//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon V4 instructions in TableGen format. // //===----------------------------------------------------------------------===// def DuplexIClass0: InstDuplex < 0 >; def DuplexIClass1: InstDuplex < 1 >; def DuplexIClass2: InstDuplex < 2 >; let isExtendable = 1 in { def DuplexIClass3: InstDuplex < 3 >; def DuplexIClass4: InstDuplex < 4 >; def DuplexIClass5: InstDuplex < 5 >; def DuplexIClass6: InstDuplex < 6 >; def DuplexIClass7: InstDuplex < 7 >; } def DuplexIClass8: InstDuplex < 8 >; def DuplexIClass9: InstDuplex < 9 >; def DuplexIClassA: InstDuplex < 0xA >; def DuplexIClassB: InstDuplex < 0xB >; def DuplexIClassC: InstDuplex < 0xC >; def DuplexIClassD: InstDuplex < 0xD >; def DuplexIClassE: InstDuplex < 0xE >; def DuplexIClassF: InstDuplex < 0xF >; def addrga: PatLeaf<(i32 AddrGA:$Addr)>; def addrgp: PatLeaf<(i32 AddrGP:$Addr)>; let hasSideEffects = 0 in class T_Immext : EXTENDERInst<(outs), (ins ImmType:$imm), "immext(#$imm)", []> { bits<32> imm; let IClass = 0b0000; let Inst{27-16} = imm{31-20}; let Inst{13-0} = imm{19-6}; } def A4_ext : T_Immext; let isCodeGenOnly = 1 in { let isBranch = 1 in def A4_ext_b : T_Immext; let isCall = 1 in def A4_ext_c : T_Immext; def A4_ext_g : T_Immext; } def BITPOS32 : SDNodeXFormgetSExtValue(); return XformMskToBitPosU5Imm(imm, SDLoc(N)); }]>; // Hexagon V4 Architecture spec defines 8 instruction classes: // LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the // compiler) // LD Instructions: // ======================================== // Loads (8/16/32/64 bit) // Deallocframe // ST Instructions: // ======================================== // Stores (8/16/32/64 bit) // Allocframe // ALU32 Instructions: // ======================================== // Arithmetic / Logical (32 bit) // Vector Halfword // XTYPE Instructions (32/64 bit): // ======================================== // Arithmetic, Logical, Bit Manipulation // Multiply (Integer, Fractional, Complex) // Permute / Vector Permute Operations // Predicate Operations // Shift / Shift with Add/Sub/Logical // Vector Byte ALU // Vector Halfword (ALU, Shift, Multiply) // Vector Word (ALU, Shift) // J Instructions: // ======================================== // Jump/Call PC-relative // JR Instructions: // ======================================== // Jump/Call Register // MEMOP Instructions: // ======================================== // Operation on memory (8/16/32 bit) // NV Instructions: // ======================================== // New-value Jumps // New-value Stores // CR Instructions: // ======================================== // Control-Register Transfers // Hardware Loop Setup // Predicate Logicals & Reductions // SYSTEM Instructions (not implemented in the compiler): // ======================================== // Prefetch // Cache Maintenance // Bus Operations //===----------------------------------------------------------------------===// // ALU32 + //===----------------------------------------------------------------------===// class T_ALU32_3op_not MajOp, bits<3> MinOp, bit OpsRev> : T_ALU32_3op { let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)"; } let BaseOpcode = "andn_rr", CextOpcode = "andn" in def A4_andn : T_ALU32_3op_not<"and", 0b001, 0b100, 1>; let BaseOpcode = "orn_rr", CextOpcode = "orn" in def A4_orn : T_ALU32_3op_not<"or", 0b001, 0b101, 1>; let CextOpcode = "rcmp.eq" in def A4_rcmpeq : T_ALU32_3op<"cmp.eq", 0b011, 0b010, 0, 1>; let CextOpcode = "!rcmp.eq" in def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>; def C4_cmpneq : T_ALU32_3op_cmp<"!cmp.eq", 0b00, 1, 1>; def C4_cmplte : T_ALU32_3op_cmp<"!cmp.gt", 0b10, 1, 0>; def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>; // Pats for instruction selection. // A class to embed the usual comparison patfrags within a zext to i32. // The seteq/setne frags use "lhs" and "rhs" as operands, so use the same // names, or else the frag's "body" won't match the operands. class CmpInReg : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>; def: T_cmp32_rr_pat, i32>; def: T_cmp32_rr_pat, i32>; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat, i1>; class T_CMP_rrbh MinOp, bit IsComm> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>, ImmRegRel { let InputType = "reg"; let CextOpcode = mnemonic; let isCompare = 1; let isCommutable = IsComm; let hasSideEffects = 0; bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-21} = 0b0111110; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{1-0} = Pd; } def A4_cmpbeq : T_CMP_rrbh<"cmpb.eq", 0b110, 1>; def A4_cmpbgt : T_CMP_rrbh<"cmpb.gt", 0b010, 0>; def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>; def A4_cmpheq : T_CMP_rrbh<"cmph.eq", 0b011, 1>; def A4_cmphgt : T_CMP_rrbh<"cmph.gt", 0b100, 0>; def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>; let AddedComplexity = 100 in { def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 255), 0)), (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 255), 0)), (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>; def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 65535), 0)), (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 65535), 0)), (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>; } class T_CMP_ribh MajOp, bit IsHalf, bit IsComm, Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits> : ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm), "$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>, ImmRegRel { let InputType = "imm"; let CextOpcode = mnemonic; let isCompare = 1; let isCommutable = IsComm; let hasSideEffects = 0; let isExtendable = IsImmExt; let opExtendable = !if (IsImmExt, 2, 0); let isExtentSigned = IsImmSigned; let opExtentBits = ImmBits; bits<2> Pd; bits<5> Rs; bits<8> Imm; let IClass = 0b1101; let Inst{27-24} = 0b1101; let Inst{22-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-5} = Imm; let Inst{4} = 0b0; let Inst{3} = IsHalf; let Inst{1-0} = Pd; } def A4_cmpbeqi : T_CMP_ribh<"cmpb.eq", 0b00, 0, 1, u8Imm, 0, 0, 8>; def A4_cmpbgti : T_CMP_ribh<"cmpb.gt", 0b01, 0, 0, s8Imm, 0, 1, 8>; def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>; def A4_cmpheqi : T_CMP_ribh<"cmph.eq", 0b00, 1, 1, s8Ext, 1, 1, 8>; def A4_cmphgti : T_CMP_ribh<"cmph.gt", 0b01, 1, 0, s8Ext, 1, 1, 8>; def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>; class T_RCMP_EQ_ri : ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8), "$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel { let InputType = "imm"; let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq"); let isExtendable = 1; let opExtendable = 2; let isExtentSigned = 1; let opExtentBits = 8; let hasNewValue = 1; bits<5> Rd; bits<5> Rs; bits<8> s8; let IClass = 0b0111; let Inst{27-24} = 0b0011; let Inst{22} = 0b1; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{13} = 0b1; let Inst{12-5} = s8; let Inst{4-0} = Rd; } def A4_rcmpeqi : T_RCMP_EQ_ri<"cmp.eq", 0>; def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>; def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s32ImmPred:$s8)))), (A4_rcmpeqi IntRegs:$Rs, s32ImmPred:$s8)>; def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s32ImmPred:$s8)))), (A4_rcmpneqi IntRegs:$Rs, s32ImmPred:$s8)>; // Preserve the S2_tstbit_r generation def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))), (i32 IntRegs:$src1))), 0)))), (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>; //===----------------------------------------------------------------------===// // ALU32 - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// // Combine a word and an immediate into a register pair. let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1, opExtentBits = 8 in class T_Combine1 MajOp, dag ins, string AsmStr> : ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> { bits<5> Rdd; bits<5> Rs; bits<8> s8; let IClass = 0b0111; let Inst{27-24} = 0b0011; let Inst{22-21} = MajOp; let Inst{20-16} = Rs; let Inst{13} = 0b1; let Inst{12-5} = s8; let Inst{4-0} = Rdd; } let opExtendable = 2 in def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8), "$Rdd = combine($Rs, #$s8)">; let opExtendable = 1 in def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs), "$Rdd = combine(#$s8, $Rs)">; // The complexity of the combines involving immediates should be greater // than the complexity of the combine with two registers. let AddedComplexity = 50 in { def: Pat<(HexagonCOMBINE IntRegs:$r, s32ImmPred:$i), (A4_combineri IntRegs:$r, s32ImmPred:$i)>; def: Pat<(HexagonCOMBINE s32ImmPred:$i, IntRegs:$r), (A4_combineir s32ImmPred:$i, IntRegs:$r)>; } // A4_combineii: Set two small immediates. let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6), "$Rdd = combine(#$s8, #$U6)"> { bits<5> Rdd; bits<8> s8; bits<6> U6; let IClass = 0b0111; let Inst{27-23} = 0b11001; let Inst{20-16} = U6{5-1}; let Inst{13} = U6{0}; let Inst{12-5} = s8; let Inst{4-0} = Rdd; } // The complexity of the combine with two immediates should be greater than // the complexity of a combine involving a register. let AddedComplexity = 75 in def: Pat<(HexagonCOMBINE s8ImmPred:$s8, u32ImmPred:$u6), (A4_combineii imm:$s8, imm:$u6)>; //===----------------------------------------------------------------------===// // ALU32/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// def Zext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>; def Sext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>; // Patterns to generate indexed loads with different forms of the address: // - frameindex, // - base + offset, // - base (without offset). multiclass Loadxm_pat { def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>; def: Pat<(VT (Load (add AddrFI:$fi, ImmPred:$Off))), (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; def: Pat<(VT (Load (add IntRegs:$Rs, ImmPred:$Off))), (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (ValueMod (MI IntRegs:$Rs, 0)))>; } defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; defm: Loadxm_pat; // Map Rdd = anyext(Rs) -> Rdd = combine(#0, Rs). def: Pat<(i64 (anyext (i32 IntRegs:$src1))), (Zext64 IntRegs:$src1)>; //===----------------------------------------------------------------------===// // Template class for load instructions with Absolute set addressing mode. //===----------------------------------------------------------------------===// let isExtended = 1, opExtendable = 2, opExtentBits = 6, addrMode = AbsoluteSet, hasSideEffects = 0 in class T_LD_abs_setMajOp>: LDInst<(outs RC:$dst1, IntRegs:$dst2), (ins u6Ext:$addr), "$dst1 = "#mnemonic#"($dst2 = #$addr)", []> { bits<7> name; bits<5> dst1; bits<5> dst2; bits<6> addr; let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{13-12} = 0b01; let Inst{4-0} = dst1; let Inst{20-16} = dst2; let Inst{11-8} = addr{5-2}; let Inst{6-5} = addr{1-0}; } let accessSize = ByteAccess, hasNewValue = 1 in { def L4_loadrb_ap : T_LD_abs_set <"memb", IntRegs, 0b1000>; def L4_loadrub_ap : T_LD_abs_set <"memub", IntRegs, 0b1001>; } let accessSize = HalfWordAccess, hasNewValue = 1 in { def L4_loadrh_ap : T_LD_abs_set <"memh", IntRegs, 0b1010>; def L4_loadruh_ap : T_LD_abs_set <"memuh", IntRegs, 0b1011>; def L4_loadbsw2_ap : T_LD_abs_set <"membh", IntRegs, 0b0001>; def L4_loadbzw2_ap : T_LD_abs_set <"memubh", IntRegs, 0b0011>; } let accessSize = WordAccess, hasNewValue = 1 in def L4_loadri_ap : T_LD_abs_set <"memw", IntRegs, 0b1100>; let accessSize = WordAccess in { def L4_loadbzw4_ap : T_LD_abs_set <"memubh", DoubleRegs, 0b0101>; def L4_loadbsw4_ap : T_LD_abs_set <"membh", DoubleRegs, 0b0111>; } let accessSize = DoubleWordAccess in def L4_loadrd_ap : T_LD_abs_set <"memd", DoubleRegs, 0b1110>; let accessSize = ByteAccess in def L4_loadalignb_ap : T_LD_abs_set <"memb_fifo", DoubleRegs, 0b0100>; let accessSize = HalfWordAccess in def L4_loadalignh_ap : T_LD_abs_set <"memh_fifo", DoubleRegs, 0b0010>; // Load - Indirect with long offset let InputType = "imm", addrMode = BaseLongOffset, isExtended = 