Record[OpNum] & (1 << bitc::PEO_EXACT)) cast(I)->setIsExact(true); } else if (isa(I)) { FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); if (FMF.any()) I->setFastMathFlags(FMF); } } break; } case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+2 != Record.size()) return error("Invalid record"); Type *ResTy = getTypeByID(Record[OpNum]); int Opc = getDecodedCastOpcode(Record[OpNum + 1]); if (Opc == -1 || !ResTy) return error("Invalid record"); Instruction *Temp = nullptr; if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { if (Temp) { InstructionList.push_back(Temp); CurBB->getInstList().push_back(Temp); } } else { auto CastOp = (Instruction::CastOps)Opc; if (!CastInst::castIsValid(CastOp, Op, ResTy)) return error("Invalid cast"); I = CastInst::Create(CastOp, Op, ResTy); } InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: case bitc::FUNC_CODE_INST_GEP_OLD: case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] unsigned OpNum = 0; Type *Ty; bool InBounds; if (BitCode == bitc::FUNC_CODE_INST_GEP) { InBounds = Record[OpNum++]; Ty = getTypeByID(Record[OpNum++]); } else { InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; Ty = nullptr; } Value *BasePtr; if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) return error("Invalid record"); if (!Ty) Ty = cast(BasePtr->getType()->getScalarType()) ->getElementType(); else if (Ty != cast(BasePtr->getType()->getScalarType()) ->getElementType()) return error( "Explicit gep type does not match pointee type of pointer operand"); SmallVector GEPIdx; while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return error("Invalid record"); GEPIdx.push_back(Op); } I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); InstructionList.push_back(I); if (InBounds) cast(I)->setIsInBounds(true); break; } case bitc::FUNC_CODE_INST_EXTRACTVAL: { // EXTRACTVAL: [opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return error("Invalid record"); unsigned RecSize = Record.size(); if (OpNum == RecSize) return error("EXTRACTVAL: Invalid instruction with 0 indices"); SmallVector EXTRACTVALIdx; Type *CurTy = Agg->getType(); for (; OpNum != RecSize; ++OpNum) { bool IsArray = CurTy->isArrayTy(); bool IsStruct = CurTy->isStructTy(); uint64_t Index = Record[OpNum]; if (!IsStruct && !IsArray) return error("EXTRACTVAL: Invalid type"); if ((unsigned)Index != Index) return error("Invalid value"); if (IsStruct && Index >= CurTy->subtypes().size()) return error("EXTRACTVAL: Invalid struct index"); if (IsArray && Index >= CurTy->getArrayNumElements()) return error("EXTRACTVAL: Invalid array index"); EXTRACTVALIdx.push_back((unsigned)Index); if (IsStruct) CurTy = CurTy->subtypes()[Index]; else CurTy = CurTy->subtypes()[0]; } I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTVAL: { // INSERTVAL: [opty, opval, opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return error("Invalid record"); Value *Val; if (getValueTypePair(Record, OpNum, NextValueNo, Val)) return error("Invalid record"); unsigned RecSize = Record.size(); if (OpNum == RecSize) return error("INSERTVAL: Invalid instruction with 0 indices"); SmallVector INSERTVALIdx; Type *CurTy = Agg->getType(); for (; OpNum != RecSize; ++OpNum) { bool IsArray = CurTy->isArrayTy(); bool IsStruct = CurTy->isStructTy(); uint64_t Index = Record[OpNum]; if (!IsStruct && !IsArray) return error("INSERTVAL: Invalid type"); if ((unsigned)Index != Index) return error("Invalid value"); if (IsStruct && Index >= CurTy->subtypes().size()) return error("INSERTVAL: Invalid struct index"); if (IsArray && Index >= CurTy->getArrayNumElements()) return error("INSERTVAL: Invalid array index"); INSERTVALIdx.push_back((unsigned)Index); if (IsStruct) CurTy = CurTy->subtypes()[Index]; else CurTy = CurTy->subtypes()[0]; } if (CurTy != Val->getType()) return error("Inserted value type doesn't match aggregate type"); I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] // obsolete form of select // handles select i1 ... in old bitcode unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) return error("Invalid record"); I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] // new form of select // handles select i1 or select [N x i1] unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || getValueTypePair(Record, OpNum, NextValueNo, Cond)) return error("Invalid record"); // select condition can be either i1 or [N x i1] if (VectorType* vector_type = dyn_cast(Cond->getType())) { // expect if (vector_type->getElementType() != Type::getInt1Ty(Context)) return error("Invalid type for value"); } else { // expect i1 if (Cond->getType() != Type::getInt1Ty(Context)) return error("Invalid type for value"); } I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] unsigned OpNum = 0; Value *Vec, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || getValueTypePair(Record, OpNum, NextValueNo, Idx)) return error("Invalid record"); if (!Vec->getType()->isVectorTy()) return error("Invalid type for value"); I = ExtractElementInst::Create(Vec, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] unsigned OpNum = 0; Value *Vec, *Elt, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) return error("Invalid record"); if (!Vec->getType()->isVectorTy()) return error("Invalid type for value"); if (popValue(Record, OpNum, NextValueNo, cast(Vec->getType())->getElementType(), Elt) || getValueTypePair(Record, OpNum, NextValueNo, Idx)) return error("Invalid record"); I = InsertElementInst::Create(Vec, Elt, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] unsigned OpNum = 0; Value *Vec1, *Vec2, *Mask; if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) return error("Invalid record"); if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) return error("Invalid record"); if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) return error("Invalid type for value"); I = new ShuffleVectorInst(Vec1, Vec2, Mask); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] // Old form of ICmp/FCmp returning bool // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were // both legal on vectors but had different behaviour. case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] // FCmp/ICmp returning bool or vector of bool unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) return