//=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that performs load / store related peephole // optimizations. This pass should be run after register allocation. // //===----------------------------------------------------------------------===// #include "AArch64InstrInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "aarch64-ldst-opt" /// AArch64AllocLoadStoreOpt - Post-register allocation pass to combine /// load / store instructions to form ldp / stp instructions. STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); STATISTIC(NumPostFolded, "Number of post-index updates folded"); STATISTIC(NumPreFolded, "Number of pre-index updates folded"); STATISTIC(NumUnscaledPairCreated, "Number of load/store from unscaled generated"); STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); static cl::opt ScanLimit("aarch64-load-store-scan-limit", cl::init(20), cl::Hidden); namespace llvm { void initializeAArch64LoadStoreOptPass(PassRegistry &); } #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" namespace { typedef struct LdStPairFlags { // If a matching instruction is found, MergeForward is set to true if the // merge is to remove the first instruction and replace the second with // a pair-wise insn, and false if the reverse is true. bool MergeForward; // SExtIdx gives the index of the result of the load pair that must be // extended. The value of SExtIdx assumes that the paired load produces the // value in this order: (I, returned iterator), i.e., -1 means no value has // to be extended, 0 means I, and 1 means the returned iterator. int SExtIdx; LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} void setMergeForward(bool V = true) { MergeForward = V; } bool getMergeForward() const { return MergeForward; } void setSExtIdx(int V) { SExtIdx = V; } int getSExtIdx() const { return SExtIdx; } } LdStPairFlags; struct AArch64LoadStoreOpt : public MachineFunctionPass { static char ID; AArch64LoadStoreOpt() : MachineFunctionPass(ID) { initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); } const AArch64InstrInfo *TII; const TargetRegisterInfo *TRI; const AArch64Subtarget *Subtarget; // Scan the instructions looking for a load/store that can be combined // with the current instruction into a load/store pair. // Return the matching instruction if one is found, else MBB->end(). MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, LdStPairFlags &Flags, unsigned Limit); // Merge the two instructions indicated into a single pair-wise instruction. // If MergeForward is true, erase the first instruction and fold its // operation into the second. If false, the reverse. Return the instruction // following the first instruction (which may change during processing). MachineBasicBlock::iterator mergePairedInsns(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, const LdStPairFlags &Flags); // Scan the instruction list to find a base register update that can // be combined with the current instruction (a load or store) using // pre or post indexed addressing with writeback. Scan forwards. MachineBasicBlock::iterator findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, unsigned Limit, int UnscaledOffset); // Scan the instruction list to find a base register update that can // be combined with the current instruction (a load or store) using // pre or post indexed addressing with writeback. Scan backwards. MachineBasicBlock::iterator findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); // Find an instruction that updates the base register of the ld/st // instruction. bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, unsigned BaseReg, int Offset); // Merge a pre- or post-index base register update into a ld/st instruction. MachineBasicBlock::iterator mergeUpdateInsn(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update, bool IsPreIdx); // Find and merge foldable ldr/str instructions. bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); // Check if converting two narrow loads into a single wider load with // bitfield extracts could be enabled. bool enableNarrowLdMerge(MachineFunction &Fn); bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); bool runOnMachineFunction(MachineFunction &Fn) override; const char *getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } }; char AArch64LoadStoreOpt::ID = 0; } // namespace INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", AARCH64_LOAD_STORE_OPT_NAME, false, false) static bool isUnscaledLdSt(unsigned Opc) { switch (Opc) { default: return false; case AArch64::STURSi: case AArch64::STURDi: case AArch64::STURQi: case AArch64::STURBBi: case AArch64::STURHHi: case AArch64::STURWi: case AArch64::STURXi: case AArch64::LDURSi: case AArch64::LDURDi: case AArch64::LDURQi: case AArch64::LDURWi: case AArch64::LDURXi: case AArch64::LDURSWi: case AArch64::LDURHHi: case AArch64::LDURBBi: case AArch64::LDURSBWi: case AArch64::LDURSHWi: return true; } } static bool isUnscaledLdSt(MachineInstr *MI) { return isUnscaledLdSt(MI->getOpcode()); } static unsigned getBitExtrOpcode(MachineInstr *MI) { switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode."); case AArch64::LDRBBui: case AArch64::LDURBBi: case AArch64::LDRHHui: case AArch64::LDURHHi: return AArch64::UBFMWri; case AArch64::LDRSBWui: case AArch64::LDURSBWi: case AArch64::LDRSHWui: case AArch64::LDURSHWi: return AArch64::SBFMWri; } } static bool