1, opExtentBits = 6, opExtendable = 3 in class T_LoadAbsReg MajOp> : LDInst <(outs RC:$dst), (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3), "$dst = "#mnemonic#"($src1<<#$src2 + #$src3)", [] >, ImmRegShl { bits<5> dst; bits<5> src1; bits<2> src2; bits<6> src3; let CextOpcode = CextOp; let hasNewValue = !if (!eq(!cast(RC), "DoubleRegs"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b110; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2{1}; let Inst{12} = 0b1; let Inst{11-8} = src3{5-2}; let Inst{7} = src2{0}; let Inst{6-5} = src3{1-0}; let Inst{4-0} = dst; } let accessSize = ByteAccess in { def L4_loadrb_ur : T_LoadAbsReg<"memb", "LDrib", IntRegs, 0b1000>; def L4_loadrub_ur : T_LoadAbsReg<"memub", "LDriub", IntRegs, 0b1001>; def L4_loadalignb_ur : T_LoadAbsReg<"memb_fifo", "LDrib_fifo", DoubleRegs, 0b0100>; } let accessSize = HalfWordAccess in { def L4_loadrh_ur : T_LoadAbsReg<"memh", "LDrih", IntRegs, 0b1010>; def L4_loadruh_ur : T_LoadAbsReg<"memuh", "LDriuh", IntRegs, 0b1011>; def L4_loadbsw2_ur : T_LoadAbsReg<"membh", "LDribh2", IntRegs, 0b0001>; def L4_loadbzw2_ur : T_LoadAbsReg<"memubh", "LDriubh2", IntRegs, 0b0011>; def L4_loadalignh_ur : T_LoadAbsReg<"memh_fifo", "LDrih_fifo", DoubleRegs, 0b0010>; } let accessSize = WordAccess in { def L4_loadri_ur : T_LoadAbsReg<"memw", "LDriw", IntRegs, 0b1100>; def L4_loadbsw4_ur : T_LoadAbsReg<"membh", "LDribh4", DoubleRegs, 0b0111>; def L4_loadbzw4_ur : T_LoadAbsReg<"memubh", "LDriubh4", DoubleRegs, 0b0101>; } let accessSize = DoubleWordAccess in def L4_loadrd_ur : T_LoadAbsReg<"memd", "LDrid", DoubleRegs, 0b1110>; multiclass T_LoadAbsReg_Pat { def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2), (HexagonCONST32 tglobaladdr:$src3)))), (MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3)>; def : Pat <(VT (ldOp (add IntRegs:$src1, (HexagonCONST32 tglobaladdr:$src2)))), (MI IntRegs:$src1, 0, tglobaladdr:$src2)>; def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2), (HexagonCONST32 tconstpool:$src3)))), (MI IntRegs:$src1, u2ImmPred:$src2, tconstpool:$src3)>; def : Pat <(VT (ldOp (add IntRegs:$src1, (HexagonCONST32 tconstpool:$src2)))), (MI IntRegs:$src1, 0, tconstpool:$src2)>; def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2), (HexagonCONST32 tjumptable:$src3)))), (MI IntRegs:$src1, u2ImmPred:$src2, tjumptable:$src3)>; def : Pat <(VT (ldOp (add IntRegs:$src1, (HexagonCONST32 tjumptable:$src2)))), (MI IntRegs:$src1, 0, tjumptable:$src2)>; } let AddedComplexity = 60 in { defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; defm : T_LoadAbsReg_Pat ; } //===----------------------------------------------------------------------===// // Template classes for the non-predicated load instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// class T_load_rr MajOp>: LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2), "$dst = "#mnemonic#"($src1 + $src2<<#$u2)", [], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel { bits<5> dst; bits<5> src1; bits<5> src2; bits<2> u2; let IClass = 0b0011; let Inst{27-24} = 0b1010; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{12-8} = src2; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Template classes for the predicated load instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// let isPredicated = 1 in class T_pload_rr MajOp, bit isNot, bit isPredNew>: LDInst <(outs RC:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)", [], "", V4LDST_tc_ld_SLOT01>, AddrModeRel { bits<5> dst; bits<2> src1; bits<5> src2; bits<5> src3; bits<2> u2; let isPredicatedFalse = isNot; let isPredicatedNew = isPredNew; let IClass = 0b0011; let Inst{27-26} = 0b00; let Inst{25} = isPredNew; let Inst{24} = isNot; let Inst{23-21} = MajOp; let Inst{20-16} = src2; let Inst{12-8} = src3; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{6-5} = src1; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // multiclass for load instructions with base + register offset // addressing mode //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = BaseRegOffset in multiclass ld_idxd_shl MajOp > { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl, InputType = "reg" in { let isPredicable = 1 in def L4_#NAME#_rr : T_load_rr ; // Predicated def L4_p#NAME#t_rr : T_pload_rr ; def L4_p#NAME#f_rr : T_pload_rr ; // Predicated new def L4_p#NAME#tnew_rr : T_pload_rr ; def L4_p#NAME#fnew_rr : T_pload_rr ; } } let hasNewValue = 1, accessSize = ByteAccess in { defm loadrb : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>; defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>; } let hasNewValue = 1, accessSize = HalfWordAccess in { defm loadrh : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>; defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>; } let hasNewValue = 1, accessSize = WordAccess in defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>; let accessSize = DoubleWordAccess in defm loadrd : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>; // 'def pats' for load instructions with base + register offset and non-zero // immediate value. Immediate value is used to left-shift the second // register operand. class Loadxs_pat : Pat<(VT (Load (add (i32 IntRegs:$Rs), (i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2))))), (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>; let AddedComplexity = 40 in { def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; def: Loadxs_pat; } // 'def pats' for load instruction base + register offset and // zero immediate value. class Loadxs_simple_pat : Pat<(VT (Load (add (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)))), (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>; let AddedComplexity = 20 in { def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; def: Loadxs_simple_pat; } // zext i1->i64 def: Pat<(i64 (zext (i1 PredRegs:$src1))), (Zext64 (C2_muxii PredRegs:$src1, 1, 0))>; // zext i32->i64 def: Pat<(i64 (zext (i32 IntRegs:$src1))), (Zext64 