//===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file assembles .s files and emits ARM ELF .o object files. Different // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to // delimit regions of data and code. // //===----------------------------------------------------------------------===// #include "ARMRegisterInfo.h" #include "ARMUnwindOpAsm.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/ARMEHABI.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; static std::string GetAEABIUnwindPersonalityName(unsigned Index) { assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "Invalid personality index"); return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); } namespace { class ARMELFStreamer; class ARMTargetAsmStreamer : public ARMTargetStreamer { formatted_raw_ostream &OS; MCInstPrinter &InstPrinter; bool IsVerboseAsm; void emitFnStart() override; void emitFnEnd() override; void emitCantUnwind() override; void emitPersonality(const MCSymbol *Personality) override; void emitPersonalityIndex(unsigned Index) override; void emitHandlerData() override; void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; void emitMovSP(unsigned Reg, int64_t Offset = 0) override; void emitPad(int64_t Offset) override; void emitRegSave(const SmallVectorImpl &RegList, bool isVector) override; void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) override; void switchVendor(StringRef Vendor) override; void emitAttribute(unsigned Attribute, unsigned Value) override; void emitTextAttribute(unsigned Attribute, StringRef String) override; void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) override; void emitArch(unsigned Arch) override; void emitArchExtension(unsigned ArchExt) override; void emitObjectArch(unsigned Arch) override; void emitFPU(unsigned FPU) override; void emitInst(uint32_t Inst, char Suffix = '\0') override; void finishAttributeSection() override; void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; public: ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter &InstPrinter, bool VerboseAsm); }; ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter &InstPrinter, bool VerboseAsm) : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), IsVerboseAsm(VerboseAsm) {} void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { OS << "\t.personality " << Personality->getName() << '\n'; } void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { OS << "\t.personalityindex " << Index << '\n'; } void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { OS << "\t.setfp\t"; InstPrinter.printRegName(OS, FpReg); OS << ", "; InstPrinter.printRegName(OS, SpReg); if (Offset) OS << ", #" << Offset; OS << '\n'; } void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { assert((Reg != ARM::SP && Reg != ARM::PC) && "the operand of .movsp cannot be either sp or pc"); OS << "\t.movsp\t"; InstPrinter.printRegName(OS, Reg); if (Offset) OS << ", #" << Offset; OS << '\n'; } void ARMTargetAsmStreamer::emitPad(int64_t Offset) { OS << "\t.pad\t#" << Offset << '\n'; } void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) { assert(RegList.size() && "RegList should not be empty"); if (isVector) OS << "\t.vsave\t{"; else OS << "\t.save\t{"; InstPrinter.printRegName(OS, RegList[0]); for (unsigned i = 1, e = RegList.size(); i != e; ++i) { OS << ", "; InstPrinter.printRegName(OS, RegList[i]); } OS << "}\n"; } void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) { } void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); if (IsVerboseAsm) { StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute); if (!Name.empty()) OS << "\t@ " << Name; } OS << "\n"; } void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, StringRef String) { switch (Attribute) { case ARMBuildAttrs::CPU_name: OS << "\t.cpu\t" << String.lower(); break; default: OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\""; if (IsVerboseAsm) { StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute); if (!Name.empty()) OS << "\t@ " << Name; } break; } OS << "\n"; } void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) { switch (Attribute) { default: llvm_unreachable("unsupported multi-value attribute in asm mode"); case ARMBuildAttrs::compatibility: OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; if (!StringValue.empty()) OS << ", \"" << StringValue << "\""; if (IsVerboseAsm) OS << "\t@ " << ARMBuildAttrs::AttrTypeAsString(Attribute); break; } OS << "\n"; } void ARMTargetAsmStreamer::emitArch(unsigned Arch) { OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; } void ARMTargetAsmStreamer::emitArchExtension(unsigned ArchExt) { OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; } void