isNarrowStore(unsigned Opc) { switch (Opc) { default: return false; case AArch64::STRBBui: case AArch64::STURBBi: case AArch64::STRHHui: case AArch64::STURHHi: return true; } } static bool isNarrowStore(MachineInstr *MI) { return isNarrowStore(MI->getOpcode()); } static bool isNarrowLoad(unsigned Opc) { switch (Opc) { default: return false; case AArch64::LDRHHui: case AArch64::LDURHHi: case AArch64::LDRBBui: case AArch64::LDURBBi: case AArch64::LDRSHWui: case AArch64::LDURSHWi: case AArch64::LDRSBWui: case AArch64::LDURSBWi: return true; } } static bool isNarrowLoad(MachineInstr *MI) { return isNarrowLoad(MI->getOpcode()); } // Scaling factor for unscaled load or store. static int getMemScale(MachineInstr *MI) { switch (MI->getOpcode()) { default: llvm_unreachable("Opcode has unknown scale!"); case AArch64::LDRBBui: case AArch64::LDURBBi: case AArch64::LDRSBWui: case AArch64::LDURSBWi: case AArch64::STRBBui: case AArch64::STURBBi: return 1; case AArch64::LDRHHui: case AArch64::LDURHHi: case AArch64::LDRSHWui: case AArch64::LDURSHWi: case AArch64::STRHHui: case AArch64::STURHHi: return 2; case AArch64::LDRSui: case AArch64::LDURSi: case AArch64::LDRSWui: case AArch64::LDURSWi: case AArch64::LDRWui: case AArch64::LDURWi: case AArch64::STRSui: case AArch64::STURSi: case AArch64::STRWui: case AArch64::STURWi: case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPWi: case AArch64::STPSi: case AArch64::STPWi: return 4; case AArch64::LDRDui: case AArch64::LDURDi: case AArch64::LDRXui: case AArch64::LDURXi: case AArch64::STRDui: case AArch64::STURDi: case AArch64::STRXui: case AArch64::STURXi: case AArch64::LDPDi: case AArch64::LDPXi: case AArch64::STPDi: case AArch64::STPXi: return 8; case AArch64::LDRQui: case AArch64::LDURQi: case AArch64::STRQui: case AArch64::STURQi: case AArch64::LDPQi: case AArch64::STPQi: return 16; } } static unsigned getMatchingNonSExtOpcode(unsigned Opc, bool *IsValidLdStrOpc = nullptr) { if (IsValidLdStrOpc) *IsValidLdStrOpc = true; switch (Opc) { default: if (IsValidLdStrOpc) *IsValidLdStrOpc = false; return UINT_MAX; case AArch64::STRDui: case AArch64::STURDi: case AArch64::STRQui: case AArch64::STURQi: case AArch64::STRBBui: case AArch64::STURBBi: case AArch64::STRHHui: case AArch64::STURHHi: case AArch64::STRWui: case AArch64::STURWi: case AArch64::STRXui: case AArch64::STURXi: case AArch64::LDRDui: case AArch64::LDURDi: case AArch64::LDRQui: case AArch64::LDURQi: case AArch64::LDRWui: case AArch64::LDURWi: case AArch64::LDRXui: case AArch64::LDURXi: case AArch64::STRSui: case AArch64::STURSi: case AArch64::LDRSui: case AArch64::LDURSi: case AArch64::LDRHHui: case AArch64::LDURHHi: case AArch64::LDRBBui: case AArch64::LDURBBi: return Opc; case AArch64::LDRSWui: return AArch64::LDRWui; case AArch64::LDURSWi: return AArch64::LDURWi; case AArch64::LDRSBWui: return AArch64::LDRBBui; case AArch64::LDRSHWui: return AArch64::LDRHHui; case AArch64::LDURSBWi: return AArch64::LDURBBi; case AArch64::LDURSHWi: return AArch64::LDURHHi; } } static unsigned getMatchingPairOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no pairwise equivalent!"); case AArch64::STRSui: case AArch64::STURSi: return AArch64::STPSi; case AArch64::STRDui: case AArch64::STURDi: return AArch64::STPDi; case AArch64::STRQui: case AArch64::STURQi: return AArch64::STPQi; case AArch64::STRBBui: return AArch64::STRHHui; case AArch64::STRHHui: return AArch64::STRWui; case AArch64::STURBBi: return AArch64::STURHHi; case AArch64::STURHHi: return AArch64::STURWi; case AArch64::STRWui: case AArch64::STURWi: return AArch64::STPWi; case AArch64::STRXui: case AArch64::STURXi: return AArch64::STPXi; case AArch64::LDRSui: case AArch64::LDURSi: return AArch64::LDPSi; case AArch64::LDRDui: case AArch64::LDURDi: return AArch64::LDPDi; case AArch64::LDRQui: case AArch64::LDURQi: return AArch64::LDPQi; case AArch64::LDRWui: case AArch64::LDURWi: return AArch64::LDPWi; case AArch64::LDRXui: case AArch64::LDURXi: return AArch64::LDPXi; case AArch64::LDRSWui: case AArch64::LDURSWi: return AArch64::LDPSWi; case AArch64::LDRHHui: case AArch64::LDRSHWui: return AArch64::LDRWui; case AArch64::LDURHHi: case AArch64::LDURSHWi: return AArch64::LDURWi; case AArch64::LDRBBui: case AArch64::LDRSBWui: return AArch64::LDRHHui; case AArch64::LDURBBi: case AArch64::LDURSBWi: return AArch64::LDURHHi; } } static unsigned getPreIndexedOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no pre-indexed equivalent!"); case AArch64::STRSui: return AArch64::STRSpre; case AArch64::STRDui: return AArch64::STRDpre; case AArch64::STRQui: return AArch64::STRQpre; case AArch64::STRBBui: return AArch64::STRBBpre; case AArch64::STRHHui: return AArch64::STRHHpre; case AArch64::STRWui: return AArch64::STRWpre; case AArch64::STRXui: return AArch64::STRXpre; case AArch64::LDRSui: return AArch64::LDRSpre; case AArch64::LDRDui: return AArch64::LDRDpre; case AArch64::LDRQui: return AArch64::LDRQpre; case AArch64::LDRBBui: return AArch64::LDRBBpre; case AArch64::LDRHHui: return AArch64::LDRHHpre; case AArch64::LDRWui: return AArch64::LDRWpre; case AArch64::LDRXui: return AArch64::LDRXpre; case AArch64::LDRSWui: return AArch64::LDRSWpre; case AArch64::LDPSi: return AArch64::LDPSpre; case AArch64::LDPSWi: return AArch64::LDPSWpre; case AArch64::LDPDi: return AArch64::LDPDpre; case AArch64::LDPQi: return AArch64::LDPQpre; case AArch64::LDPWi: return AArch64::LDPWpre; case AArch64::LDPXi: return AArch64::LDPXpre; case AArch64::STPSi: return AArch64::STPSpre; case AArch64::STPDi: return AArch64::STPDpre; case AArch64::STPQi: return AArch64::STPQpre; case AArch64::STPWi: return AArch64::STPWpre; case AArch64::STPXi: return AArch64::STPXpre; } } static unsigned getPostIndexedOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no post-indexed wise equivalent!"); case AArch64::STRSui: return AArch64::STRSpost; case AArch64::STRDui: return AArch64::STRDpost; case AArch64::STRQui: return AArch64::STRQpost; case AArch64::STRBBui: return AArch64::STRBBpost; case AArch64::STRHHui: return AArch64::STRHHpost; case AArch64::STRWui: return AArch64::STRWpost; case AArch64::STRXui: return AArch64::STRXpost; case AArch64::LDRSui: return AArch64::LDRSpost; case AArch64::LDRDui: return AArch64::LDRDpost; case AArch64::LDRQui: return AArch64::LDRQpost; case AArch64::LDRBBui: return AArch64::LDRBBpost; case AArch64::LDRHHui: return AArch64::LDRHHpost; case AArch64::LDRWui: return AArch64::LDRWpost; case AArch64::LDRXui: return AArch64::LDRXpost; case AArch64::LDRSWui: return AArch64::LDRSWpost; case AArch64::LDPSi: return AArch64::LDPSpost; case AArch64::LDPSWi: return AArch64::LDPSWpost; case AArch64::LDPDi: return AArch64::LDPDpost; case AArch64::LDPQi: return AArch64::LDPQpost; case AArch64::LDPWi: return AArch64::LDPWpost; case AArch64::LDPXi: return AArch64::LDPXpost; case AArch64::STPSi: return AArch64::STPSpost; case AArch64::STPDi: return AArch64::STPDpost; case AArch64::STPQi: return AArch64::STPQpost; case AArch64::STPWi: return AArch64::STPWpost; case AArch64::STPXi: return AArch64::STPXpost; } } static bool isPairedLdSt(const MachineInstr *MI) { switch (MI->getOpcode()) { default: return false; case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPDi: case AArch64::LDPQi: case AArch64::LDPWi: case AArch64::LDPXi: case AArch64::STPSi: case AArch64::STPDi: case AArch64::STPQi: case AArch64::STPWi: case AArch64::STPXi: return true; } } static const MachineOperand &getLdStRegOp(const MachineInstr *MI, unsigned PairedRegOp = 0) { assert(PairedRegOp < 2 && "Unexpected register operand idx."); unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; return MI->getOperand(Idx); } static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { unsigned Idx = isPairedLdSt(MI) ? 2 : 1; return MI->getOperand(Idx); } static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { unsigned Idx = isPairedLdSt(MI) ? 3 : 2; return MI->getOperand(Idx); } // Copy MachineMemOperands from Op0 and Op1 to a new array assigned to MI. static void concatenateMemOperands(MachineInstr *MI, MachineInstr *Op0, MachineInstr *Op1) { assert(MI->memoperands_empty() && "expected a new machineinstr"); size_t numMemRefs = (Op0->memoperands_end() - Op0->memoperands_begin()) + (Op1->memoperands_end() - Op1->memoperands_begin()); MachineFunction *MF = MI->getParent()->getParent(); MachineSDNode::mmo_iterator MemBegin = MF->allocateMemRefsArray(numMemRefs); MachineSDNode::mmo_iterator MemEnd = std::copy(Op0->memoperands_begin(), Op0->memoperands_end(), MemBegin); MemEnd = std::copy(Op1->memoperands_begin(), Op1->memoperands_end(), MemEnd); MI->setMemRefs(MemBegin, MemEnd); } MachineBasicBlock::iterator AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, const LdStPairFlags &Flags) { MachineBasicBlock::iterator NextI = I; ++NextI; // If NextI is the second of the two instructions to be merged, we need // to skip one further. Either way we merge will invalidate the iterator, // and we don't need to scan the new instruction, as it's a pairwise // instruction, which we're not considering for further action anyway. if (NextI == Paired) ++NextI; int SExtIdx = Flags.getSExtIdx(); unsigned Opc = SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); bool IsUnscaled = isUnscaledLdSt(Opc); int OffsetStride = IsUnscaled ? getMemScale(I) : 1; bool MergeForward = Flags.getMergeForward(); unsigned NewOpc = getMatchingPairOpcode(Opc); // Insert our new paired instruction after whichever of the paired // instructions MergeForward indicates. MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; // Also based on MergeForward is from where we copy the base register operand // so we get the flags compatible with the input code. const MachineOperand &BaseRegOp = MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); // Which register is Rt and which is Rt2 depends on the offset order. MachineInstr *RtMI, *Rt2MI; if (getLdStOffsetOp(I).getImm() == getLdStOffsetOp(Paired).getImm() + OffsetStride) { RtMI = Paired; Rt2MI = I; // Here we swapped the assumption made for SExtIdx. // I.e., we turn ldp I, Paired into ldp Paired, I. // Update the index accordingly. if (SExtIdx != -1) SExtIdx = (SExtIdx + 1) % 2; } else { RtMI = I; Rt2MI = Paired; } int OffsetImm = getLdStOffsetOp(RtMI).getImm(); if (isNarrowLoad(Opc)) { // Change the scaled offset from small to large type. if (!IsUnscaled) { assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); OffsetImm /= 2; } MachineInstr *RtNewDest = MergeForward ? I : Paired; // When merging small (< 32 bit) loads for big-endian targets, the order of // the component parts gets swapped. if (!Subtarget->isLittleEndian()) std::swap(RtMI, Rt2MI); // Construct the new load instruction. MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; NewMemMI = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(NewOpc)) .addOperand(getLdStRegOp(RtNewDest)) .addOperand(BaseRegOp) .addImm(OffsetImm); // Copy MachineMemOperands from the original loads. concatenateMemOperands(NewMemMI, I, Paired); DEBUG( dbgs() << "Creating the new load and extract. Replacing instructions:\n "); DEBUG(I->print(dbgs())); DEBUG(dbgs() << " "); DEBUG(Paired->print(dbgs())); DEBUG(dbgs() << " with instructions:\n "); DEBUG((NewMemMI)->print(dbgs())); int Width = getMemScale(I) == 1 ? 