//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// \brief Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPUDiagnosticInfoUnsupported.h" #include "AMDGPUInstrInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "R600InstrInfo.h" #include "SIDefines.h" #include "SIISelLowering.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/IR/Function.h" using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const AMDGPUSubtarget *Subtarget; public: AMDGPUDAGToDAGISel(TargetMachine &TM); virtual ~AMDGPUDAGToDAGISel(); bool runOnMachineFunction(MachineFunction &MF) override; SDNode *Select(SDNode *N) override; const char *getPassName() const override; void PreprocessISelDAG() override; void PostprocessISelDAG() override; private: bool isInlineImmediate(SDNode *N) const; bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs, const R600InstrInfo *TII); bool FoldOperands(unsigned, const R600InstrInfo *, std::vector &); bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector &); // Complex pattern selectors bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2); bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2); bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2); static bool checkType(const Value *ptr, unsigned int addrspace); static bool checkPrivateAddress(const MachineMemOperand *Op); static bool isGlobalStore(const StoreSDNode *N); static bool isFlatStore(const StoreSDNode *N); static bool isPrivateStore(const StoreSDNode *N); static bool isLocalStore(const StoreSDNode *N); static bool isRegionStore(const StoreSDNode *N); bool isCPLoad(const LoadSDNode *N) const; bool isConstantLoad(const LoadSDNode *N, int cbID) const; bool isGlobalLoad(const LoadSDNode *N) const; bool isFlatLoad(const LoadSDNode *N) const; bool isParamLoad(const LoadSDNode *N) const; bool isPrivateLoad(const LoadSDNode *N) const; bool isLocalLoad(const LoadSDNode *N) const; bool isRegionLoad(const LoadSDNode *N) const; SDNode *glueCopyToM0(SDNode *N) const; const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); bool isDSOffsetLegal(const SDValue &Base, unsigned Offset, unsigned OffsetBits) const; bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, SDValue &Offset1) const; void SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &Offen, SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &SLC) const; bool SelectMUBUFScratch(SDValue Addr, SDValue &RSrc, SDValue &VAddr, SDValue &SOffset, SDValue &ImmOffset) const; bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset, SDValue &GLC) const; bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, bool &Imm) const; bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, bool &Imm) const; bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; bool SelectSMRDBufferSgpr(SDValue Addr, SDValue &Offset) const; SDNode *SelectAddrSpaceCast(SDNode *N); bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3NoMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3Mods0Clamp(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Omod) const; bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; SDNode *SelectADD_SUB_I64(SDNode *N); SDNode *SelectDIV_SCALE(SDNode *N); SDNode *getS_BFE(unsigned Opcode, SDLoc DL, SDValue Val, uint32_t Offset, uint32_t Width); SDNode *SelectS_BFEFromShifts(SDNode *N); SDNode *SelectS_BFE(SDNode *N); // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; } // end anonymous namespace /// \brief This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM) { return new AMDGPUDAGToDAGISel(TM); } AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(TM) {} bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &static_cast(MF.getSubtarget()); return SelectionDAGISel::runOnMachineFunction(MF); } AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() { } bool AMDGPUDAGToDAGISel::isInlineImmediate(SDNode *N) const { const SITargetLowering *TL = static_cast(getTargetLowering()); return TL->analyzeImmediate(N) == 0; } /// \brief Determine the register class for \p OpNo /// \returns The register class of the virtual register that will be used for /// the given operand number \OpNo or NULL if the register class cannot be /// determined. const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, unsigned OpNo) const { if (!N->isMachineOpcode()) return nullptr; switch (N->getMachineOpcode()) { default: { const MCInstrDesc &Desc = Subtarget->getInstrInfo()->get(N->getMachineOpcode()); unsigned OpIdx = Desc.getNumDefs() + OpNo; if (OpIdx >= Desc.getNumOperands()) return nullptr; int RegClass = Desc.OpInfo[OpIdx].RegClass; if (RegClass == -1) return nullptr; return Subtarget->getRegisterInfo()->getRegClass(RegClass); } case AMDGPU::REG_SEQUENCE: { unsigned RCID = cast(N->getOperand(0))->getZExtValue(); const TargetRegisterClass *SuperRC = Subtarget->getRegisterInfo()->getRegClass(RCID); SDValue SubRegOp = N->getOperand(OpNo + 1); unsigned SubRegIdx = cast(SubRegOp)->getZExtValue(); return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx); } } } bool AMDGPUDAGToDAGISel::SelectADDRParam( SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); } return true; } bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } return SelectADDRParam(Addr, R1, R2); } bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64); R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i64); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i64); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i64); } return true; } SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N) const { if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || !checkType(cast(N)->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS)) return N; const SITargetLowering& Lowering = *static_cast(getTargetLowering()); // Write max value to m0 before each load operation SDValue M0 = Lowering.copyToM0(*CurDAG, CurDAG->getEntryNode(), SDLoc(N), CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); SDValue Glue = M0.getValue(1); SmallVector Ops; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { Ops.push_back(N->getOperand(i)); } Ops.push_back(Glue); CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); return N; } static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) { switch (NumVectorElts) { case 1: return AMDGPU::SReg_32RegClassID; case 2: return AMDGPU::SReg_64RegClassID; case 4: return AMDGPU::SReg_128RegClassID; case 8: return AMDGPU::SReg_256RegClassID; case 16: return AMDGPU::SReg_512RegClassID; } llvm_unreachable("invalid vector size"); } SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return nullptr; // Already selected. } if (isa(N)) N = glueCopyToM0(N); switch (Opc) { default: break; // We are selecting i64 ADD here instead of custom lower it during // DAG legalization, so we can fold some i64 ADDs used for address // calculation into the LOAD and STORE instructions. case ISD::ADD: case ISD::SUB: { if (N->getValueType(0) != MVT::i64 || Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; return SelectADD_SUB_I64(N); } case ISD::SCALAR_TO_VECTOR: case AMDGPUISD::BUILD_VERTICAL_VECTOR: case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo(); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); assert(EltVT.bitsEq(MVT::i32)); if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { RegClassID = selectSGPRVectorRegClassID(NumVectorElts); } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) RegClassID = AMDGPU::R600_Reg128VerticalRegClassID; else RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDLoc DL(N); SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SmallVector RegSeqArgs(NumVectorElts * 2 + 1); RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); bool IsRegSeq = true; unsigned NOps = N->getNumOperands(); for (unsigned i = 0; i < NOps; i++) { // XXX: Why is this here? if (isa(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), DL, MVT::i32); } if (NOps != NumVectorElts) { // Fill in the missing undef elements if this was a scalar_to_vector. assert(Opc == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, EltVT); for (unsigned i = NOps; i < NumVectorElts; ++i) { RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), DL, MVT::i32); } } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; if (Subtarget->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } SDLoc DL(N); if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, N->getValueType(0), Ops); } case ISD::Constant: case ISD::ConstantFP: { if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) break; uint64_t Imm; if (ConstantFPSDNode *FP = dyn_cast(N)) Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); else { ConstantSDNode *C = cast(N); Imm = C->getZExtValue(); } SDLoc DL(N); SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getConstant(Imm >> 32, DL, MVT::i32)); const SDValue Ops[] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, N->getValueType(0), Ops); } case ISD::LOAD: case ISD::STORE: { N = glueCopyToM0(N); break; } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; // There is a scalar version available, but unlike the vector version which // has a separate operand for the offset and width, the scalar version packs // the width and offset into a single operand. Try to move to the scalar // version if the offsets are constant, so that we can try to keep extended // loads of kernel arguments in SGPRs. // TODO: Technically we could try to pattern match scalar bitshifts of // dynamic values, but it's probably not useful. ConstantSDNode *Offset = dyn_cast(N->getOperand(1)); if (!Offset) break; ConstantSDNode *Width = dyn_cast(N->getOperand(2)); if (!Width) break; bool Signed = Opc == AMDGPUISD::BFE_I32; uint32_t OffsetVal = Offset->getZExtValue(); uint32_t WidthVal = Width->getZExtValue(); return getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, SDLoc(N), N->getOperand(0), OffsetVal, WidthVal); } case AMDGPUISD::DIV_SCALE: { return SelectDIV_SCALE(N); } case ISD::CopyToReg: { const SITargetLowering& Lowering = *static_cast(getTargetLowering()); Lowering.legalizeTargetIndependentNode(N, *CurDAG); break; } case ISD::ADDRSPACECAST: return SelectAddrSpaceCast(N); case ISD::AND: case ISD::SRL: case ISD::SRA: if (N->getValueType(0) != MVT::i32 || Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; return SelectS_BFE(N); } return SelectCode(N); } bool AMDGPUDAGToDAGISel::checkType(const Value *Ptr, unsigned AS) { assert(AS != 0 && "Use checkPrivateAddress instead."); if (!Ptr) return false; return Ptr->getType()->getPointerAddressSpace() == AS; } bool AMDGPUDAGToDAGISel::checkPrivateAddress(const MachineMemOperand *Op) { if (Op->getPseudoValue()) return true; if (PointerType *PT = dyn_cast(Op->getValue()->getType())) return PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; return false; } bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) { const Value *MemVal = N->getMemOperand()->getValue(); return (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::REGION_ADDRESS)); } bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isFlatStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const { const Value *MemVal = N->getMemOperand()->getValue(); if (CbId == -1) return checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS); return checkType(MemVal, AMDGPUAS::CONSTANT_BUFFER_0 + CbId); } bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const { if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || N->getMemoryVT().bitsLT(MVT::i32)) return true; return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::PARAM_I_ADDRESS); } bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isFlatLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const { return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const { MachineMemOperand *MMO = N->getMemOperand(); if (checkPrivateAddress(N->getMemOperand())) { if (MMO) { const PseudoSourceValue *PSV = MMO->getPseudoValue(); if (PSV && PSV->isConstantPool()) { return true; } } } return false; } bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const { if (checkPrivateAddress(N->getMemOperand())) { // Check to make sure we are not a constant pool load or a constant load // that is marked as a private load if (isCPLoad(N) || isConstantLoad(N, -1)) { return false; } } const Value *MemVal = N->getMemOperand()->getValue(); if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) && !checkType(MemVal, AMDGPUAS::FLAT_ADDRESS) && !checkType(MemVal, AMDGPUAS::REGION_ADDRESS) && !checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) && !checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) && !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)) { return true; } return false; } const char *AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } #ifdef DEBUGTMP #undef INT64_C #endif #undef DEBUGTMP //===----------------------------------------------------------------------===// // Complex Patterns //===----------------------------------------------------------------------===// bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!isa(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(CurDAG->getEntryNode()), AMDGPU::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; SDLoc DL(Addr); if ((C = dyn_cast(Addr))) { Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); } return true; } SDNode *AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); bool IsAdd = (N->getOpcode() == ISD::ADD); SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub0); SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub1); SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub0); SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub1); SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); SDValue AddLoArgs[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; SDNode *AddLo = CurDAG->getMachineNode( Opc, DL, VTList, AddLoArgs); SDValue Carry(AddLo, 1); SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, MVT::i32, SDValue(Hi0, 0), SDValue(Hi1, 0), Carry); SDValue Args[5] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), SDValue(AddLo,0), Sub0, SDValue(AddHi,0), Sub1, }; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args); } // We need to handle this here because tablegen doesn't support matching // instructions with multiple outputs. SDNode *AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { SDLoc SL(N); EVT VT = N->getValueType(0); assert(VT == MVT::f32 || VT == MVT::f64); unsigned Opc = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, // omod SDValue Ops[8]; SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]); SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]); return CurDAG->SelectNodeTo(N, Opc, VT, MVT::i1, Ops); } bool AMDGPUDAGToDAGISel::isDSOffsetLegal(const SDValue &Base, unsigned Offset, unsigned OffsetBits) const { if ((OffsetBits == 16 && !isUInt<16>(Offset)) || (OffsetBits == 8 && !isUInt<8>(Offset))) return false; if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS || Subtarget->unsafeDSOffsetFoldingEnabled()) return true; // On Southern Islands instruction with a negative base value and an offset // don't seem to work. return CurDAG->SignBitIsZero(Base); } bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast(N1); if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { // (add n0, c0) Base = N0; Offset = N1; return true; } } else if (Addr.getOpcode() == ISD::SUB) { // sub C, x -> add (sub 0, x), C if (const ConstantSDNode *C = dyn_cast(Addr.getOperand(0))) { int64_t ByteOffset = C->getSExtValue(); if (isUInt<16>(ByteOffset)) { SDLoc DL(Addr); SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); // XXX - This is kind of hacky. Create a dummy sub node so we can check // the known bits in isDSOffsetLegal. We need to emit the selected node // here, so this is thrown away. SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); if (isDSOffsetLegal(Sub, ByteOffset, 16)) { MachineSDNode *MachineSub = CurDAG->getMachineNode(AMDGPU::V_SUB_I32_e32, DL, MVT::i32, Zero, Addr.getOperand(1)); Base = SDValue(MachineSub, 0); Offset = Addr.getOperand(0); return true; } } } } else if (const ConstantSDNode *CAddr = dyn_cast(Addr)) { // If we have a constant address, prefer to put the constant into the // offset. This can save moves to load the constant address since multiple // operations can share the zero base address register, and enables merging // into read2 / write2 instructions. SDLoc DL(Addr); if (isUInt<16>(CAddr->getZExtValue())) { SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); Base = SDValue(MovZero, 0); Offset = Addr; return true; } } // default case Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); return true; } // TODO: If offset is too big, put low 16-bit into offset. bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, SDValue &Offset0, SDValue &Offset1) const { SDLoc DL(Addr); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast(N1); unsigned DWordOffset0 = C1->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; // (add n0, c0) if (isDSOffsetLegal(N0, DWordOffset1, 8)) { Base = N0; Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } else if (Addr.getOpcode() == ISD::SUB) { // sub C, x -> add (sub 0, x), C if (const ConstantSDNode *C = dyn_cast(Addr.getOperand(0))) { unsigned DWordOffset0 = C->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; if (isUInt<8>(DWordOffset0)) { SDLoc DL(Addr); SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); // XXX - This is kind of hacky. Create a dummy sub node so we can check // the known bits in isDSOffsetLegal. We need to emit the selected node // here, so this is thrown away. SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); if (isDSOffsetLegal(Sub, DWordOffset1, 8)) { MachineSDNode *MachineSub = CurDAG->getMachineNode(AMDGPU::V_SUB_I32_e32, DL, MVT::i32, Zero, Addr.getOperand(1)); Base = SDValue(MachineSub, 0); Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } } } else if (const ConstantSDNode *CAddr = dyn_cast(Addr)) { unsigned DWordOffset0 = CAddr->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; assert(4 * DWordOffset0 == CAddr->getZExtValue()); if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) { SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); Base = SDValue(MovZero, 0); Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } // default case Base = Addr; Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); return true; } static bool isLegalMUBUFImmOffset(const ConstantSDNode *Imm) { return isUInt<12>(Imm->getZExtValue()); } void AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &Offen, SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { SDLoc DL(Addr); GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast(N1); if (N0.getOpcode() == ISD::ADD) { // (add (add N2, N3), C1) -> addr64 SDValue N2 = N0.getOperand(0); SDValue N3 = N0.getOperand(1); Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); Ptr = N2; VAddr = N3; } else { // (add N0, C1) -> offset VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); Ptr = N0; } if (isLegalMUBUFImmOffset(C1)) { Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); return; } else if (isUInt<32>(C1->getZExtValue())) { // Illegal offset, store it in soffset. Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); SOffset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 0); return; } } if (Addr.getOpcode() == ISD::ADD) { // (add N0, N1) -> addr64 SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); Ptr = N0; VAddr = N1; Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); return; } // default case -> offset VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); Ptr = Addr; Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); } bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { SDValue Ptr, Offen, Idxen, Addr64; // addr64 bit was removed for volcanic islands. if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return false; SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, GLC, SLC, TFE); ConstantSDNode *C = cast(Addr64); if (C->getSExtValue()) { SDLoc DL(Addr); const SITargetLowering& Lowering = *static_cast(getTargetLowering()); SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &SLC) const { SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); SDValue GLC, TFE; return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE); } bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc, SDValue &VAddr, SDValue &SOffset, SDValue &ImmOffset) const { SDLoc DL(Addr); MachineFunction &MF = CurDAG->getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); SOffset = CurDAG->getRegister(Info->getScratchWaveOffsetReg(), MVT::i32); // (add n0, c1) if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); // Offsets in vaddr must be positive. if (CurDAG->SignBitIsZero(N0)) { ConstantSDNode *C1 = cast(N1); if (isLegalMUBUFImmOffset(C1)) { VAddr = N0; ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); return true; } } } // (node) VAddr = Addr; ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { SDValue Ptr, VAddr, Offen, Idxen, Addr64; const SIInstrInfo *TII = static_cast(Subtarget->getInstrInfo()); SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, GLC, SLC, TFE); if (!cast(Offen)->getSExtValue() && !cast(Idxen)->getSExtValue() && !cast(Addr64)->getSExtValue()) { uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | APInt::getAllOnesValue(32).getZExtValue(); // Size SDLoc DL(Addr); const SITargetLowering& Lowering = *static_cast(getTargetLowering()); SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset, SDValue &GLC) const { SDValue SLC, TFE; return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE); } /// /// \param EncodedOffset This is the immediate value that will be encoded /// directly into the instruction. On SI/CI the \p EncodedOffset /// will be in units of dwords and on VI+ it will be units of bytes. static bool isLegalSMRDImmOffset(const AMDGPUSubtarget *ST, int64_t EncodedOffset) { return ST->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ? isUInt<8>(EncodedOffset) : isUInt<20>(EncodedOffset); } bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, bool &Imm) const { // FIXME: Handle non-constant offsets. ConstantSDNode *C = dyn_cast(ByteOffsetNode); if (!C) return false; SDLoc SL(ByteOffsetNode); AMDGPUSubtarget::Generation Gen = Subtarget->getGeneration(); int64_t ByteOffset = C->getSExtValue(); int64_t EncodedOffset = Gen < AMDGPUSubtarget::VOLCANIC_ISLANDS ? ByteOffset >> 2 : ByteOffset; if (isLegalSMRDImmOffset(Subtarget, EncodedOffset)) { Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); Imm = true; return true; } if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset)) return false; if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) { // 32-bit Immediates are supported on Sea Islands. Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); } else { SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); } Imm = false; return true; } bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, bool &Imm) const { SDLoc SL(Addr); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); if (SelectSMRDOffset(N1, Offset, Imm)) { SBase = N0; return true; } } SBase = Addr; Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); Imm = true; return true; } bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const { bool Imm; return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; } bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const { if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) return false; bool Imm; if (!SelectSMRD(Addr, SBase, Offset, Imm)) return false; return !Imm && isa(Offset); } bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const { bool Imm; return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && !isa(Offset); } bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const { bool Imm; return SelectSMRDOffset(Addr, Offset, Imm) && Imm; } bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const { if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) return false; bool Imm; if (!SelectSMRDOffset(Addr, Offset, Imm)) return false; return !Imm && isa(Offset); } bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgpr(SDValue Addr, SDValue &Offset) const { bool Imm; return SelectSMRDOffset(Addr, Offset, Imm) && !Imm && !isa(Offset); } // FIXME: This is incorrect and only enough to be able to compile. SDNode *AMDGPUDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) { AddrSpaceCastSDNode *ASC = cast(N); SDLoc DL(N); const MachineFunction &MF = CurDAG->getMachineFunction(); DiagnosticInfoUnsupported NotImplemented(*MF.getFunction(), "addrspacecast not implemented"); CurDAG->getContext()->diagnose(NotImplemented); assert(Subtarget->hasFlatAddressSpace() && "addrspacecast only supported with flat address space!"); assert((ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS || ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) && "Can only cast to / from flat address space!"); // The flat instructions read the address as the index of the VGPR holding the // address, so casting should just be reinterpreting the base VGPR, so just // insert trunc / bitcast / zext. SDValue Src = ASC->getOperand(0); EVT DestVT = ASC->getValueType(0); EVT SrcVT = Src.getValueType(); unsigned SrcSize = SrcVT.getSizeInBits(); unsigned DestSize = DestVT.getSizeInBits(); if (SrcSize > DestSize) { assert(SrcSize == 64 && DestSize == 32); return CurDAG->getMachineNode( TargetOpcode::EXTRACT_SUBREG, DL, DestVT, Src, CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32)); } if (DestSize > SrcSize) { assert(SrcSize == 32 && DestSize == 64); // FIXME: This is probably wrong, we should never be defining // a register class with both VGPRs and SGPRs SDValue RC = CurDAG->getTargetConstant(AMDGPU::VS_64RegClassID, DL, MVT::i32); const SDValue Ops[] = { RC, Src, CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getConstant(0, DL, MVT::i32)), 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, N->getValueType(0), Ops); } assert(SrcSize == 64 && DestSize == 64); return CurDAG->getNode(ISD::BITCAST, DL, DestVT, Src).getNode(); } SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, SDLoc DL, SDValue Val, uint32_t Offset, uint32_t Width) { // Transformation function, pack the offset and width of a BFE into // the format expected by the S_BFE_I32 / S_BFE_U32. In the second // source, bits [5:0] contain the offset and bits [22:16] the width. uint32_t PackedVal = Offset | (Width << 16); SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); } SDNode *AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) // Predicate: 0 < b <= c < 32 const SDValue &Shl = N->getOperand(0); ConstantSDNode *B = dyn_cast(Shl->getOperand(1)); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (B && C) { uint32_t BVal = B->getZExtValue(); uint32_t CVal = C->getZExtValue(); if (0 < BVal && BVal <= CVal && CVal < 32) { bool Signed = N->getOpcode() == ISD::SRA; unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; return getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 32 - CVal); } } return SelectCode(N); } SDNode *AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { switch (N->getOpcode()) { case ISD::AND: if (N->getOperand(0).getOpcode() == ISD::SRL) { // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" // Predicate: isMask(mask) const SDValue &Srl = N->getOperand(0); ConstantSDNode *Shift = dyn_cast(Srl.getOperand(1)); ConstantSDNode *Mask = dyn_cast(N->getOperand(1)); if (Shift && Mask) { uint32_t