ARMTargetAsmStreamer::emitObjectArch(unsigned Arch) { OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; } void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; } void ARMTargetAsmStreamer::finishAttributeSection() { } void ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { OS << "\t.tlsdescseq\t" << S->getSymbol().getName(); } void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); OS << "\t.thumb_set\t"; Symbol->print(OS, MAI); OS << ", "; Value->print(OS, MAI); OS << '\n'; } void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { OS << "\t.inst"; if (Suffix) OS << "." << Suffix; OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; } void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { OS << "\t.unwind_raw " << Offset; for (SmallVectorImpl::const_iterator OCI = Opcodes.begin(), OCE = Opcodes.end(); OCI != OCE; ++OCI) OS << ", 0x" << Twine::utohexstr(*OCI); OS << '\n'; } class ARMTargetELFStreamer : public ARMTargetStreamer { private: // This structure holds all attributes, accounting for // their string/numeric value, so we can later emit them // in declaration order, keeping all in the same vector struct AttributeItem { enum { HiddenAttribute = 0, NumericAttribute, TextAttribute, NumericAndTextAttributes } Type; unsigned Tag; unsigned IntValue; std::string StringValue; static bool LessTag(const AttributeItem &LHS, const AttributeItem &RHS) { // The conformance tag must be emitted first when serialised // into an object file. Specifically, the addenda to the ARM ABI // states that (2.3.7.4): // // "To simplify recognition by consumers in the common case of // claiming conformity for the whole file, this tag should be // emitted first in a file-scope sub-subsection of the first // public subsection of the attributes section." // // So it is special-cased in this comparison predicate when the // attributes are sorted in finishAttributeSection(). return (RHS.Tag != ARMBuildAttrs::conformance) && ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); } }; StringRef CurrentVendor; unsigned FPU; unsigned Arch; unsigned EmittedArch; SmallVector Contents; MCSection *AttributeSection; AttributeItem *getAttributeItem(unsigned Attribute) { for (size_t i = 0; i < Contents.size(); ++i) if (Contents[i].Tag == Attribute) return &Contents[i]; return nullptr; } void setAttributeItem(unsigned Attribute, unsigned Value, bool OverwriteExisting) { // Look for existing attribute item if (AttributeItem *Item = getAttributeItem(Attribute)) { if (!OverwriteExisting) return; Item->Type = AttributeItem::NumericAttribute; Item->IntValue = Value; return; } // Create new attribute item AttributeItem Item = { AttributeItem::NumericAttribute, Attribute, Value, StringRef("") }; Contents.push_back(Item); } void setAttributeItem(unsigned Attribute, StringRef Value, bool OverwriteExisting) { // Look for existing attribute item if (AttributeItem *Item = getAttributeItem(Attribute)) { if (!OverwriteExisting) return; Item->Type = AttributeItem::TextAttribute; Item->StringValue = Value; return; } // Create new attribute item AttributeItem Item = { AttributeItem::TextAttribute, Attribute, 0, Value }; Contents.push_back(Item); } void setAttributeItems(unsigned Attribute, unsigned IntValue, StringRef StringValue, bool OverwriteExisting) { // Look for existing attribute item if (AttributeItem *Item = getAttributeItem(Attribute)) { if (!OverwriteExisting) return; Item->Type = AttributeItem::NumericAndTextAttributes; Item->IntValue = IntValue; Item->StringValue = StringValue; return; } // Create new attribute item AttributeItem Item = { AttributeItem::NumericAndTextAttributes, Attribute, IntValue, StringValue }; Contents.push_back(Item); } void emitArchDefaultAttributes(); void emitFPUDefaultAttributes(); ARMELFStreamer &getStreamer(); void emitFnStart() override; void emitFnEnd() override; void emitCantUnwind() override; void emitPersonality(const MCSymbol *Personality) override; void emitPersonalityIndex(unsigned Index) override; void emitHandlerData() override; void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; void emitMovSP(unsigned Reg, int64_t Offset = 0) override; void emitPad(int64_t Offset) override; void emitRegSave(const SmallVectorImpl &RegList, bool isVector) override; void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) override; void switchVendor(StringRef Vendor) override; void emitAttribute(unsigned Attribute, unsigned Value) override; void emitTextAttribute(unsigned Attribute, StringRef String) override; void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) override; void emitArch(unsigned Arch) override; void emitObjectArch(unsigned Arch) override; void emitFPU(unsigned