error("Invalid record"); unsigned PredVal = Record[OpNum]; bool IsFP = LHS->getType()->isFPOrFPVectorTy(); FastMathFlags FMF; if (IsFP && Record.size() > OpNum+1) FMF = getDecodedFastMathFlags(Record[++OpNum]); if (OpNum+1 != Record.size()) return error("Invalid record"); if (LHS->getType()->isFPOrFPVectorTy()) I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); else I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); if (FMF.any()) I->setFastMathFlags(FMF); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval] { unsigned Size = Record.size(); if (Size == 0) { I = ReturnInst::Create(Context); InstructionList.push_back(I); break; } unsigned OpNum = 0; Value *Op = nullptr; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return error("Invalid record"); if (OpNum != Record.size()) return error("Invalid record"); I = ReturnInst::Create(Context, Op); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] if (Record.size() != 1 && Record.size() != 3) return error("Invalid record"); BasicBlock *TrueDest = getBasicBlock(Record[0]); if (!TrueDest) return error("Invalid record"); if (Record.size() == 1) { I = BranchInst::Create(TrueDest); InstructionList.push_back(I); } else { BasicBlock *FalseDest = getBasicBlock(Record[1]); Value *Cond = getValue(Record, 2, NextValueNo, Type::getInt1Ty(Context)); if (!FalseDest || !Cond) return error("Invalid record"); I = BranchInst::Create(TrueDest, FalseDest, Cond); InstructionList.push_back(I); } break; } case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] if (Record.size() != 1 && Record.size() != 2) return error("Invalid record"); unsigned Idx = 0; Value *CleanupPad = getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); if (!CleanupPad) return error("Invalid record"); BasicBlock *UnwindDest = nullptr; if (Record.size() == 2) { UnwindDest = getBasicBlock(Record[Idx++]); if (!UnwindDest) return error("Invalid record"); } I = CleanupReturnInst::Create(CleanupPad, UnwindDest); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] if (Record.size() != 2) return error("Invalid record"); unsigned Idx = 0; Value *CatchPad = getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); if (!CatchPad) return error("Invalid record"); BasicBlock *BB = getBasicBlock(Record[Idx++]); if (!BB) return error("Invalid record"); I = CatchReturnInst::Create(CatchPad, BB); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] // We must have, at minimum, the outer scope and the number of arguments. if (Record.size() < 2) return error("Invalid record"); unsigned Idx = 0; Value *ParentPad = getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); unsigned NumHandlers = Record[Idx++]; SmallVector Handlers; for (unsigned Op = 0; Op != NumHandlers; ++Op) { BasicBlock *BB = getBasicBlock(Record[Idx++]); if (!BB) return error("Invalid record"); Handlers.push_back(BB); } BasicBlock *UnwindDest = nullptr; if (Idx + 1 == Record.size()) { UnwindDest = getBasicBlock(Record[Idx++]); if (!UnwindDest) return error("Invalid record"); } if (Record.size() != Idx) return error("Invalid record"); auto *CatchSwitch = CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); for (BasicBlock *Handler : Handlers) CatchSwitch->addHandler(Handler); I = CatchSwitch; InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CATCHPAD: case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] // We must have, at minimum, the outer scope and the number of arguments. if (Record.size() < 2) return error("Invalid record"); unsigned Idx = 0; Value *ParentPad = getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); unsigned NumArgOperands = Record[Idx++]; SmallVector Args; for (unsigned Op = 0; Op != NumArgOperands; ++Op) { Value *Val; if (getValueTypePair(Record, Idx, NextValueNo, Val)) return error("Invalid record"); Args.push_back(Val); } if (Record.size() != Idx) return error("Invalid record"); if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) I = CleanupPadInst::Create(ParentPad, Args); else I = CatchPadInst::Create(ParentPad, Args); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] // Check magic if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { // "New" SwitchInst format with case ranges. The changes to write this // format were reverted but we still recognize bitcode that uses it. // Hopefully someday we will have support for case ranges and can use // this format again. Type *OpTy = getTypeByID(Record[1]); unsigned ValueBitWidth = cast(OpTy)->getBitWidth(); Value *Cond = getValue(Record, 2, NextValueNo, OpTy); BasicBlock *Default = getBasicBlock(Record[3]); if (!OpTy || !Cond || !Default) return error("Invalid record"); unsigned NumCases = Record[4]; SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); InstructionList.push_back(SI); unsigned CurIdx = 5; for (unsigned i = 0; i != NumCases; ++i) { SmallVector CaseVals; unsigned NumItems = Record[CurIdx++]; for (unsigned ci = 0; ci != NumItems; ++ci) { bool isSingleNumber = Record[CurIdx++]; APInt Low; unsigned ActiveWords = 1; if (ValueBitWidth > 64) ActiveWords = Record[CurIdx++]; Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); CurIdx += ActiveWords; if (!isSingleNumber) { ActiveWords = 1; if (ValueBitWidth > 64) ActiveWords = Record[CurIdx++]; APInt High = readWideAPInt( makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); CurIdx += ActiveWords; // FIXME: It is not clear whether values in the range should be // compared as signed or unsigned values. The partially // implemented changes that used this format in the past used // unsigned comparisons. for ( ; Low.ule(High); ++Low) CaseVals.push_back(ConstantInt::get(Context, Low)); } else CaseVals.push_back(ConstantInt::get(Context, Low)); } BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); for (SmallVector::iterator cvi = CaseVals.begin(), cve = CaseVals.end(); cvi != cve; ++cvi) SI->addCase(*cvi, DestBB); } I = SI; break; } // Old SwitchInst format without case ranges. if (Record.size() < 3 || (Record.size() & 1) == 0) return error("Invalid record"); Type *OpTy = getTypeByID(Record[0]); Value *Cond = getValue(Record, 1, NextValueNo, OpTy); BasicBlock *Default = getBasicBlock(Record[2]); if (!OpTy || !Cond || !Default) return error("Invalid record"); unsigned