8 : 16; int LSBLow = 0; int LSBHigh = Width; int ImmsLow = LSBLow + Width - 1; int ImmsHigh = LSBHigh + Width - 1; MachineInstr *ExtDestMI = MergeForward ? Paired : I; if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { // Create the bitfield extract for high bits. BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(getBitExtrOpcode(Rt2MI))) .addOperand(getLdStRegOp(Rt2MI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(LSBHigh) .addImm(ImmsHigh); // Create the bitfield extract for low bits. if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { // For unsigned, prefer to use AND for low bits. BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(AArch64::ANDWri)) .addOperand(getLdStRegOp(RtMI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(ImmsLow); } else { BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(getBitExtrOpcode(RtMI))) .addOperand(getLdStRegOp(RtMI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(LSBLow) .addImm(ImmsLow); } } else { // Create the bitfield extract for low bits. if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { // For unsigned, prefer to use AND for low bits. BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(AArch64::ANDWri)) .addOperand(getLdStRegOp(RtMI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(ImmsLow); } else { BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(getBitExtrOpcode(RtMI))) .addOperand(getLdStRegOp(RtMI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(LSBLow) .addImm(ImmsLow); } // Create the bitfield extract for high bits. BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(getBitExtrOpcode(Rt2MI))) .addOperand(getLdStRegOp(Rt2MI)) .addReg(getLdStRegOp(RtNewDest).getReg()) .addImm(LSBHigh) .addImm(ImmsHigh); } DEBUG(dbgs() << " "); DEBUG((BitExtMI1)->print(dbgs())); DEBUG(dbgs() << " "); DEBUG((BitExtMI2)->print(dbgs())); DEBUG(dbgs() << "\n"); // Erase the old instructions. I->eraseFromParent(); Paired->eraseFromParent(); return NextI; } // Construct the new instruction. MachineInstrBuilder MIB; if (isNarrowStore(Opc)) { // Change the scaled offset from small to large type. if (!IsUnscaled) { assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); OffsetImm /= 2; } MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(NewOpc)) .addOperand(getLdStRegOp(I)) .addOperand(BaseRegOp) .addImm(OffsetImm); // Copy MachineMemOperands from the original stores. concatenateMemOperands(MIB, I, Paired); } else { // Handle Unscaled if (IsUnscaled) OffsetImm /= OffsetStride; MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(NewOpc)) .addOperand(getLdStRegOp(RtMI)) .addOperand(getLdStRegOp(Rt2MI)) .addOperand(BaseRegOp) .addImm(OffsetImm); } (void)MIB; // FIXME: Do we need/want to copy the mem operands from the source // instructions? Probably. What uses them after this? DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); DEBUG(I->print(dbgs())); DEBUG(dbgs() << " "); DEBUG(Paired->print(dbgs())); DEBUG(dbgs() << " with instruction:\n "); if (SExtIdx != -1) { // Generate the sign extension for the proper result of the ldp. // I.e., with X1, that would be: // %W1 = KILL %W1, %X1 // %X1 = SBFMXri %X1, 0, 31 MachineOperand &DstMO = MIB->getOperand(SExtIdx); // Right now, DstMO has the extended register, since it comes from an // extended opcode. unsigned DstRegX = DstMO.getReg(); // Get the W variant of that register. unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); // Update the result of LDP to use the W instead of the X variant. DstMO.setReg(DstRegW); DEBUG(((MachineInstr *)MIB)->print(dbgs())); DEBUG(dbgs() << "\n"); // Make the machine verifier happy by providing a definition for // the X register. // Insert this definition right after the generated LDP, i.e., before // InsertionPoint. MachineInstrBuilder MIBKill = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(TargetOpcode::KILL), DstRegW) .addReg(DstRegW) .addReg(DstRegX, RegState::Define); MIBKill->getOperand(2).setImplicit(); // Create the sign extension. MachineInstrBuilder MIBSXTW = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), TII->get(AArch64::SBFMXri), DstRegX) .addReg(DstRegX) .addImm(0) .addImm(31); (void)MIBSXTW; DEBUG(dbgs() << " Extend operand:\n "); DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); DEBUG(dbgs() << "\n"); } else { DEBUG(((MachineInstr *)MIB)->print(dbgs())); DEBUG(dbgs() << "\n"); } // Erase the old instructions. I->eraseFromParent(); Paired->eraseFromParent(); return NextI; } /// trackRegDefsUses - Remember what registers the specified instruction uses /// and modifies. static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, BitVector &UsedRegs, const TargetRegisterInfo *TRI) { for (const MachineOperand &MO : MI->operands()) { if (MO.isRegMask()) ModifiedRegs.setBitsNotInMask(MO.getRegMask()); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (MO.isDef()) { for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) ModifiedRegs.set(*AI); } else { assert(MO.isUse() && "Reg operand not a def and not a use?!?"); for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) UsedRegs.set(*AI); } } } static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { // Convert the byte-offset used by unscaled into an "element" offset used // by the scaled pair load/store instructions. if (IsUnscaled) Offset /= OffsetStride; return Offset <= 63 && Offset >= -64; } // Do alignment, specialized to power of 2 and for signed ints, // avoiding having to do a C-style cast from uint_64t to int when // using RoundUpToAlignment from include/llvm/Support/MathExtras.h. // FIXME: Move this function to include/MathExtras.h? static int alignTo(int Num, int PowOf2) { return (Num + PowOf2 - 1) & ~(PowOf2 - 1); } static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, const AArch64InstrInfo *TII) { // One of the instructions must modify memory. if (!MIa->mayStore() && !MIb->mayStore()) return false; // Both instructions must be memory operations. if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) return false; return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); } static bool mayAlias(MachineInstr *MIa, SmallVectorImpl &MemInsns, const AArch64InstrInfo *TII) { for (auto &MIb : MemInsns) if (mayAlias(MIa, MIb, TII)) return true; return false; } /// findMatchingInsn - Scan the instructions looking for a load/store that can /// be combined with the current instruction into a load/store pair. MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, LdStPairFlags &Flags, unsigned Limit) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator MBBI = I; MachineInstr *FirstMI = I; ++MBBI; unsigned Opc = FirstMI->getOpcode(); bool MayLoad = FirstMI->mayLoad(); bool IsUnscaled = isUnscaledLdSt(FirstMI); unsigned Reg = getLdStRegOp(FirstMI).getReg(); unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); int Offset = getLdStOffsetOp(FirstMI).getImm(); bool IsNarrowStore = isNarrowStore(Opc); // For narrow stores, find only the case where the stored value is WZR. if (IsNarrowStore && Reg != AArch64::WZR) return E; // Early exit if the first instruction modifies the base register. // e.g., ldr x0, [x0] if (FirstMI->modifiesRegister(BaseReg, TRI)) return E; // Early exit if the offset if not possible to match. (6 bits of positive // range, plus allow an extra one in case we find a later insn that matches // with Offset-1) int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; if (!(isNarrowLoad(Opc) || IsNarrowStore) && !inBoundsForPair(IsUnscaled, Offset, OffsetStride)) return E; // Track which registers have been modified and used between the first insn // (inclusive) and the second insn. BitVector ModifiedRegs, UsedRegs; ModifiedRegs.resize(TRI->getNumRegs()); UsedRegs.resize(TRI->getNumRegs()); // Remember any instructions that read/write memory between FirstMI and MI. SmallVector MemInsns; for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { MachineInstr *MI = MBBI; // Skip DBG_VALUE instructions. Otherwise debug info can affect the // optimization by changing how far we scan. if (MI->isDebugValue()) continue; // Now that we know this is a real instruction, count it. ++Count; bool CanMergeOpc = Opc == MI->getOpcode(); Flags.setSExtIdx(-1); if (!CanMergeOpc) { bool IsValidLdStrOpc; unsigned NonSExtOpc = getMatchingNonSExtOpcode(Opc, &IsValidLdStrOpc); assert(IsValidLdStrOpc && "Given Opc should be a Load or Store with an immediate"); // Opc will be the first instruction in the pair. Flags.setSExtIdx(NonSExtOpc == (unsigned)Opc ? 1 : 0); CanMergeOpc = NonSExtOpc == getMatchingNonSExtOpcode(MI->getOpcode()); } if (CanMergeOpc && getLdStOffsetOp(MI).isImm()) { assert(MI->mayLoadOrStore() && "Expected memory operation."); // If we've found another instruction with the same opcode, check to see // if the base and offset are compatible with our starting instruction. // These instructions all have scaled immediate operands, so we just // check for +1/-1. Make sure to check the new instruction offset is // actually an immediate and not a symbolic reference destined for // a relocation. // // Pairwise instructions have a 7-bit signed offset field. Single insns // have a 12-bit unsigned offset field. To be a valid combine, the // final offset must be in range. unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); int MIOffset = getLdStOffsetOp(MI).getImm(); if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || (Offset + OffsetStride == MIOffset))) { int MinOffset = Offset < MIOffset ? Offset : MIOffset; // If this is a volatile load/store that otherwise matched, stop looking // as something is going on that we don't have enough information to // safely transform. Similarly, stop if we see a hint to avoid pairs. if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) return E; // If the resultant immediate offset of merging these instructions // is out of range for a pairwise instruction, bail and keep looking. bool MIIsUnscaled = isUnscaledLdSt(MI); bool IsNarrowLoad = isNarrowLoad(MI->getOpcode()); if (!IsNarrowLoad && !inBoundsForPair(MIIsUnscaled, MinOffset, OffsetStride)) { trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); MemInsns.push_back(MI); continue; } if (IsNarrowLoad || IsNarrowStore) { // If the alignment requirements of the scaled wide load/store // instruction can't express the offset of the scaled narrow // input, bail and keep looking. if (!