FPU) override; void emitInst(uint32_t Inst, char Suffix = '\0') override; void finishAttributeSection() override; void emitLabel(MCSymbol *Symbol) override; void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; size_t calculateContentSize() const; public: ARMTargetELFStreamer(MCStreamer &S) : ARMTargetStreamer(S), CurrentVendor("aeabi"), FPU(ARM::FK_INVALID), Arch(ARM::AK_INVALID), EmittedArch(ARM::AK_INVALID), AttributeSection(nullptr) {} }; /// Extend the generic ELFStreamer class so that it can emit mapping symbols at /// the appropriate points in the object files. These symbols are defined in the /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. /// /// In brief: $a, $t or $d should be emitted at the start of each contiguous /// region of ARM code, Thumb code or data in a section. In practice, this /// emission does not rely on explicit assembler directives but on inherent /// properties of the directives doing the emission (e.g. ".byte" is data, "add /// r0, r0, r0" an instruction). /// /// As a result this system is orthogonal to the DataRegion infrastructure used /// by MachO. Beware! class ARMELFStreamer : public MCELFStreamer { public: friend class ARMTargetELFStreamer; ARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_pwrite_stream &OS, MCCodeEmitter *Emitter, bool IsThumb) : MCELFStreamer(Context, TAB, OS, Emitter), IsThumb(IsThumb), MappingSymbolCounter(0), LastEMS(EMS_None) { Reset(); } ~ARMELFStreamer() {} void FinishImpl() override; // ARM exception handling directives void emitFnStart(); void emitFnEnd(); void emitCantUnwind(); void emitPersonality(const MCSymbol *Per); void emitPersonalityIndex(unsigned index); void emitHandlerData(); void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); void emitMovSP(unsigned Reg, int64_t Offset = 0); void emitPad(int64_t Offset); void emitRegSave(const SmallVectorImpl &RegList, bool isVector); void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes); void ChangeSection(MCSection *Section, const MCExpr *Subsection) override { // We have to keep track of the mapping symbol state of any sections we // use. Each one should start off as EMS_None, which is provided as the // default constructor by DenseMap::lookup. LastMappingSymbols[getPreviousSection().first] = LastEMS; LastEMS = LastMappingSymbols.lookup(Section); MCELFStreamer::ChangeSection(Section, Subsection); } /// This function is the one used to emit instruction data into the ELF /// streamer. We override it to add the appropriate mapping symbol if /// necessary. void EmitInstruction(const MCInst& Inst, const MCSubtargetInfo &STI) override { if (IsThumb) EmitThumbMappingSymbol(); else EmitARMMappingSymbol(); MCELFStreamer::EmitInstruction(Inst, STI); } void emitInst(uint32_t Inst, char Suffix) { unsigned Size; char Buffer[4]; const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); switch (Suffix) { case '\0': Size = 4; assert(!IsThumb); EmitARMMappingSymbol(); for (unsigned II = 0, IE = Size; II != IE; II++) { const unsigned I = LittleEndian ? (Size - II - 1) : II; Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); } break; case 'n': case 'w': Size = (Suffix == 'n' ? 2 : 4); assert(IsThumb); EmitThumbMappingSymbol(); for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { const unsigned I0 = LittleEndian ? II + 0 : (Size - II - 1); const unsigned I1 = LittleEndian ? II + 1 : (Size - II - 2); Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); } break; default: llvm_unreachable("Invalid Suffix"); } MCELFStreamer::EmitBytes(StringRef(Buffer, Size)); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. void EmitBytes(StringRef Data) override { EmitDataMappingSymbol(); MCELFStreamer::EmitBytes(Data); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. void EmitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { if (const MCSymbolRefExpr *SRE = dyn_cast_or_null(Value)) if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { getContext().reportError(Loc, "relocated expression must be 32-bit"); return; } EmitDataMappingSymbol(); MCELFStreamer::EmitValueImpl(Value, Size, Loc); } void EmitAssemblerFlag(MCAssemblerFlag Flag) override { MCELFStreamer::EmitAssemblerFlag(Flag); switch (Flag) { case MCAF_SyntaxUnified: return; // no-op here. case MCAF_Code16: IsThumb = true; return; // Change to Thumb mode case MCAF_Code32: IsThumb = false; return; // Change to ARM mode case MCAF_Code64: return; case MCAF_SubsectionsViaSymbols: return; } } private: enum ElfMappingSymbol { EMS_None, EMS_ARM, EMS_Thumb, EMS_Data }; void EmitDataMappingSymbol() { if (LastEMS == EMS_Data) return; EmitMappingSymbol("$d"); LastEMS = EMS_Data; } void EmitThumbMappingSymbol() { if (LastEMS == EMS_Thumb) return; EmitMappingSymbol("$t"); LastEMS = EMS_Thumb; } void EmitARMMappingSymbol() { if (LastEMS == EMS_ARM) return; EmitMappingSymbol("$a"); LastEMS = EMS_ARM; } void EmitMappingSymbol(StringRef Name) { auto *Symbol = cast(getContext().getOrCreateSymbol( Name + "." + Twine(MappingSymbolCounter++))); EmitLabel(Symbol); Symbol->setType(ELF::STT_NOTYPE); Symbol->setBinding(ELF::STB_LOCAL); Symbol->setExternal(false); } void EmitThumbFunc(MCSymbol *Func) override { getAssembler().setIsThumbFunc(Func); EmitSymbolAttribute(Func, MCSA_ELF_TypeFunction); } // Helper functions for ARM exception handling directives void Reset(); void EmitPersonalityFixup(StringRef Name); void FlushPendingOffset(); void FlushUnwindOpcodes(bool NoHandlerData); void SwitchToEHSection(const char *Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn); void SwitchToExTabSection(const MCSymbol &FnStart); void SwitchToExIdxSection(const MCSymbol &FnStart); void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); bool IsThumb; int64_t MappingSymbolCounter; DenseMap LastMappingSymbols; ElfMappingSymbol LastEMS; // ARM Exception Handling Frame Information MCSymbol *ExTab; MCSymbol *FnStart; const MCSymbol *Personality; unsigned PersonalityIndex; unsigned FPReg; // Frame pointer register int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) int64_t SPOffset; // Offset: (final $sp) - (initial $sp) int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) bool UsedFP; bool CantUnwind; SmallVector Opcodes; UnwindOpcodeAssembler UnwindOpAsm; }; } // end anonymous namespace ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { return static_cast(Streamer); } void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { getStreamer().emitPersonality(Personality); } void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { getStreamer().emitPersonalityIndex(Index); } void ARMTargetELFStreamer::emitHandlerData() { getStreamer().emitHandlerData(); } void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { getStreamer().emitSetFP(FpReg, SpReg, Offset); } void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { getStreamer().emitMovSP(Reg, Offset); } void ARMTargetELFStreamer::emitPad(int64_t Offset) { getStreamer().emitPad(Offset); } void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) { getStreamer().emitRegSave(RegList, isVector); } void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { getStreamer().emitUnwindRaw(Offset, Opcodes); } void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { assert(!Vendor.empty() && "Vendor cannot be empty."); if (CurrentVendor == Vendor) return; if (!CurrentVendor.empty()) finishAttributeSection(); assert(Contents.empty() && ".ARM.attributes should be flushed before changing vendor"); CurrentVendor = Vendor; } void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, StringRef Value) { setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) { setAttributeItems(Attribute, IntValue, StringValue, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitArch(unsigned Value) { Arch = Value; } void ARMTargetELFStreamer::emitObjectArch(unsigned Value) { EmittedArch = Value; } void ARMTargetELFStreamer::emitArchDefaultAttributes() { using namespace ARMBuildAttrs; setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); if (EmittedArch == ARM::AK_INVALID) setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); else setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); switch (Arch) { case ARM::AK_ARMV2: case ARM::AK_ARMV2A: case ARM::AK_ARMV3: case ARM::AK_ARMV3M: case ARM::AK_ARMV4: setAttributeItem(ARM_ISA_use, Allowed, false); break; case ARM::AK_ARMV4T: case ARM::AK_ARMV5T: case ARM::AK_ARMV5TE: case ARM::AK_ARMV6: setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, Allowed, false); break; case ARM::AK_ARMV6T2: setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::AK_ARMV6K: case ARM::AK_ARMV6KZ: setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, Allowed, false); setAttributeItem(Virtualization_use, AllowTZ, false); break; case ARM::AK_ARMV6M: setAttributeItem(THUMB_ISA_use, Allowed, false); break; case ARM::AK_ARMV7A: setAttributeItem(CPU_arch_profile, ApplicationProfile, false); setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::AK_ARMV7R: setAttributeItem(CPU_arch_profile, RealTimeProfile, false); setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::AK_ARMV7M: setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::AK_ARMV8A: case ARM::AK_ARMV8_1A: case ARM::AK_ARMV8_2A: setAttributeItem(CPU_arch_profile, ApplicationProfile, false); setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, AllowThumb32, false); setAttributeItem(MPextension_use, Allowed, false); setAttributeItem(Virtualization_use, AllowTZVirtualization, false); break; case