NumCases = (Record.size()-3)/2; SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); InstructionList.push_back(SI); for (unsigned i = 0, e = NumCases; i != e; ++i) { ConstantInt *CaseVal = dyn_cast_or_null(getFnValueByID(Record[3+i*2], OpTy)); BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); if (!CaseVal || !DestBB) { delete SI; return error("Invalid record"); } SI->addCase(CaseVal, DestBB); } I = SI; break; } case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] if (Record.size() < 2) return error("Invalid record"); Type *OpTy = getTypeByID(Record[0]); Value *Address = getValue(Record, 1, NextValueNo, OpTy); if (!OpTy || !Address) return error("Invalid record"); unsigned NumDests = Record.size()-2; IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); InstructionList.push_back(IBI); for (unsigned i = 0, e = NumDests; i != e; ++i) { if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { IBI->addDestination(DestBB); } else { delete IBI; return error("Invalid record"); } } I = IBI; break; } case bitc::FUNC_CODE_INST_INVOKE: { // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] if (Record.size() < 4) return error("Invalid record"); unsigned OpNum = 0; AttributeSet PAL = getAttributes(Record[OpNum++]); unsigned CCInfo = Record[OpNum++]; BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); FunctionType *FTy = nullptr; if (CCInfo >> 13 & 1 && !(FTy = dyn_cast(getTypeByID(Record[OpNum++])))) return error("Explicit invoke type is not a function type"); Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return error("Invalid record"); PointerType *CalleeTy = dyn_cast(Callee->getType()); if (!CalleeTy) return error("Callee is not a pointer"); if (!FTy) { FTy = dyn_cast(CalleeTy->getElementType()); if (!FTy) return error("Callee is not of pointer to function type"); } else if (CalleeTy->getElementType() != FTy) return error("Explicit invoke type does not match pointee type of " "callee operand"); if (Record.size() < FTy->getNumParams() + OpNum) return error("Insufficient operands to call"); SmallVector Ops; for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i))); if (!Ops.back()) return error("Invalid record"); } if (!FTy->isVarArg()) { if (Record.size() != OpNum) return error("Invalid record"); } else { // Read type/value pairs for varargs params. while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return error("Invalid record"); Ops.push_back(Op); } } I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); OperandBundles.clear(); InstructionList.push_back(I); cast(I)->setCallingConv( static_cast(CallingConv::MaxID & CCInfo)); cast(I)->setAttributes(PAL); break; } case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] unsigned Idx = 0; Value *Val = nullptr; if (getValueTypePair(Record, Idx, NextValueNo, Val)) return error("Invalid record"); I = ResumeInst::Create(Val); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE I = new UnreachableInst(Context); InstructionList.push_back(I); break; case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] if (Record.size() < 1 || ((Record.size()-1)&1)) return error("Invalid record"); Type *Ty = getTypeByID(Record[0]); if (!Ty) return error("Invalid record"); PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); InstructionList.push_back(PN); for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { Value *V; // With the new function encoding, it is possible that operands have // negative IDs (for forward references). Use a signed VBR // representation to keep the encoding small. if (UseRelativeIDs) V = getValueSigned(Record, 1+i, NextValueNo, Ty); else V = getValue(Record, 1+i, NextValueNo, Ty); BasicBlock *BB = getBasicBlock(Record[2+i]); if (!V || !BB) return error("Invalid record"); PN->addIncoming(V, BB); } I = PN; break; } case bitc::FUNC_CODE_INST_LANDINGPAD: case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] unsigned Idx = 0; if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { if (Record.size() < 3) return error("Invalid record"); } else { assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); if (Record.size() < 4) return error("Invalid record"); } Type *Ty = getTypeByID(Record[Idx++]); if (!Ty) return error("Invalid record"); if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { Value *PersFn = nullptr; if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) return error("Invalid record"); if (!F->hasPersonalityFn()) F->setPersonalityFn(cast(PersFn)); else if (F->getPersonalityFn() != cast(PersFn)) return error("Personality function mismatch"); } bool IsCleanup = !!Record[Idx++]; unsigned NumClauses = Record[Idx++]; LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); LP->setCleanup(IsCleanup); for (unsigned J = 0; J != NumClauses; ++J) { LandingPadInst::ClauseType CT = LandingPadInst::ClauseType(Record[Idx++]); (void)CT; Value *Val; if (getValueTypePair(Record, Idx, NextValueNo, Val)) { delete LP; return error("Invalid record"); } assert((CT != LandingPadInst::Catch || !isa(Val->getType())) && "Catch clause has a invalid type!"); assert((CT != LandingPadInst::Filter || isa(Val->getType())) && "Filter clause has invalid type!"); LP->addClause(cast(Val)); } I = LP; InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] if (Record.size() != 4) return error("Invalid record"); uint64_t AlignRecord = Record[3]; const uint64_t InAllocaMask = uint64_t(1) << 5; const uint64_t ExplicitTypeMask = uint64_t(1) << 6; // Reserve bit 7 for SwiftError flag. // const uint64_t SwiftErrorMask = uint64_t(1) << 7; const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; bool InAlloca = AlignRecord & InAllocaMask; Type *Ty = getTypeByID(Record[0]); if ((AlignRecord & ExplicitTypeMask) == 0) { auto *PTy = dyn_cast_or_null(Ty); if (!PTy) return error("Old-style alloca with a non-pointer type"); Ty = PTy->getElementType(); } Type *OpTy = getTypeByID(Record[1]); Value *Size = getFnValueByID(Record[2], OpTy); unsigned Align; if (std::error_code EC = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { return EC; } if (!Ty || !Size) return error("Invalid record"); AllocaInst *AI = new AllocaInst(Ty, Size, Align); AI->setUsedWithInAlloca(InAlloca); I = AI; InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) return error("Invalid