IntRegs:$src1)>; //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ST + //===----------------------------------------------------------------------===// /// //===----------------------------------------------------------------------===// // Template class for store instructions with Absolute set addressing mode. //===----------------------------------------------------------------------===// let isExtended = 1, opExtendable = 1, opExtentBits = 6, addrMode = AbsoluteSet in class T_ST_absset MajOp, MemAccessSize AccessSz, bit isHalf = 0> : STInst<(outs IntRegs:$dst), (ins u6Ext:$addr, RC:$src), mnemonic#"($dst = #$addr) = $src"#!if(isHalf, ".h","")>, NewValueRel { bits<5> dst; bits<6> addr; bits<5> src; let accessSize = AccessSz; let BaseOpcode = BaseOp#"_AbsSet"; // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1)); let IClass = 0b1010; let Inst{27-24} = 0b1011; let Inst{23-21} = MajOp; let Inst{20-16} = dst; let Inst{13} = 0b0; let Inst{12-8} = src; let Inst{7} = 0b1; let Inst{5-0} = addr; } def S4_storerb_ap : T_ST_absset <"memb", "STrib", IntRegs, 0b000, ByteAccess>; def S4_storerh_ap : T_ST_absset <"memh", "STrih", IntRegs, 0b010, HalfWordAccess>; def S4_storeri_ap : T_ST_absset <"memw", "STriw", IntRegs, 0b100, WordAccess>; let isNVStorable = 0 in { def S4_storerf_ap : T_ST_absset <"memh", "STrif", IntRegs, 0b011, HalfWordAccess, 1>; def S4_storerd_ap : T_ST_absset <"memd", "STrid", DoubleRegs, 0b110, DoubleWordAccess>; } let opExtendable = 1, isNewValue = 1, isNVStore = 1, opNewValue = 2, isExtended = 1, opExtentBits= 6 in class T_ST_absset_nv MajOp, MemAccessSize AccessSz > : NVInst <(outs IntRegs:$dst), (ins u6Ext:$addr, IntRegs:$src), mnemonic#"($dst = #$addr) = $src.new">, NewValueRel { bits<5> dst; bits<6> addr; bits<3> src; let accessSize = AccessSz; let BaseOpcode = BaseOp#"_AbsSet"; let IClass = 0b1010; let Inst{27-21} = 0b1011101; let Inst{20-16} = dst; let Inst{13-11} = 0b000; let Inst{12-11} = MajOp; let Inst{10-8} = src; let Inst{7} = 0b1; let Inst{5-0} = addr; } let mayStore = 1, addrMode = AbsoluteSet in { def S4_storerbnew_ap : T_ST_absset_nv <"memb", "STrib", 0b00, ByteAccess>; def S4_storerhnew_ap : T_ST_absset_nv <"memh", "STrih", 0b01, HalfWordAccess>; def S4_storerinew_ap : T_ST_absset_nv <"memw", "STriw", 0b10, WordAccess>; } let isExtended = 1, opExtendable = 2, opExtentBits = 6, InputType = "imm", addrMode = BaseLongOffset, AddedComplexity = 40 in class T_StoreAbsReg MajOp, MemAccessSize AccessSz, bit isHalf = 0> : STInst<(outs), (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, RC:$src4), mnemonic#"($src1<<#$src2 + #$src3) = $src4"#!if(isHalf, ".h",""), []>, ImmRegShl, NewValueRel { bits<5> src1; bits<2> src2; bits<6> src3; bits<5> src4; let accessSize = AccessSz; let CextOpcode = CextOp; let BaseOpcode = CextOp#"_shl"; // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1)); let IClass = 0b1010; let Inst{27-24} =0b1101; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2{1}; let Inst{12-8} = src4; let Inst{7} = 0b1; let Inst{6} = src2{0}; let Inst{5-0} = src3; } def S4_storerb_ur : T_StoreAbsReg <"memb", "STrib", IntRegs, 0b000, ByteAccess>; def S4_storerh_ur : T_StoreAbsReg <"memh", "STrih", IntRegs, 0b010, HalfWordAccess>; def S4_storerf_ur : T_StoreAbsReg <"memh", "STrif", IntRegs, 0b011, HalfWordAccess, 1>; def S4_storeri_ur : T_StoreAbsReg <"memw", "STriw", IntRegs, 0b100, WordAccess>; def S4_storerd_ur : T_StoreAbsReg <"memd", "STrid", DoubleRegs, 0b110, DoubleWordAccess>; let AddedComplexity = 40 in multiclass T_StoreAbsReg_Pats { def : Pat<(stOp (VT RC:$src4), (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2), u32ImmPred:$src3)), (MI IntRegs:$src1, u2ImmPred:$src2, u32ImmPred:$src3, RC:$src4)>; def : Pat<(stOp (VT RC:$src4), (add (shl IntRegs:$src1, u2ImmPred:$src2), (HexagonCONST32 tglobaladdr:$src3))), (MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>; def : Pat<(stOp (VT RC:$src4), (add IntRegs:$src1, (HexagonCONST32 tglobaladdr:$src3))), (MI IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>; } defm : T_StoreAbsReg_Pats ; defm : T_StoreAbsReg_Pats ; defm : T_StoreAbsReg_Pats ; defm : T_StoreAbsReg_Pats ; let mayStore = 1, isNVStore = 1, isExtended = 1, addrMode = BaseLongOffset, opExtentBits = 6, isNewValue = 1, opNewValue = 3, opExtendable = 2 in class T_StoreAbsRegNV MajOp, MemAccessSize AccessSz> : NVInst <(outs ), (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, IntRegs:$src4), mnemonic#"($src1<<#$src2 + #$src3) = $src4.new">, NewValueRel { bits<5> src1; bits<2> src2; bits<6> src3; bits<3> src4; let CextOpcode = CextOp; let BaseOpcode = CextOp#"_shl"; let IClass = 0b1010; let Inst{27-21} = 0b1101101; let Inst{12-11} = 0b00; let Inst{7} = 0b1; let Inst{20-16} = src1; let Inst{13} = src2{1}; let Inst{12-11} = MajOp; let Inst{10-8} = src4; let Inst{6} = src2{0}; let Inst{5-0} = src3; } def S4_storerbnew_ur : T_StoreAbsRegNV <"memb", "STrib", 0b00, ByteAccess>; def S4_storerhnew_ur : T_StoreAbsRegNV <"memh", "STrih", 0b01, HalfWordAccess>; def S4_storerinew_ur : T_StoreAbsRegNV <"memw", "STriw", 0b10, WordAccess>; //===----------------------------------------------------------------------===// // Template classes for the non-predicated store instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// let isPredicable = 1 in class T_store_rr MajOp, bit isH> : STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt), mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""), [],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel { bits<5> Rs; bits<5> Ru; bits<2> u2; bits<5> Rt; // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1)); let IClass = 0b0011; let Inst{27-24} = 0b1011; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Ru; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{4-0} = Rt; } //===----------------------------------------------------------------------===// // Template classes for the predicated store instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// let isPredicated = 1 in class T_pstore_rr MajOp, bit isNot, bit isPredNew, bit isH> : STInst <(outs), (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt), !