ARM::AK_IWMMXT: setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, Allowed, false); setAttributeItem(WMMX_arch, AllowWMMXv1, false); break; case ARM::AK_IWMMXT2: setAttributeItem(ARM_ISA_use, Allowed, false); setAttributeItem(THUMB_ISA_use, Allowed, false); setAttributeItem(WMMX_arch, AllowWMMXv2, false); break; default: report_fatal_error("Unknown Arch: " + Twine(Arch)); break; } } void ARMTargetELFStreamer::emitFPU(unsigned Value) { FPU = Value; } void ARMTargetELFStreamer::emitFPUDefaultAttributes() { switch (FPU) { case ARM::FK_VFP: case ARM::FK_VFPV2: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_FP16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_D16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_D16_FP16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3XD: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3XD_FP16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV4: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, /* OverwriteExisting= */ false); break; // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same // as _D16 here. case ARM::FK_FPV4_SP_D16: case ARM::FK_VFPV4_D16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, /* OverwriteExisting= */ false); break; case ARM::FK_FP_ARMV8: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, /* OverwriteExisting= */ false); break; // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so // uses the FP_ARMV8_D16 build attribute. case ARM::FK_FPV5_SP_D16: case ARM::FK_FPV5_D16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, /* OverwriteExisting= */ false); break; case ARM::FK_NEON: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_FP16: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_VFPV4: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, /* OverwriteExisting= */ false); setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon2, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_FP_ARMV8: case ARM::FK_CRYPTO_NEON_FP_ARMV8: setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, /* OverwriteExisting= */ false); // 'Advanced_SIMD_arch' must be emitted not here, but within // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() break; case ARM::FK_SOFTVFP: case ARM::FK_NONE: break; default: report_fatal_error("Unknown FPU: " + Twine(FPU)); break; } } size_t ARMTargetELFStreamer::calculateContentSize() const { size_t Result = 0; for (size_t i = 0; i < Contents.size(); ++i) { AttributeItem item = Contents[i]; switch (item.Type) { case AttributeItem::HiddenAttribute: break; case AttributeItem::NumericAttribute: Result += getULEB128Size(item.Tag); Result += getULEB128Size(item.IntValue); break; case AttributeItem::TextAttribute: Result += getULEB128Size(item.Tag); Result += item.StringValue.size() + 1; // string + '\0' break; case AttributeItem::NumericAndTextAttributes: Result += getULEB128Size(item.Tag); Result += getULEB128Size(item.IntValue); Result += item.StringValue.size() + 1; // string + '\0'; break; } } return Result; } void ARMTargetELFStreamer::finishAttributeSection() { // // [ "vendor-name" // [ * // | * 0 * // | * 0 * // ]+ // ]* if (FPU != ARM::FK_INVALID) emitFPUDefaultAttributes(); if (Arch != ARM::AK_INVALID) emitArchDefaultAttributes(); if (Contents.empty()) return; std::sort(Contents.begin(), Contents.end(), AttributeItem::LessTag); ARMELFStreamer &Streamer = getStreamer(); // Switch to .ARM.attributes section if (AttributeSection) { Streamer.SwitchSection(AttributeSection); } else { AttributeSection = Streamer.getContext().getELFSection( ".ARM.attributes", ELF::SHT_ARM_ATTRIBUTES, 0); Streamer.SwitchSection(AttributeSection); // Format version Streamer.EmitIntValue(0x41, 1); } // Vendor size + Vendor name + '\0' const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1; // Tag + Tag Size const size_t TagHeaderSize = 1 + 4; const size_t ContentsSize = calculateContentSize(); Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4); Streamer.EmitBytes(CurrentVendor); Streamer.EmitIntValue(0, 1); // '\0' Streamer.EmitIntValue(ARMBuildAttrs::File, 1); Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4); // Size should have been accounted for already, now // emit each field as its type (ULEB or String) for (size_t i = 0; i < Contents.size(); ++i) { AttributeItem item = Contents[i]; Streamer.EmitULEB128IntValue(item.Tag); switch (item.Type) { default: llvm_unreachable("Invalid attribute type"); case AttributeItem::NumericAttribute: Streamer.EmitULEB128IntValue(item.IntValue); break; case AttributeItem::TextAttribute: Streamer.EmitBytes(item.StringValue); Streamer.EmitIntValue(0, 1); // '\0' break; case AttributeItem::NumericAndTextAttributes: Streamer.EmitULEB128IntValue(item.IntValue); Streamer.EmitBytes(item.StringValue); Streamer.EmitIntValue(0, 1); // '\0' break; } } Contents.clear(); FPU = ARM::FK_INVALID; } void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { ARMELFStreamer &Streamer = getStreamer(); if (!Streamer.IsThumb) return; Streamer.getAssembler().registerSymbol(*Symbol); unsigned Type = cast(Symbol)->getType(); if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) Streamer.EmitThumbFunc(Symbol); } void ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { getStreamer().EmitFixup(S, FK_Data_4); } void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { if (const MCSymbolRefExpr *SRE = dyn_cast(Value)) { const MCSymbol &Sym = SRE->getSymbol(); if (!Sym.isDefined()) { getStreamer().EmitAssignment(Symbol, Value); return; } } getStreamer().EmitThumbFunc(Symbol); getStreamer().EmitAssignment(Symbol, Value); } void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { getStreamer().emitInst(Inst, Suffix); } void ARMELFStreamer::FinishImpl() { MCTargetStreamer &TS = *getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); ATS.finishAttributeSection(); MCELFStreamer::FinishImpl(); } inline void ARMELFStreamer::SwitchToEHSection(const char *Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn) { const MCSectionELF &FnSection = static_cast(Fn.getSection()); // Create the name for new section StringRef FnSecName(FnSection.getSectionName()); SmallString<128> EHSecName(Prefix); if (FnSecName != ".text") { EHSecName += FnSecName; } // Get .ARM.extab or .ARM.exidx section const MCSymbolELF *Group = FnSection.getGroup(); if (Group) Flags |= ELF::SHF_GROUP; MCSectionELF *EHSection = getContext().getELFSection(EHSecName, Type, Flags, 0, Group, FnSection.getUniqueID(), nullptr, &FnSection); assert(EHSection && "Failed to get the required EH section"); // Switch to .ARM.extab or .ARM.exidx section SwitchSection(EHSection); EmitCodeAlignment(4); } inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, SectionKind::getData(), FnStart); } inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, SectionKind::getData(), FnStart); } void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { MCDataFragment *Frag = getOrCreateDataFragment(); Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, Kind)); } void ARMELFStreamer::Reset() { ExTab = nullptr; FnStart = nullptr; Personality = nullptr; PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; FPReg = ARM::SP; FPOffset = 0; SPOffset = 0; PendingOffset = 0; UsedFP = false; CantUnwind = false; Opcodes.clear(); UnwindOpAsm.Reset(); } void ARMELFStreamer::emitFnStart() { assert(FnStart == nullptr); FnStart = getContext().createTempSymbol(); EmitLabel(FnStart); } void ARMELFStreamer::emitFnEnd() { assert(FnStart && ".fnstart must precedes .fnend"); // Emit unwind opcodes if there is no .handlerdata directive if (!ExTab && !CantUnwind) FlushUnwindOpcodes(true); // Emit the exception index table entry SwitchToExIdxSection(*FnStart); if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX) EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); const MCSymbolRefExpr *FnStartRef = MCSymbolRefExpr::create(FnStart, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(FnStartRef, 4); if (CantUnwind) { EmitIntValue(ARM::EHABI::EXIDX_CANTUNWIND, 4); } else if (ExTab) { // Emit a reference to the unwind opcodes in the ".ARM.extab" section. const MCSymbolRefExpr *ExTabEntryRef = MCSymbolRefExpr::create(ExTab, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(ExTabEntryRef, 4); } else { // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in // the second word of exception index table entry. The size of the unwind // opcodes should always be 4 bytes. assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); assert(Opcodes.size() == 4u && "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); uint64_t Intval = Opcodes[0] | Opcodes[1] << 8 | Opcodes[2] << 16 | Opcodes[3] << 24; EmitIntValue(Intval, Opcodes.size()); } // Switch to the section containing FnStart SwitchSection(&FnStart->getSection()); // Clean exception handling frame information Reset(); } void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } // Add the R_ARM_NONE fixup at the same position void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); visitUsedExpr(*PersonalityRef); MCDataFragment *DF = getOrCreateDataFragment(); DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), PersonalityRef, MCFixup::getKindForSize(4, false))); } void ARMELFStreamer::FlushPendingOffset() { if (PendingOffset != 