record"); Type *Ty = nullptr; if (OpNum + 3 == Record.size()) Ty = getTypeByID(Record[OpNum++]); if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) return EC; if (!Ty) Ty = cast(Op->getType())->getElementType(); unsigned Align; if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) return EC; I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_LOADATOMIC: { // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) return error("Invalid record"); Type *Ty = nullptr; if (OpNum + 5 == Record.size()) Ty = getTypeByID(Record[OpNum++]); if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) return EC; if (!Ty) Ty = cast(Op->getType())->getElementType(); AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); if (Ordering == NotAtomic || Ordering == Release || Ordering == AcquireRelease) return error("Invalid record"); if (Ordering != NotAtomic && Record[OpNum] == 0) return error("Invalid record"); SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); unsigned Align; if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) return EC; I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STORE: case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || (BitCode == bitc::FUNC_CODE_INST_STORE ? getValueTypePair(Record, OpNum, NextValueNo, Val) : popValue(Record, OpNum, NextValueNo, cast(Ptr->getType())->getElementType(), Val)) || OpNum + 2 != Record.size()) return error("Invalid record"); if (std::error_code EC = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) return EC; unsigned Align; if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) return EC; I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STOREATOMIC: case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC ? getValueTypePair(Record, OpNum, NextValueNo, Val) : popValue(Record, OpNum, NextValueNo, cast(Ptr->getType())->getElementType(), Val)) || OpNum + 4 != Record.size()) return error("Invalid record"); if (std::error_code EC = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) return EC; AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); if (Ordering == NotAtomic || Ordering == Acquire || Ordering == AcquireRelease) return error("Invalid record"); SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); if (Ordering != NotAtomic && Record[OpNum] == 0) return error("Invalid record"); unsigned Align; if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) return EC; I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CMPXCHG_OLD: case bitc::FUNC_CODE_INST_CMPXCHG: { // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, // failureordering?, isweak?] unsigned OpNum = 0; Value *Ptr, *Cmp, *New; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || (BitCode == bitc::FUNC_CODE_INST_CMPXCHG ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) : popValue(Record, OpNum, NextValueNo, cast(Ptr->getType())->getElementType(), Cmp)) || popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || Record.size() < OpNum + 3 || Record.size() > OpNum + 5) return error("Invalid record"); AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) return error("Invalid record"); SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); if (std::error_code EC = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) return EC; AtomicOrdering FailureOrdering; if (Record.size() < 7) FailureOrdering = AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); else FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SynchScope); cast(I)->setVolatile(Record[OpNum]); if (Record.size() < 8) { // Before weak cmpxchgs existed, the instruction simply returned the // value loaded from memory, so bitcode files from that era will be // expecting the first component of a modern cmpxchg. CurBB->getInstList().push_back(I); I = ExtractValueInst::Create(I, 0); } else { cast(I)->setWeak(Record[OpNum+4]); } InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_ATOMICRMW: { // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] unsigned OpNum = 0; Value *Ptr, *Val; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || popValue(Record, OpNum, NextValueNo, cast(Ptr->getType())->getElementType(), Val) || OpNum+4 != Record.size()) return error("Invalid record"); AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); if (Operation < AtomicRMWInst::FIRST_BINOP || Operation > AtomicRMWInst::LAST_BINOP) return error("Invalid record"); AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); if (Ordering == NotAtomic || Ordering == Unordered) return error("Invalid record"); SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); cast(I)->setVolatile(Record[OpNum+1]); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] if (2 != Record.size()) return error("Invalid record"); AtomicOrdering Ordering = getDecodedOrdering(Record[0]); if (Ordering == NotAtomic || Ordering == Unordered || Ordering == Monotonic) return error("Invalid record"); SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); I = new FenceInst(Context, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CALL: { // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] if (Record.size() < 3) return error("Invalid record"); unsigned OpNum = 0; AttributeSet PAL = getAttributes(Record[OpNum++]); unsigned CCInfo = Record[OpNum++]; FastMathFlags FMF; if ((CCInfo >> bitc::CALL_FMF) & 1) { FMF = getDecodedFastMathFlags(Record[OpNum++]); if (!FMF.any()) return error("Fast math flags indicator set for call with no FMF"); } FunctionType *FTy = nullptr; if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && !(FTy = dyn_cast(getTypeByID(Record[OpNum++])))) return error("Explicit call type is not a function type"); Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return error("Invalid record"); PointerType *OpTy = dyn_cast(Callee->getType()); if (!OpTy) return error("Callee is not a pointer type"); if (!FTy) { FTy = dyn_cast(OpTy->getElementType()); if (!FTy) return error("Callee is not of pointer to function type"); } else if (OpTy->getElementType() != FTy) return error("Explicit call type does not match pointee type of " "callee operand"); if (Record.size() < FTy->getNumParams() + OpNum) return error("Insufficient operands to call"); SmallVector Args; // Read the fixed params. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { if (FTy->getParamType(i)->isLabelTy()) Args.push_back(getBasicBlock(Record[OpNum])); else Args.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i))); if (!Args.back()) return error("Invalid record"); } // Read type/value pairs for varargs params. if (!FTy->isVarArg()) { if (OpNum != Record.size()) return error("Invalid record"); } else { while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return error("Invalid record"); Args.push_back(Op); } } I = CallInst::Create(FTy, Callee, Args, OperandBundles); OperandBundles.clear(); InstructionList.push_back(I); cast(I)->setCallingConv( static_cast((0x7ff & CCInfo) >> bitc::CALL_CCONV)); CallInst::TailCallKind TCK = CallInst::TCK_None; if (CCInfo & 1 << bitc::CALL_TAIL) TCK = CallInst::TCK_Tail; if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) TCK = CallInst::TCK_MustTail; if (CCInfo & (1 << bitc::CALL_NOTAIL)) TCK = CallInst::TCK_NoTail; cast(I)->setTailCallKind(TCK); cast(I)->setAttributes(PAL); if (FMF.any()) { if (!isa(I)) return error("Fast-math-flags specified for call without " "floating-point scalar or vector return type"); I->setFastMathFlags(FMF); } break; } case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] if (Record.size() < 3) return error("Invalid record"); Type *OpTy = getTypeByID(Record[0]); Value *Op = getValue(Record, 1, NextValueNo, OpTy); Type *ResTy = getTypeByID(Record[2]); if (!OpTy || !Op || !ResTy) return error("Invalid record"); I = new VAArgInst(Op, ResTy); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_OPERAND_BUNDLE: { // A call or an invoke can be optionally prefixed with some variable // number of operand bundle blocks. These blocks are read into // OperandBundles and consumed at the next call or invoke instruction. if (Record.size() < 1 || Record[0] >= BundleTags.size()) return error("Invalid record"); std::vector Inputs; unsigned OpNum = 1; while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return error("Invalid record"); Inputs.push_back(Op); } OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); continue; } } // Add instruction to end of current BB. If there is no current BB, reject // this file. if (!CurBB) { delete I; return error("Invalid instruction with no BB"); } if (!OperandBundles.empty()) { delete I; return error("Operand bundles found with no consumer"); } CurBB->getInstList().push_back(I); // If this was a terminator instruction, move to the next block. if (isa(I)) { ++CurBBNo; CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; } // Non-void values get registered in the value table for future use. if (I && !I->getType()->isVoidTy()) ValueList.assignValue(I, NextValueNo++); } OutOfRecordLoop: if (!OperandBundles.empty()) return error("Operand bundles found with no consumer"); // Check the function list for unresolved values. if (Argument *A = dyn_cast(ValueList.back())) { if (!A->getParent()) { // We found at least one unresolved value. Nuke them all to avoid leaks. for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ if ((A = dyn_cast_or_null(ValueList[i])) && !A->getParent()) { A->replaceAllUsesWith(UndefValue::get(A->getType())); delete A; } } return error("Never resolved value found in function"); } } // FIXME: Check for unresolved forward-declared metadata references // and clean up leaks. // Trim the value list down to the size it was before we parsed this function. ValueList.shrinkTo(ModuleValueListSize); MDValueList.shrinkTo(ModuleMDValueListSize); std::vector().swap(FunctionBBs); return std::error_code(); } /// Find the function body in the bitcode stream std::error_code BitcodeReader::findFunctionInStream( Function *F, DenseMap::iterator DeferredFunctionInfoIterator) { while (DeferredFunctionInfoIterator->second == 0) { // This is the fallback handling for the old format bitcode that // didn't contain the function index in the VST, or when we have // an anonymous function which would not have a VST entry. // Assert that we have one of those two cases. assert(VSTOffset == 0 || !F->hasName()); // Parse the next body in the stream and set its position in the // DeferredFunctionInfo map. if (std::error_code EC = rememberAndSkipFunctionBodies()) return EC; } return std::error_code(); } //===----------------------------------------------------------------------===// // GVMaterializer implementation //===----------------------------------------------------------------------===// void BitcodeReader::releaseBuffer() { Buffer.release(); } std::error_code BitcodeReader::materialize(GlobalValue *GV) { // In older bitcode we must materialize the metadata before parsing // any functions, in order to set up the MDValueList properly. if (!SeenModuleValuesRecord) { if (std::error_code EC = materializeMetadata()) return EC; } Function *F = dyn_cast(GV); // If it's not a function or is already material, ignore the request. if (!F || !F->isMaterializable()) return std::error_code(); DenseMap::iterator DFII = DeferredFunctionInfo.find(F); assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); // If its position is recorded as 0, its body is somewhere in the stream // but we haven't seen it yet. if (DFII->second == 0) if (std::error_code EC = findFunctionInStream(F, DFII)) return EC; // Move the bit stream to the saved position of the deferred function body. Stream.JumpToBit(DFII->second); if (std::error_code EC = parseFunctionBody(F)) return EC; F->setIsMaterializable(false); if (StripDebugInfo) stripDebugInfo(*F); // Upgrade any old intrinsic calls in the function. for (auto &I : UpgradedIntrinsics) { for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); UI != UE;) { User *U = *UI; ++UI; if (CallInst *CI = dyn_cast(U)) UpgradeIntrinsicCall(CI, I.second); } } // Finish fn->subprogram upgrade for materialized functions. if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) F->setSubprogram(SP); // Bring in any functions that this function forward-referenced via // blockaddresses. return materializeForwardReferencedFunctions(); } std::error_code BitcodeReader::materializeModule() { if (std::error_code EC = materializeMetadata()) return EC; // Promise to materialize all forward references. WillMaterializeAllForwardRefs = true; // Iterate over the module, deserializing any functions