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""), [], "", V4LDST_tc_st_SLOT01> , AddrModeRel{ bits<2> Pv; bits<5> Rs; bits<5> Ru; bits<2> u2; bits<5> Rt; let isPredicatedFalse = isNot; let isPredicatedNew = isPredNew; // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1)); let IClass = 0b0011; let Inst{27-26} = 0b01; let Inst{25} = isPredNew; let Inst{24} = isNot; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Ru; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{6-5} = Pv; let Inst{4-0} = Rt; } //===----------------------------------------------------------------------===// // Template classes for the new-value store instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// let isPredicable = 1, isNewValue = 1, opNewValue = 3 in class T_store_new_rr MajOp> : NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt), mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new", [],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel { bits<5> Rs; bits<5> Ru; bits<2> u2; bits<3> Nt; let IClass = 0b0011; let Inst{27-21} = 0b1011101; let Inst{20-16} = Rs; let Inst{12-8} = Ru; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{4-3} = MajOp; let Inst{2-0} = Nt; } //===----------------------------------------------------------------------===// // Template classes for the predicated new-value store instructions with // base + register offset addressing mode //===----------------------------------------------------------------------===// let isPredicated = 1, isNewValue = 1, opNewValue = 4 in class T_pstore_new_rr MajOp, bit isNot, bit isPredNew> : NVInst<(outs), (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt), !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new", [], "", V4LDST_tc_st_SLOT0>, AddrModeRel { bits<2> Pv; bits<5> Rs; bits<5> Ru; bits<2> u2; bits<3> Nt; let isPredicatedFalse = isNot; let isPredicatedNew = isPredNew; let IClass = 0b0011; let Inst{27-26} = 0b01; let Inst{25} = isPredNew; let Inst{24} = isNot; let Inst{23-21} = 0b101; let Inst{20-16} = Rs; let Inst{12-8} = Ru; let Inst{13} = u2{1}; let Inst{7} = u2{0}; let Inst{6-5} = Pv; let Inst{4-3} = MajOp; let Inst{2-0} = Nt; } //===----------------------------------------------------------------------===// // multiclass for store instructions with base + register offset addressing // mode //===----------------------------------------------------------------------===// let isNVStorable = 1 in multiclass ST_Idxd_shl MajOp, bit isH = 0> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in { def S4_#NAME#_rr : T_store_rr ; // Predicated def S4_p#NAME#t_rr : T_pstore_rr ; def S4_p#NAME#f_rr : T_pstore_rr ; // Predicated new def S4_p#NAME#tnew_rr : T_pstore_rr ; def S4_p#NAME#fnew_rr : T_pstore_rr ; } } //===----------------------------------------------------------------------===// // multiclass for new-value store instructions with base + register offset // addressing mode. //===----------------------------------------------------------------------===// let mayStore = 1, isNVStore = 1 in multiclass ST_Idxd_shl_nv MajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in { def S4_#NAME#new_rr : T_store_new_rr; // Predicated def S4_p#NAME#newt_rr : T_pstore_new_rr ; def S4_p#NAME#newf_rr : T_pstore_new_rr ; // Predicated new def S4_p#NAME#newtnew_rr : T_pstore_new_rr ; def S4_p#NAME#newfnew_rr : T_pstore_new_rr ; } } let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0 in { let accessSize = ByteAccess in defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>, ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>; let accessSize = HalfWordAccess in defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>, ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>; let accessSize = WordAccess in defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>, ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>; let isNVStorable = 0, accessSize = DoubleWordAccess in defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>; let isNVStorable = 0, accessSize = HalfWordAccess in defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>; } class Storexs_pat : Pat<(Store Value:$Ru, (add (i32 IntRegs:$Rs), (i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2)))), (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>; let AddedComplexity = 40 in { def: Storexs_pat; def: Storexs_pat; def: Storexs_pat; def: Storexs_pat; } // memd(Rx++#s4:3)=Rtt // memd(Rx++#s4:3:circ(Mu))=Rtt // memd(Rx++I:circ(Mu))=Rtt // memd(Rx++Mu)=Rtt // memd(Rx++Mu:brev)=Rtt // memd(gp+#u16:3)=Rtt // Store doubleword conditionally. // if ([!]Pv[.new]) memd(#u6)=Rtt // TODO: needs to be implemented. //===----------------------------------------------------------------------===// // Template class //===----------------------------------------------------------------------===// let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8, opExtendable = 2 in class T_StoreImm MajOp > : STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8), mnemonic#"($Rs+#$offset)=#$S8", [], "", V4LDST_tc_st_SLOT01>, ImmRegRel, PredNewRel { bits<5> Rs; bits<8> S8; bits<8> offset; bits<6> offsetBits; string OffsetOpStr = !cast(OffsetOp); let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2}, !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1}, /* u6_0Imm */ offset{5-0})); let IClass = 0b0011; let Inst{27-25} = 0b110; let Inst{22-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-7} = offsetBits; let Inst{13} = S8{7}; let Inst{6-0} = S8{6-0}; } let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6, opExtendable = 3 in class T_StoreImm_pred MajOp, bit isPredNot, bit isPredNew > : STInst <(outs ), (ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6), !if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($Rs+#$offset)=#$S6", [], "", V4LDST_tc_st_SLOT01>, ImmRegRel, PredNewRel { bits<2> Pv; bits<5> Rs; bits<6> S6; bits<8> offset; bits<6> offsetBits; string OffsetOpStr = !cast(OffsetOp); let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2}, !