0) { UnwindOpAsm.EmitSPOffset(-PendingOffset); PendingOffset = 0; } } void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { // Emit the unwind opcode to restore $sp. if (UsedFP) { const MCRegisterInfo *MRI = getContext().getRegisterInfo(); int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); } else { FlushPendingOffset(); } // Finalize the unwind opcode sequence UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx // section. Thus, we don't have to create an entry in the .ARM.extab // section. if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) return; // Switch to .ARM.extab section. SwitchToExTabSection(*FnStart); // Create .ARM.extab label for offset in .ARM.exidx assert(!ExTab); ExTab = getContext().createTempSymbol(); EmitLabel(ExTab); // Emit personality if (Personality) { const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(Personality, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(PersonalityRef, 4); } // Emit unwind opcodes assert((Opcodes.size() % 4) == 0 && "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); for (unsigned I = 0; I != Opcodes.size(); I += 4) { uint64_t Intval = Opcodes[I] | Opcodes[I + 1] << 8 | Opcodes[I + 2] << 16 | Opcodes[I + 3] << 24; EmitIntValue(Intval, 4); } // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted // after the unwind opcodes. The handler data consists of several 32-bit // words, and should be terminated by zero. // // In case that the .handlerdata directive is not specified by the // programmer, we should emit zero to terminate the handler data. if (NoHandlerData && !Personality) EmitIntValue(0, 4); } void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { Personality = Per; UnwindOpAsm.setPersonality(Per); } void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); PersonalityIndex = Index; } void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, int64_t Offset) { assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && "the operand of .setfp directive should be either $sp or $fp"); UsedFP = true; FPReg = NewFPReg; if (NewSPReg == ARM::SP) FPOffset = SPOffset + Offset; else FPOffset += Offset; } void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { assert((Reg != ARM::SP && Reg != ARM::PC) && "the operand of .movsp cannot be either sp or pc"); assert(FPReg == ARM::SP && "current FP must be SP"); FlushPendingOffset(); FPReg = Reg; FPOffset = SPOffset + Offset; const MCRegisterInfo *MRI = getContext().getRegisterInfo(); UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); } void ARMELFStreamer::emitPad(int64_t Offset) { // Track the change of the $sp offset SPOffset -= Offset; // To squash multiple .pad directives, we should delay the unwind opcode // until the .save, .vsave, .handlerdata, or .fnend directives. PendingOffset -= Offset; } void ARMELFStreamer::emitRegSave(const SmallVectorImpl &RegList, bool IsVector) { // Collect the registers in the register list unsigned Count = 0; uint32_t Mask = 0; const MCRegisterInfo *MRI = getContext().getRegisterInfo(); for (size_t i = 0; i < RegList.size(); ++i) { unsigned Reg = MRI->getEncodingValue(RegList[i]); assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); unsigned Bit = (1u << Reg); if ((Mask & Bit) == 0) { Mask |= Bit; ++Count; } } // Track the change the $sp offset: For the .save directive, the // corresponding push instruction will decrease the $sp by (4 * Count). // For the .vsave directive, the corresponding vpush instruction will // decrease $sp by (8 * Count). SPOffset -= Count * (IsVector ? 8 : 4); // Emit the opcode FlushPendingOffset(); if (IsVector) UnwindOpAsm.EmitVFPRegSave(Mask); else UnwindOpAsm.EmitRegSave(Mask); } void ARMELFStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { FlushPendingOffset(); SPOffset = SPOffset - Offset; UnwindOpAsm.EmitRaw(Opcodes); } namespace llvm { MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *InstPrint, bool isVerboseAsm) { return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); } MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { return new ARMTargetStreamer(S); } MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) { const Triple &TT = STI.getTargetTriple(); if (TT.isOSBinFormatELF()) return new ARMTargetELFStreamer(S); return new ARMTargetStreamer(S); } MCELFStreamer *createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_pwrite_stream &OS, MCCodeEmitter *Emitter, bool RelaxAll, bool IsThumb) { ARMELFStreamer *S = new ARMELFStreamer(Context, TAB, OS, Emitter, IsThumb); // FIXME: This should eventually end up somewhere else where more // intelligent flag decisions can be made. For now we are just maintaining // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; } }