that are still on // disk. for (Function &F : *TheModule) { if (std::error_code EC = materialize(&F)) return EC; } // At this point, if there are any function bodies, parse the rest of // the bits in the module past the last function block we have recorded // through either lazy scanning or the VST. if (LastFunctionBlockBit || NextUnreadBit) parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit : NextUnreadBit); // Check that all block address forward references got resolved (as we // promised above). if (!BasicBlockFwdRefs.empty()) return error("Never resolved function from blockaddress"); // Upgrade any intrinsic calls that slipped through (should not happen!) and // delete the old functions to clean up. We can't do this unless the entire // module is materialized because there could always be another function body // with calls to the old function. for (auto &I : UpgradedIntrinsics) { for (auto *U : I.first->users()) { if (CallInst *CI = dyn_cast(U)) UpgradeIntrinsicCall(CI, I.second); } if (!I.first->use_empty()) I.first->replaceAllUsesWith(I.second); I.first->eraseFromParent(); } UpgradedIntrinsics.clear(); for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) UpgradeInstWithTBAATag(InstsWithTBAATag[I]); UpgradeDebugInfo(*TheModule); return std::error_code(); } std::vector BitcodeReader::getIdentifiedStructTypes() const { return IdentifiedStructTypes; } std::error_code BitcodeReader::initStream(std::unique_ptr Streamer) { if (Streamer) return initLazyStream(std::move(Streamer)); return initStreamFromBuffer(); } std::error_code BitcodeReader::initStreamFromBuffer() { const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature"); // If we have a wrapper header, parse it and ignore the non-bc file contents. // The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, BufEnd)) if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) return error("Invalid bitcode wrapper header"); StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); Stream.init(&*StreamFile); return std::error_code(); } std::error_code BitcodeReader::initLazyStream(std::unique_ptr Streamer) { // Check and strip off the bitcode wrapper; BitstreamReader expects never to // see it. auto OwnedBytes = llvm::make_unique(std::move(Streamer)); StreamingMemoryObject &Bytes = *OwnedBytes; StreamFile = llvm::make_unique(std::move(OwnedBytes)); Stream.init(&*StreamFile); unsigned char buf[16]; if (Bytes.readBytes(buf, 16, 0) != 16) return error("Invalid bitcode signature"); if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature"); if (isBitcodeWrapper(buf, buf + 4)) { const unsigned char *bitcodeStart = buf; const unsigned char *bitcodeEnd = buf + 16; SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); Bytes.dropLeadingBytes(bitcodeStart - buf); Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); } return std::error_code(); } std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, const Twine &Message) { return ::error(DiagnosticHandler, make_error_code(E), Message); } std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { return ::error(DiagnosticHandler, make_error_code(BitcodeError::CorruptedBitcode), Message); } std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { return ::error(DiagnosticHandler, make_error_code(E)); } FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, bool CheckFuncSummaryPresenceOnly) : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, bool CheckFuncSummaryPresenceOnly) : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } // Specialized value symbol table parser used when reading function index // blocks where we don't actually create global values. // At the end of this routine the function index is populated with a map // from function name to FunctionInfo. The function info contains // the function block's bitcode offset as well as the offset into the // function summary section. std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) return error("Invalid record"); SmallVector Record; // Read all the records for this value table. SmallString<128> ValueName; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). break; case bitc::VST_CODE_FNENTRY: { // VST_FNENTRY: [valueid, offset, namechar x N] if (convertToString(Record, 2, ValueName)) return error("Invalid record"); unsigned ValueID = Record[0]; uint64_t FuncOffset = Record[1]; std::unique_ptr FuncInfo = llvm::make_unique(FuncOffset); if (foundFuncSummary() && !IsLazy) { DenseMap>::iterator SMI = SummaryMap.find(ValueID); assert(SMI != SummaryMap.end() && "Summary info not found"); FuncInfo->setFunctionSummary(std::move(SMI->second)); } TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); ValueName.clear(); break; } case bitc::VST_CODE_COMBINED_FNENTRY: { // VST_FNENTRY: [offset, namechar x N] if (convertToString(Record, 1, ValueName)) return error("Invalid record"); uint64_t FuncSummaryOffset = Record[0]; std::unique_ptr FuncInfo = llvm::make_unique(FuncSummaryOffset); if (foundFuncSummary() && !IsLazy) { DenseMap>::iterator SMI = SummaryMap.find(FuncSummaryOffset); assert(SMI != SummaryMap.end() && "Summary info not found"); FuncInfo->setFunctionSummary(std::move(SMI->second)); } TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); ValueName.clear(); break; } } } } // Parse just the blocks needed for function index building out of the module. // At the end of this routine the function Index is populated with a map // from function name to FunctionInfo. The function info contains // either the parsed function summary information (when parsing summaries // eagerly), or just to the function summary record's offset // if parsing lazily (IsLazy). std::error_code FunctionIndexBitcodeReader::parseModule() { if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return error("Invalid record"); // Read the function index for this module. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::SubBlock: if (CheckFuncSummaryPresenceOnly) { if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { SeenFuncSummary = true; // No need to parse the rest since we found the summary. return std::error_code(); } if (Stream.SkipBlock()) return error("Invalid record"); continue; } switch (Entry.ID) { default: // Skip unknown content. if (Stream.SkipBlock()) return error("Invalid record"); break; case bitc::BLOCKINFO_BLOCK_ID: // Need to parse these to get abbrev ids (e.g. for VST) if (Stream.ReadBlockInfoBlock()) return error("Malformed block"); break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (std::error_code EC = parseValueSymbolTable()) return EC; break; case bitc::FUNCTION_SUMMARY_BLOCK_ID: SeenFuncSummary = true; if (IsLazy) { // Lazy parsing of summary info, skip it. if (Stream.SkipBlock()) return error("Invalid record"); } else if (std::error_code EC = parseEntireSummary()) return EC; break; case bitc::MODULE_STRTAB_BLOCK_ID: if (std::error_code EC = parseModuleStringTable()) return EC; break; } continue; case BitstreamEntry::Record: Stream.skipRecord(Entry.ID); continue; } } } // Eagerly parse the entire function summary block (i.e. for all functions // in the index). This populates the FunctionSummary objects in // the index. std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) return error("Invalid record"); SmallVector Record; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. The record format depends on whether this // is a per-module index or a combined index file. In the per-module // case the records contain the associated value's ID for correlation // with VST entries. In the combined index the correlation is done // via the bitcode offset of the summary records (which were saved // in the combined index VST entries). The records also contain // information used for ThinLTO renaming and importing. Record.clear(); uint64_t CurRecordBit = Stream.GetCurrentBitNo(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] case bitc::FS_CODE_PERMODULE_ENTRY: { unsigned ValueID = Record[0]; bool IsLocal = Record[1]; unsigned InstCount = Record[2]; std::unique_ptr FS = llvm::make_unique(InstCount); FS->setLocalFunction(IsLocal); // The module path string ref set in the summary must be owned by the // index's module string table. Since we don't have a module path // string table section in the per-module index, we create a single // module path string table entry with an empty (0) ID to take // ownership. FS->setModulePath( TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); SummaryMap[ValueID] = std::move(FS); } // FS_COMBINED_ENTRY: [modid, instcount] case bitc::FS_CODE_COMBINED_ENTRY: { uint64_t ModuleId = Record[0]; unsigned InstCount = Record[1]; std::unique_ptr FS = llvm::make_unique(InstCount); FS->setModulePath(ModuleIdMap[ModuleId]); SummaryMap[CurRecordBit] = std::move(FS); } } } llvm_unreachable("Exit infinite loop"); } // Parse the module string table block into the Index. // This populates the ModulePathStringTable map in the index. std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) return error("Invalid record"); SmallVector Record; SmallString<128> ModulePath; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::MST_CODE_ENTRY: { // MST_ENTRY: [modid, namechar x N] if (convertToString(Record, 1, ModulePath)) return error("Invalid record"); uint64_t ModuleId = Record[0]; StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); ModuleIdMap[ModuleId] = ModulePathInMap; ModulePath.clear(); break; } } } llvm_unreachable("Exit infinite loop"); } // Parse the function info index from the bitcode streamer into the given index. std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( std::unique_ptr Streamer, FunctionInfoIndex *I) { TheIndex = I; if (std::error_code EC = initStream(std::move(Streamer))) return EC; // Sniff for the signature. if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { if (Stream.AtEndOfStream()) { // We didn't really read a proper Module block. return error("Malformed block"); } BitstreamEntry Entry = Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block"); // If we see a MODULE_BLOCK, parse it to find the blocks needed for // building the function summary index. if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule(); if (Stream.SkipBlock()) return error("Invalid record"); } } // Parse the function information at the given offset in the buffer into // the index. Used to support lazy parsing of function summaries from the // combined index during importing. // TODO: This function is not yet complete as it won't have a consumer // until ThinLTO function importing is added. std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( std::unique_ptr Streamer, FunctionInfoIndex *I, size_t FunctionSummaryOffset) { TheIndex = I; if (std::error_code EC = initStream(std::move(Streamer))) return EC; // Sniff for the signature. if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); Stream.JumpToBit(FunctionSummaryOffset); BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { default: return error("Malformed block"); case BitstreamEntry::Record: // The expected case. break; } // TODO: Read a record. This interface will be completed when ThinLTO // importing is added so that it can be tested. SmallVector Record; switch (Stream.readRecord(Entry.ID, Record)) { case bitc::FS_CODE_COMBINED_ENTRY: default: return error("Invalid record"); } return std::error_code(); } std::error_code FunctionIndexBitcodeReader::initStream(std::unique_ptr Streamer) { if (Streamer) return initLazyStream(std::move(Streamer)); return initStreamFromBuffer(); } std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature"); // If we have a wrapper header, parse it and ignore the non-bc file contents. // The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, BufEnd)) if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) return error("Invalid bitcode wrapper header"); StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); Stream.init(&*StreamFile); return std::error_code(); } std::error_code FunctionIndexBitcodeReader::initLazyStream( std::unique_ptr Streamer) { // Check and strip off the bitcode wrapper; BitstreamReader expects never to // see it. auto OwnedBytes = llvm::make_unique(std::move(Streamer)); StreamingMemoryObject &Bytes = *OwnedBytes; StreamFile = llvm::make_unique(std::move(OwnedBytes)); Stream.init(&*StreamFile); unsigned char buf[16]; if (Bytes.readBytes(buf, 16, 0) != 16) return error("Invalid bitcode signature"); if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature"); if (isBitcodeWrapper(buf, buf + 