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1}, /* u6_0Imm */ offset{5-0})); let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; let IClass = 0b0011; let Inst{27-25} = 0b100; let Inst{24} = isPredNew; let Inst{23} = isPredNot; let Inst{22-21} = MajOp; let Inst{20-16} = Rs; let Inst{13} = S6{5}; let Inst{12-7} = offsetBits; let Inst{6-5} = Pv; let Inst{4-0} = S6{4-0}; } //===----------------------------------------------------------------------===// // multiclass for store instructions with base + immediate offset // addressing mode and immediate stored value. // mem[bhw](Rx++#s4:3)=#s8 // if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6 //===----------------------------------------------------------------------===// multiclass ST_Imm_Pred MajOp, bit PredNot> { def _io : T_StoreImm_pred ; // Predicate new def new_io : T_StoreImm_pred ; } multiclass ST_Imm MajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in { def _io : T_StoreImm ; defm t : ST_Imm_Pred ; defm f : ST_Imm_Pred ; } } let hasSideEffects = 0, addrMode = BaseImmOffset, InputType = "imm" in { let accessSize = ByteAccess in defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>; let accessSize = HalfWordAccess in defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>; let accessSize = WordAccess in defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>; } def IMM_BYTE : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def IMM_HALF : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def IMM_WORD : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>; def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>; def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>; let AddedComplexity = 40 in { // Not using frameindex patterns for these stores, because the offset // is not extendable. This could cause problems during removing the frame // indices, since the offset with respect to R29/R30 may not fit in the // u6 field. def: Storexm_add_pat; def: Storexm_add_pat; def: Storexm_add_pat; } def: Storexm_simple_pat; def: Storexm_simple_pat; def: Storexm_simple_pat; // memb(Rx++#s4:0:circ(Mu))=Rt // memb(Rx++I:circ(Mu))=Rt // memb(Rx++Mu)=Rt // memb(Rx++Mu:brev)=Rt // memb(gp+#u16:0)=Rt // Store halfword. // TODO: needs to be implemented // memh(Re=#U6)=Rt.H // memh(Rs+#s11:1)=Rt.H // memh(Rs+Ru<<#u2)=Rt.H // TODO: needs to be implemented. // memh(Ru<<#u2+#U6)=Rt.H // memh(Rx++#s4:1:circ(Mu))=Rt.H // memh(Rx++#s4:1:circ(Mu))=Rt // memh(Rx++I:circ(Mu))=Rt.H // memh(Rx++I:circ(Mu))=Rt // memh(Rx++Mu)=Rt.H // memh(Rx++Mu)=Rt // memh(Rx++Mu:brev)=Rt.H // memh(Rx++Mu:brev)=Rt // memh(gp+#u16:1)=Rt // if ([!]Pv[.new]) memh(#u6)=Rt.H // if ([!]Pv[.new]) memh(#u6)=Rt // if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H // TODO: needs to be implemented. // if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H // TODO: Needs to be implemented. // Store word. // memw(Re=#U6)=Rt // TODO: Needs to be implemented. // memw(Rx++#s4:2)=Rt // memw(Rx++#s4:2:circ(Mu))=Rt // memw(Rx++I:circ(Mu))=Rt // memw(Rx++Mu)=Rt // memw(Rx++Mu:brev)=Rt //===----------------------------------------------------------------------=== // ST - //===----------------------------------------------------------------------=== //===----------------------------------------------------------------------===// // NV/ST + //===----------------------------------------------------------------------===// let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in class T_store_io_nv MajOp> : NVInst_V4 <(outs), (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), mnemonic#"($src1+#$src2) = $src3.new", [],"",ST_tc_st_SLOT0> { bits<5> src1; bits<13> src2; // Actual address offset bits<3> src3; bits<11> offsetBits; // Represents offset encoding let opExtentBits = !if (!eq(mnemonic, "memb"), 11, !if (!eq(mnemonic, "memh"), 12, !if (!eq(mnemonic, "memw"), 13, 0))); let opExtentAlign = !if (!eq(mnemonic, "memb"), 0, !if (!eq(mnemonic, "memh"), 1, !if (!eq(mnemonic, "memw"), 2, 0))); let offsetBits = !if (!eq(mnemonic, "memb"), src2{10-0}, !if (!eq(mnemonic, "memh"), src2{11-1}, !if (!eq(mnemonic, "memw"), src2{12-2}, 0))); let IClass = 0b1010; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24-21} = 0b1101; let Inst{20-16} = src1; let Inst{13} = offsetBits{8}; let Inst{12-11} = MajOp; let Inst{10-8} = src3; let Inst{7-0} = offsetBits{7-0}; } let opExtendable = 2, opNewValue = 3, isPredicated = 1 in class T_pstore_io_nv MajOp, bit PredNot, bit isPredNew> : NVInst_V4 <(outs), (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4), !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2+#$src3) = $src4.new", [],"",V2LDST_tc_st_SLOT0> { bits<2> src1; bits<5> src2; bits<9> src3; bits<3> src4; bits<6> offsetBits; // Represents offset encoding let isPredicatedNew = isPredNew; let isPredicatedFalse = PredNot; let opExtentBits = !if (!eq(mnemonic, "memb"), 6, !if (!eq(mnemonic, "memh"), 7, !if (!eq(mnemonic, "memw"), 8, 0))); let opExtentAlign = !if (!eq(mnemonic, "memb"), 0, !if (!eq(mnemonic, "memh"), 1, !if (!eq(mnemonic, "memw"), 2, 0))); let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0}, !if (!eq(mnemonic, "memh"), src3{6-1}, !if (!eq(mnemonic, "memw"), src3{7-2}, 0))); let IClass = 0b0100; let Inst{27} = 0b0; let Inst{26} = PredNot; let Inst{25} = isPredNew; let Inst{24-21} = 0b0101; let Inst{20-16} = src2; let Inst{13} = offsetBits{5}; let Inst{12-11} = MajOp; let Inst{10-8} = src4; let Inst{7-3} = offsetBits{4-0}; let Inst{2} = 0b0; let Inst{1-0} = src1; } // multiclass for new-value store instructions with base + immediate offset. // let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0, isExtendable = 1 in multiclass ST_Idxd_nv MajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { def S2_#NAME#new_io : T_store_io_nv ; // Predicated def S2_p#NAME#newt_io :T_pstore_io_nv ; def S2_p#NAME#newf_io :T_pstore_io_nv ; // Predicated new def S4_p#NAME#newtnew_io :T_pstore_io_nv ; def S4_p#NAME#newfnew_io :T_pstore_io_nv ; } } let addrMode = BaseImmOffset, InputType = "imm" in { let accessSize = ByteAccess in defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b00>, AddrModeRel; let accessSize = HalfWordAccess, opExtentAlign = 1 in defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b01>, AddrModeRel; let accessSize = WordAccess, opExtentAlign = 2 in defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b10>, AddrModeRel; } //===----------------------------------------------------------------------===// // Post increment loads with register offset. //===----------------------------------------------------------------------===// let hasNewValue = 1 in def L2_loadbsw2_pr : T_load_pr <"membh", IntRegs, 0b0001, HalfWordAccess>; def L2_loadbsw4_pr : T_load_pr <"membh", DoubleRegs, 0b0111, WordAccess>; let hasSideEffects = 0, addrMode = PostInc in class T_loadalign_pr MajOp, MemAccessSize AccessSz> : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$_dst_), (ins DoubleRegs:$src1, IntRegs:$src2, ModRegs:$src3), "$dst = "#mnemonic#"($src2++$src3)", [], "$src1 = $dst, $src2 = $_dst_"> { bits<5> dst; bits<5> src2; bits<1> src3; let accessSize = AccessSz; let IClass = 0b1001; let Inst{27-25} = 0b110; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = src3; let Inst{12} = 0b0; let Inst{7} = 0b0; let Inst{4-0} = dst; } def L2_loadalignb_pr : T_loadalign_pr <"memb_fifo", 0b0100, ByteAccess>; def L2_loadalignh_pr : T_loadalign_pr <"memh_fifo", 0b0010, HalfWordAccess>; //===----------------------------------------------------------------------===// // Template class for non-predicated post increment .new stores // mem[bhwd](Rx++#s4:[0123])=Nt.new //===----------------------------------------------------------------------===// let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 3 in class T_StorePI_nv MajOp > : NVInstPI_V4 <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2), mnemonic#"($src1++#$offset) = $src2.new", [], "$src1 = $_dst_">, AddrModeRel { bits<5> src1; bits<3> src2; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0})); let IClass = 0b1010; let Inst{27-21} = 0b1011101; let Inst{20-16} = src1; let Inst{13} = 0b0; let Inst{12-11} = MajOp; let Inst{10-8} = src2; let Inst{7} = 0b0; let Inst{6-3} = offsetBits; let Inst{1} = 0b0; } //===----------------------------------------------------------------------===// // Template class for predicated post increment .new stores // if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 4 in class T_StorePI_nv_pred MajOp, bit isPredNot, bit isPredNew > : NVInstPI_V4 <(outs IntRegs:$_dst_), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, IntRegs:$src3), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2++#$offset) = $src3.new", [], "$src2 = $_dst_">, AddrModeRel { bits<2> src1; bits<5> src2; bits<3> src3; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0})); let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; let IClass = 0b1010; let Inst{27-21} = 0b1011101; let Inst{20-16} = src2; let Inst{13} = 0b1; let Inst{12-11} = MajOp; let Inst{10-8} = src3; let Inst{7} = isPredNew; let Inst{6-3} = offsetBits; let Inst{2} = isPredNot; let Inst{1-0} = src1; } multiclass ST_PostInc_Pred_nv MajOp, bit PredNot> { def _pi : T_StorePI_nv_pred ; // Predicate new def new_pi : T_StorePI_nv_pred ; } multiclass ST_PostInc_nv MajOp> { let BaseOpcode = "POST_"#BaseOp in { def S2_#NAME#_pi : T_StorePI_nv ; // Predicated defm S2_p#NAME#t : ST_PostInc_Pred_nv ; defm S2_p#NAME#f : ST_PostInc_Pred_nv ; } } let accessSize = ByteAccess in defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>; let accessSize = HalfWordAccess in defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>; let accessSize = WordAccess in defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>; //===----------------------------------------------------------------------===// // Template class for post increment .new stores with register offset //===----------------------------------------------------------------------===// let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in class T_StorePI_RegNV MajOp, MemAccessSize AccessSz> : NVInstPI_V4 <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3), #mnemonic#"($src1++$src2) = $src3.new", [], "$src1 = $_dst_"> { bits<5> src1; bits<1> src2; bits<3> src3; let accessSize = AccessSz; let IClass = 0b1010; let Inst{27-21} = 0b1101101; let Inst{20-16} = src1; let Inst{13} = src2; let Inst{12-11} = MajOp; let Inst{10-8} = src3; let Inst{7} = 0b0; } def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>; def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>; def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>; // memb(Rx++#s4:0:circ(Mu))=Nt.new // memb(Rx++I:circ(Mu))=Nt.new // memb(Rx++Mu:brev)=Nt.new // memh(Rx++#s4:1:circ(Mu))=Nt.new // memh(Rx++I:circ(Mu))=Nt.new // memh(Rx++Mu)=Nt.new // memh(Rx++Mu:brev)=Nt.new // memw(Rx++#s4:2:circ(Mu))=Nt.new // memw(Rx++I:circ(Mu))=Nt.new // memw(Rx++Mu)=Nt.new // memw(Rx++Mu:brev)=Nt.new //===----------------------------------------------------------------------===// // NV/ST - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // NV/J + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // multiclass/template class for the new-value compare jumps with the register // operands. //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11, opExtentAlign = 2 in class NVJrr_template majOp, bit NvOpNum, bit isNegCond, bit isTak> : NVInst_V4<(outs), (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset), "if ("#!if(isNegCond, "!","")#mnemonic# "($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")# "$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:" #!if(isTak, "t","nt")#" $offset", []> { bits<5> src1; bits<5> src2; bits<3> Ns; // New-Value