ShiftVal = Shift->getZExtValue(); uint32_t MaskVal = Mask->getZExtValue(); if (isMask_32(MaskVal)) { uint32_t WidthVal = countPopulation(MaskVal); return getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), Srl.getOperand(0), ShiftVal, WidthVal); } } } break; case ISD::SRL: if (N->getOperand(0).getOpcode() == ISD::AND) { // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" // Predicate: isMask(mask >> b) const SDValue &And = N->getOperand(0); ConstantSDNode *Shift = dyn_cast(N->getOperand(1)); ConstantSDNode *Mask = dyn_cast(And->getOperand(1)); if (Shift && Mask) { uint32_t ShiftVal = Shift->getZExtValue(); uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; if (isMask_32(MaskVal)) { uint32_t WidthVal = countPopulation(MaskVal); return getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), And.getOperand(0), ShiftVal, WidthVal); } } } else if (N->getOperand(0).getOpcode() == ISD::SHL) return SelectS_BFEFromShifts(N); break; case ISD::SRA: if (N->getOperand(0).getOpcode() == ISD::SHL) return SelectS_BFEFromShifts(N); break; } return SelectCode(N); } bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const { unsigned Mods = 0; Src = In; if (Src.getOpcode() == ISD::FNEG) { Mods |= SISrcMods::NEG; Src = Src.getOperand(0); } if (Src.getOpcode() == ISD::FABS) { Mods |= SISrcMods::ABS; Src = Src.getOperand(0); } SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src, SDValue &SrcMods) const { bool Res = SelectVOP3Mods(In, Src, SrcMods); return Res && cast(SrcMods)->isNullValue(); } bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const { SDLoc DL(In); // FIXME: Handle Clamp and Omod Clamp = CurDAG->getTargetConstant(0, DL, MVT::i32); Omod = CurDAG->getTargetConstant(0, DL, MVT::i32); return SelectVOP3Mods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const { bool Res = SelectVOP3Mods0(In, Src, SrcMods, Clamp, Omod); return Res && cast(SrcMods)->isNullValue() && cast(Clamp)->isNullValue() && cast(Omod)->isNullValue(); } bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Omod) const { // FIXME: Handle Omod Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); return SelectVOP3Mods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const { Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); return SelectVOP3Mods(In, Src, SrcMods); } void AMDGPUDAGToDAGISel::PreprocessISelDAG() { bool Modified = false; // XXX - Other targets seem to be able to do this without a worklist. SmallVector LoadsToReplace; SmallVector StoresToReplace; for (SDNode &Node : CurDAG->allnodes()) { if (LoadSDNode *LD = dyn_cast(&Node)) { EVT VT = LD->getValueType(0); if (VT != MVT::i64 || LD->getExtensionType() != ISD::NON_EXTLOAD) continue; // To simplify the TableGen patters, we replace all i64 loads with v2i32 // loads. Alternatively, we could promote i64 loads to v2i32 during DAG // legalization, however, so places (ExpandUnalignedLoad) in the DAG // legalizer assume that if i64 is legal, so doing this promotion early // can cause problems. LoadsToReplace.push_back(LD); } else if (StoreSDNode *ST = dyn_cast(&Node)) { // Handle i64 stores here for the same reason mentioned above for loads. SDValue Value = ST->getValue(); if (Value.getValueType() != MVT::i64 || ST->isTruncatingStore()) continue; StoresToReplace.push_back(ST); } } for (LoadSDNode *LD : LoadsToReplace) { SDLoc SL(LD); SDValue NewLoad = CurDAG->getLoad(MVT::v2i32, SL, LD->getChain(), LD->getBasePtr(), LD->getMemOperand()); SDValue BitCast = CurDAG->getNode(ISD::BITCAST, SL, MVT::i64, NewLoad); CurDAG->ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLoad.getValue(1)); CurDAG->ReplaceAllUsesOfValueWith(SDValue(LD, 0), BitCast); Modified = true; } for (StoreSDNode *ST : StoresToReplace) { SDValue NewValue = CurDAG->getNode(ISD::BITCAST, SDLoc(ST), MVT::v2i32, ST->getValue()); const SDValue StoreOps[] = { ST->getChain(), NewValue, ST->getBasePtr(), ST->getOffset() }; CurDAG->UpdateNodeOperands(ST, StoreOps); Modified = true; } // XXX - Is this necessary? if (Modified) CurDAG->RemoveDeadNodes(); } void AMDGPUDAGToDAGISel::PostprocessISelDAG() { const AMDGPUTargetLowering& Lowering = *static_cast(getTargetLowering()); bool IsModified = false; do { IsModified = false; // Go over all selected nodes and try to fold them a bit more for (SDNode &Node : CurDAG->allnodes()) { MachineSDNode *MachineNode = dyn_cast(&Node); if (!MachineNode) continue; SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); if (ResNode != &Node) { ReplaceUses(&Node, ResNode); IsModified = true; } } CurDAG->RemoveDeadNodes(); } while (IsModified); }