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) { trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); MemInsns.push_back(MI); continue; } } else { // If the alignment requirements of the paired (scaled) instruction // can't express the offset of the unscaled input, bail and keep // looking. if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); MemInsns.push_back(MI); continue; } } // If the destination register of the loads is the same register, bail // and keep looking. A load-pair instruction with both destination // registers the same is UNPREDICTABLE and will result in an exception. // For narrow stores, allow only when the stored value is the same // (i.e., WZR). if ((MayLoad && Reg == getLdStRegOp(MI).getReg()) || (IsNarrowStore && Reg != getLdStRegOp(MI).getReg())) { trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); MemInsns.push_back(MI); continue; } // If the Rt of the second instruction was not modified or used between // the two instructions and none of the instructions between the second // and first alias with the second, we can combine the second into the // first. if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && !mayAlias(MI, MemInsns, TII)) { Flags.setMergeForward(false); return MBBI; } // Likewise, if the Rt of the first instruction is not modified or used // between the two instructions and none of the instructions between the // first and the second alias with the first, we can combine the first // into the second. if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && !mayAlias(FirstMI, MemInsns, TII)) { Flags.setMergeForward(true); return MBBI; } // Unable to combine these instructions due to interference in between. // Keep looking. } } // If the instruction wasn't a matching load or store. Stop searching if we // encounter a call instruction that might modify memory. if (MI->isCall()) return E; // Update modified / uses register lists. trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); // Otherwise, if the base register is modified, we have no match, so // return early. if (ModifiedRegs[BaseReg]) return E; // Update list of instructions that read/write memory. if (MI->mayLoadOrStore()) MemInsns.push_back(MI); } return E; } MachineBasicBlock::iterator AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update, bool IsPreIdx) { assert((Update->getOpcode() == AArch64::ADDXri || Update->getOpcode() == AArch64::SUBXri) && "Unexpected base register update instruction to merge!"); MachineBasicBlock::iterator NextI = I; // Return the instruction following the merged instruction, which is // the instruction following our unmerged load. Unless that's the add/sub // instruction we're merging, in which case it's the one after that. if (++NextI == Update) ++NextI; int Value = Update->getOperand(2).getImm(); assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); if (Update->getOpcode() == AArch64::SUBXri) Value = -Value; unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) : getPostIndexedOpcode(I->getOpcode()); MachineInstrBuilder MIB; if (!isPairedLdSt(I)) { // Non-paired instruction. MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) .addOperand(getLdStRegOp(Update)) .addOperand(getLdStRegOp(I)) .addOperand(getLdStBaseOp(I)) .addImm(Value); } else { // Paired instruction. int Scale = getMemScale(I); MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) .addOperand(getLdStRegOp(Update)) .addOperand(getLdStRegOp(I, 0)) .addOperand(getLdStRegOp(I, 1)) .addOperand(getLdStBaseOp(I)) .addImm(Value / Scale); } (void)MIB; if (IsPreIdx) DEBUG(dbgs() << "Creating pre-indexed load/store."); else DEBUG(dbgs() << "Creating post-indexed load/store."); DEBUG(dbgs() << " Replacing instructions:\n "); DEBUG(I->print(dbgs())); DEBUG(dbgs() << " "); DEBUG(Update->print(dbgs())); DEBUG(dbgs() << " with instruction:\n "); DEBUG(((MachineInstr *)MIB)->print(dbgs())); DEBUG(dbgs() << "\n"); // Erase the old instructions for the block. I->eraseFromParent(); Update->eraseFromParent(); return NextI; } bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, unsigned BaseReg, int Offset) { switch (MI->getOpcode()) { default: break; case AArch64::SUBXri: // Negate the offset for a SUB instruction. Offset *= -1; // FALLTHROUGH case AArch64::ADDXri: // Make sure it's a vanilla immediate operand, not a relocation or // anything else we can't handle. if (!MI->getOperand(2).isImm()) break; // Watch out for 1 << 12 shifted value. if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) break; // The update instruction source and destination register must be the // same as the load/store base register. if (MI->getOperand(0).getReg() != BaseReg || MI->getOperand(1).getReg() != BaseReg) break; bool IsPairedInsn = isPairedLdSt(MemMI); int UpdateOffset = MI->getOperand(2).getImm(); // For non-paired load/store instructions, the immediate must fit in a // signed 9-bit integer. if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) break; // For paired load/store instructions, the immediate must be a multiple of // the scaling factor. The scaled offset must also fit into a signed 7-bit // integer. if (IsPairedInsn) { int Scale = getMemScale(MemMI); if (UpdateOffset % Scale != 0) break; int ScaledOffset = UpdateOffset / Scale; if (ScaledOffset > 64 || ScaledOffset < -64) break; } // If we have a non-zero Offset, we check that it matches the amount // we're adding to the register. if (!Offset || Offset == MI->getOperand(2).getImm()) return true; break; } return false; } MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( MachineBasicBlock::iterator I, unsigned Limit, int UnscaledOffset) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineInstr *MemMI = I; MachineBasicBlock::iterator MBBI = I; unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); // Scan forward looking for post-index opportunities. Updating instructions // can't be formed if the memory instruction doesn't have the offset we're // looking for. if (MIUnscaledOffset != UnscaledOffset) return E; // If the base register overlaps a destination register, we can't // merge the update. bool IsPairedInsn = isPairedLdSt(MemMI); for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) return E; } // Track which registers have been modified and used between the first insn // (inclusive) and the second insn. BitVector ModifiedRegs, UsedRegs; ModifiedRegs.resize(TRI->getNumRegs()); UsedRegs.resize(TRI->getNumRegs()); ++MBBI; for (unsigned Count = 0; MBBI != E; ++MBBI) { MachineInstr *MI = MBBI; // Skip DBG_VALUE instructions. Otherwise debug info can affect the // optimization by changing how far we scan. if (MI->isDebugValue()) continue; // Now that we know this is a real instruction, count it. ++Count; // If we found a match, return it. if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) return MBBI; // Update the status of what the instruction clobbered and used. trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); // Otherwise, if the base register is used or modified, we have no match, so // return early. if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) return E; } return E; } MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( MachineBasicBlock::iterator I, unsigned Limit) { MachineBasicBlock::iterator B = I->getParent()->begin(); MachineBasicBlock::iterator E = I->getParent()->end(); MachineInstr *MemMI = I; MachineBasicBlock::iterator MBBI = I; unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); int Offset = getLdStOffsetOp(MemMI).getImm(); // If the load/store is the first instruction in the block, there's obviously // not any matching update. Ditto if the memory offset isn't zero. if (MBBI == B || Offset != 0) return E; // If the base register overlaps a destination register, we can't // merge the update. bool IsPairedInsn = isPairedLdSt(MemMI); for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) return E; } // Track which registers have been modified and used between the first insn // (inclusive) and the second insn. BitVector ModifiedRegs, UsedRegs; ModifiedRegs.resize(TRI->getNumRegs()); UsedRegs.resize(TRI->getNumRegs()); --MBBI; for (unsigned Count = 0; MBBI != B; --MBBI) { MachineInstr *MI = MBBI; // Skip DBG_VALUE instructions. Otherwise debug info can affect the // optimization by changing how far we scan. if (MI->isDebugValue()) continue; // Now that we know this is a real instruction, count it. ++Count; // If we found a match, return it. if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) return MBBI; // Update the status of what the instruction clobbered and used. trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); // Otherwise, if the base register is used or modified, we have no match, so // return early. if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) return E; } return E; } bool AArch64LoadStoreOpt::tryToMergeLdStInst( MachineBasicBlock::iterator &MBBI) { MachineInstr *MI = MBBI; MachineBasicBlock::iterator E = MI->getParent()->end(); // If this is a volatile load/store, don't mess with it. if (MI->hasOrderedMemoryRef()) return false; // Make sure this is a reg+imm (as opposed to an address reloc). if (!getLdStOffsetOp(MI).isImm()) return false; // Check if this load/store has a hint to avoid pair formation. // MachineMemOperands hints are set by the AArch64StorePairSuppress pass. if (TII->isLdStPairSuppressed(MI)) return false; // Look ahead up to ScanLimit instructions for a pairable instruction. LdStPairFlags Flags; MachineBasicBlock::iterator Paired = findMatchingInsn(MBBI, Flags, ScanLimit); if (Paired != E) { if (isNarrowLoad(MI)) { ++NumNarrowLoadsPromoted; } else if (isNarrowStore(MI)) { ++NumZeroStoresPromoted; } else { ++NumPairCreated; if (isUnscaledLdSt(MI)) ++NumUnscaledPairCreated; } // Merge the loads into a pair. Keeping the iterator straight is a // pain, so we let the merge routine tell us what the next instruction // is after it's done mucking about. MBBI = mergePairedInsns(MBBI, Paired, Flags); return true; } return false; } bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt) { bool Modified = false; // Three tranformations to do here: // 1) Find narrow loads that can be converted into a single wider load // with bitfield extract instructions. // e.g., // ldrh w0, [x2] // ldrh w1, [x2, #2] // ; becomes // ldr w0, [x2] // ubfx w1, w0, #16, #16 // and w0, w0, #ffff // 2) Find loads and stores that can be merged into a single load or store // pair instruction. // e.g., // ldr x0, [x2] // ldr x1, [x2, #8] // ; becomes // ldp x0, x1, [x2] // 3) Find base register updates that can be merged into the load or store // as a base-reg