4)) { const unsigned char *bitcodeStart = buf; const unsigned char *bitcodeEnd = buf + 16; SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); Bytes.dropLeadingBytes(bitcodeStart - buf); Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); } return std::error_code(); } namespace { class BitcodeErrorCategoryType : public std::error_category { const char *name() const LLVM_NOEXCEPT override { return "llvm.bitcode"; } std::string message(int IE) const override { BitcodeError E = static_cast(IE); switch (E) { case BitcodeError::InvalidBitcodeSignature: return "Invalid bitcode signature"; case BitcodeError::CorruptedBitcode: return "Corrupted bitcode"; } llvm_unreachable("Unknown error type!"); } }; } static ManagedStatic ErrorCategory; const std::error_category &llvm::BitcodeErrorCategory() { return *ErrorCategory; } //===----------------------------------------------------------------------===// // External interface //===----------------------------------------------------------------------===// static ErrorOr> getBitcodeModuleImpl(std::unique_ptr Streamer, StringRef Name, BitcodeReader *R, LLVMContext &Context, bool MaterializeAll, bool ShouldLazyLoadMetadata) { std::unique_ptr M = make_unique(Name, Context); M->setMaterializer(R); auto cleanupOnError = [&](std::error_code EC) { R->releaseBuffer(); // Never take ownership on error. return EC; }; // Delay parsing Metadata if ShouldLazyLoadMetadata is true. if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), ShouldLazyLoadMetadata)) return cleanupOnError(EC); if (MaterializeAll) { // Read in the entire module, and destroy the BitcodeReader. if (std::error_code EC = M->materializeAll()) return cleanupOnError(EC); } else { // Resolve forward references from blockaddresses. if (std::error_code EC = R->materializeForwardReferencedFunctions()) return cleanupOnError(EC); } return std::move(M); } /// \brief Get a lazy one-at-time loading module from bitcode. /// /// This isn't always used in a lazy context. In particular, it's also used by /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull /// in forward-referenced functions from block address references. /// /// \param[in] MaterializeAll Set to \c true if we should materialize /// everything. static ErrorOr> getLazyBitcodeModuleImpl(std::unique_ptr &&Buffer, LLVMContext &Context, bool MaterializeAll, bool ShouldLazyLoadMetadata = false) { BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); ErrorOr> Ret = getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, MaterializeAll, ShouldLazyLoadMetadata); if (!Ret) return Ret; Buffer.release(); // The BitcodeReader owns it now. return Ret; } ErrorOr> llvm::getLazyBitcodeModule(std::unique_ptr &&Buffer, LLVMContext &Context, bool ShouldLazyLoadMetadata) { return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, ShouldLazyLoadMetadata); } ErrorOr> llvm::getStreamedBitcodeModule(StringRef Name, std::unique_ptr Streamer, LLVMContext &Context) { std::unique_ptr M = make_unique(Name, Context); BitcodeReader *R = new BitcodeReader(Context); return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, false); } ErrorOr> llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); // TODO: Restore the use-lists to the in-memory state when the bitcode was // written. We must defer until the Module has been fully materialized. } std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); auto R = llvm::make_unique(Buf.release(), Context); ErrorOr Triple = R->parseTriple(); if (Triple.getError()) return ""; return Triple.get(); } std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); BitcodeReader R(Buf.release(), Context); ErrorOr ProducerString = R.parseIdentificationBlock(); if (ProducerString.getError()) return ""; return ProducerString.get(); } // Parse the specified bitcode buffer, returning the function info index. // If IsLazy is false, parse the entire function summary into // the index. Otherwise skip the function summary section, and only create // an index object with a map from function name to function summary offset. // The index is used to perform lazy function summary reading later. ErrorOr> llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); auto Index = llvm::make_unique(); auto cleanupOnError = [&](std::error_code EC) { R.releaseBuffer(); // Never take ownership on error. return EC; }; if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) return cleanupOnError(EC); Buf.release(); // The FunctionIndexBitcodeReader owns it now. return std::move(Index); } // Check if the given bitcode buffer contains a function summary block. bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); auto cleanupOnError = [&](std::error_code EC) { R.releaseBuffer(); // Never take ownership on error. return false; }; if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) return cleanupOnError(EC); Buf.release(); // The FunctionIndexBitcodeReader owns it now. return R.foundFuncSummary(); } // This method supports lazy reading of function summary data from the combined // index during ThinLTO function importing. When reading the combined index // file, getFunctionInfoIndex is first invoked with IsLazy=true. // Then this method is called for each function considered for importing, // to parse the summary information for the given function name into // the index. std::error_code llvm::readFunctionSummary( MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName, std::unique_ptr Index) { std::unique_ptr Buf = MemoryBuffer::getMemBuffer(Buffer, false); FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); auto cleanupOnError = [&](std::error_code EC) { R.releaseBuffer(); // Never take ownership on error. return EC; }; // Lookup the given function name in the FunctionMap, which may // contain a list of function infos in the case of a COMDAT. Walk through // and parse each function summary info at the function summary offset // recorded when parsing the value symbol table. for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { size_t FunctionSummaryOffset = FI->bitcodeIndex(); if (std::error_code EC = R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) return cleanupOnError(EC); } Buf.release(); // The FunctionIndexBitcodeReader owns it now. return std::error_code(); }