writeback. // e.g., // ldr x0, [x2] // add x2, x2, #4 // ; becomes // ldr x0, [x2], #4 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); enableNarrowLdOpt && MBBI != E;) { MachineInstr *MI = MBBI; switch (MI->getOpcode()) { default: // Just move on to the next instruction. ++MBBI; break; // Scaled instructions. case AArch64::LDRBBui: case AArch64::LDRHHui: case AArch64::LDRSBWui: case AArch64::LDRSHWui: case AArch64::STRBBui: case AArch64::STRHHui: // Unscaled instructions. case AArch64::LDURBBi: case AArch64::LDURHHi: case AArch64::LDURSBWi: case AArch64::LDURSHWi: case AArch64::STURBBi: case AArch64::STURHHi: { if (tryToMergeLdStInst(MBBI)) { Modified = true; break; } ++MBBI; break; } // FIXME: Do the other instructions. } } for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { MachineInstr *MI = MBBI; switch (MI->getOpcode()) { default: // Just move on to the next instruction. ++MBBI; break; // Scaled instructions. case AArch64::STRSui: case AArch64::STRDui: case AArch64::STRQui: case AArch64::STRXui: case AArch64::STRWui: case AArch64::LDRSui: case AArch64::LDRDui: case AArch64::LDRQui: case AArch64::LDRXui: case AArch64::LDRWui: case AArch64::LDRSWui: // Unscaled instructions. case AArch64::STURSi: case AArch64::STURDi: case AArch64::STURQi: case AArch64::STURWi: case AArch64::STURXi: case AArch64::LDURSi: case AArch64::LDURDi: case AArch64::LDURQi: case AArch64::LDURWi: case AArch64::LDURXi: case AArch64::LDURSWi: { if (tryToMergeLdStInst(MBBI)) { Modified = true; break; } ++MBBI; break; } // FIXME: Do the other instructions. } } for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { MachineInstr *MI = MBBI; // Do update merging. It's simpler to keep this separate from the above // switch, though not strictly necessary. unsigned Opc = MI->getOpcode(); switch (Opc) { default: // Just move on to the next instruction. ++MBBI; break; // Scaled instructions. case AArch64::STRSui: case AArch64::STRDui: case AArch64::STRQui: case AArch64::STRXui: case AArch64::STRWui: case AArch64::STRHHui: case AArch64::STRBBui: case AArch64::LDRSui: case AArch64::LDRDui: case AArch64::LDRQui: case AArch64::LDRXui: case AArch64::LDRWui: case AArch64::LDRHHui: case AArch64::LDRBBui: // Unscaled instructions. case AArch64::STURSi: case AArch64::STURDi: case AArch64::STURQi: case AArch64::STURWi: case AArch64::STURXi: case AArch64::LDURSi: case AArch64::LDURDi: case AArch64::LDURQi: case AArch64::LDURWi: case AArch64::LDURXi: // Paired instructions. case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPDi: case AArch64::LDPQi: case AArch64::LDPWi: case AArch64::LDPXi: case AArch64::STPSi: case AArch64::STPDi: case AArch64::STPQi: case AArch64::STPWi: case AArch64::STPXi: { // Make sure this is a reg+imm (as opposed to an address reloc). if (!getLdStOffsetOp(MI).isImm()) { ++MBBI; break; } // Look forward to try to form a post-index instruction. For example, // ldr x0, [x20] // add x20, x20, #32 // merged into: // ldr x0, [x20], #32 MachineBasicBlock::iterator Update = findMatchingUpdateInsnForward(MBBI, ScanLimit, 0); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); Modified = true; ++NumPostFolded; break; } // Don't know how to handle pre/post-index versions, so move to the next // instruction. if (isUnscaledLdSt(Opc)) { ++MBBI; break; } // Look back to try to find a pre-index instruction. For example, // add x0, x0, #8 // ldr x1, [x0] // merged into: // ldr x1, [x0, #8]! Update = findMatchingUpdateInsnBackward(MBBI, ScanLimit); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); Modified = true; ++NumPreFolded; break; } // The immediate in the load/store is scaled by the size of the memory // operation. The immediate in the add we're looking for, // however, is not, so adjust here. int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); // Look forward to try to find a post-index instruction. For example, // ldr x1, [x0, #64] // add x0, x0, #64 // merged into: // ldr x1, [x0, #64]! Update = findMatchingUpdateInsnForward(MBBI, ScanLimit, UnscaledOffset); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); Modified = true; ++NumPreFolded; break; } // Nothing found. Just move to the next instruction. ++MBBI; break; } // FIXME: Do the other instructions. } } return Modified; } bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) { bool ProfitableArch = Subtarget->isCortexA57(); // FIXME: The benefit from converting narrow loads into a wider load could be // microarchitectural as it assumes that a single load with two bitfield // extracts is cheaper than two narrow loads. Currently, this conversion is // enabled only in cortex-a57 on which performance benefits were verified. return ProfitableArch && !Subtarget->requiresStrictAlign(); } bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { Subtarget = &static_cast(Fn.getSubtarget()); TII = static_cast(Subtarget->getInstrInfo()); TRI = Subtarget->getRegisterInfo(); bool Modified = false; bool enableNarrowLdOpt = enableNarrowLdMerge(Fn); for (auto &MBB : Fn) Modified |= optimizeBlock(MBB, enableNarrowLdOpt); return Modified; } // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep // loads and stores near one another? /// createAArch64LoadStoreOptimizationPass - returns an instance of the /// load / store optimization pass. FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { return new AArch64LoadStoreOpt(); }