Operand bits<5> RegOp; // Non-New-Value Operand bits<11> offset; let isTaken = isTak; let isPredicatedFalse = isNegCond; let opNewValue{0} = NvOpNum; let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0}); let RegOp = !if(!eq(NvOpNum, 0), src2, src1); let IClass = 0b0010; let Inst{27-26} = 0b00; let Inst{25-23} = majOp; let Inst{22} = isNegCond; let Inst{18-16} = Ns; let Inst{13} = isTak; let Inst{12-8} = RegOp; let Inst{21-20} = offset{10-9}; let Inst{7-1} = offset{8-2}; } multiclass NVJrr_cond majOp, bit NvOpNum, bit isNegCond> { // Branch not taken: def _nt: NVJrr_template; // Branch taken: def _t : NVJrr_template; } // NvOpNum = 0 -> First Operand is a new-value Register // NvOpNum = 1 -> Second Operand is a new-value Register multiclass NVJrr_base majOp, bit NvOpNum> { let BaseOpcode = BaseOp#_NVJ in { defm _t_jumpnv : NVJrr_cond; // True cond defm _f_jumpnv : NVJrr_cond; // False cond } } // if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2 // if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2 // if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2 // if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2 // if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1, Defs = [PC], hasSideEffects = 0 in { defm J4_cmpeq : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel; defm J4_cmpgt : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel; defm J4_cmpgtu : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel; defm J4_cmplt : NVJrr_base<"cmp.gt", "CMPLT", 0b011, 1>, PredRel; defm J4_cmpltu : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel; } //===----------------------------------------------------------------------===// // multiclass/template class for the new-value compare jumps instruction // with a register and an unsigned immediate (U5) operand. //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11, opExtentAlign = 2 in class NVJri_template majOp, bit isNegCond, bit isTak> : NVInst_V4<(outs), (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset), "if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:" #!if(isTak, "t","nt")#" $offset", []> { let isTaken = isTak; let isPredicatedFalse = isNegCond; let isTaken = isTak; bits<3> src1; bits<5> src2; bits<11> offset; let IClass = 0b0010; let Inst{26} = 0b1; let Inst{25-23} = majOp; let Inst{22} = isNegCond; let Inst{18-16} = src1; let Inst{13} = isTak; let Inst{12-8} = src2; let Inst{21-20} = offset{10-9}; let Inst{7-1} = offset{8-2}; } multiclass NVJri_cond majOp, bit isNegCond> { // Branch not taken: def _nt: NVJri_template; // Branch taken: def _t : NVJri_template; } multiclass NVJri_base majOp> { let BaseOpcode = BaseOp#_NVJri in { defm _t_jumpnv : NVJri_cond; // True Cond defm _f_jumpnv : NVJri_cond; // False cond } } // if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2 // if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2 // if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1, Defs = [PC], hasSideEffects = 0 in { defm J4_cmpeqi : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel; defm J4_cmpgti : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel; defm J4_cmpgtui : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel; } //===----------------------------------------------------------------------===// // multiclass/template class for the new-value compare jumps instruction // with a register and an hardcoded 0/-1 immediate value. //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11, opExtentAlign = 2 in class NVJ_ConstImm_template majOp, string ImmVal, bit isNegCond, bit isTak> : NVInst_V4<(outs), (ins IntRegs:$src1, brtarget:$offset), "if ("#!if(isNegCond, "!","")#mnemonic #"($src1.new, #"#ImmVal#")) jump:" #!if(isTak, "t","nt")#" $offset", []> { let isTaken = isTak; let isPredicatedFalse = isNegCond; let isTaken = isTak; bits<3> src1; bits<11> offset; let IClass = 0b0010; let Inst{26} = 0b1; let Inst{25-23} = majOp; let Inst{22} = isNegCond; let Inst{18-16} = src1; let Inst{13} = isTak; let Inst{21-20} = offset{10-9}; let Inst{7-1} = offset{8-2}; } multiclass NVJ_ConstImm_cond majOp, string ImmVal, bit isNegCond> { // Branch not taken: def _nt: NVJ_ConstImm_template; // Branch taken: def _t : NVJ_ConstImm_template; } multiclass NVJ_ConstImm_base majOp, string ImmVal> { let BaseOpcode = BaseOp#_NVJ_ConstImm in { defm _t_jumpnv : NVJ_ConstImm_cond; // True defm _f_jumpnv : NVJ_ConstImm_cond; // False } } // if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2 // if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2 // if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2 let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1, Defs = [PC], hasSideEffects = 0 in { defm J4_tstbit0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel; defm J4_cmpeqn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel; defm J4_cmpgtn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel; } // J4_hintjumpr: Hint indirect conditional jump. let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in def J4_hintjumpr: JRInst < (outs), (ins IntRegs:$Rs), "hintjr($Rs)"> { bits<5> Rs; let IClass = 0b0101; let Inst{27-21} = 0b0010101; let Inst{20-16} = Rs; } //===----------------------------------------------------------------------===// // NV/J - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CR + //===----------------------------------------------------------------------===// // PC-relative add let hasNewValue = 1, isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0, Uses = [PC] in def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6), "$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > { bits<5> Rd; bits<6> u6; let IClass = 0b0110; let Inst{27-16} = 0b101001001001; let Inst{12-7} = u6; let Inst{4-0} = Rd; } let hasSideEffects = 0 in class T_LOGICAL_3OP OpBits, bit IsNeg> : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu), "$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " # !if (IsNeg,"!","") # "$Pu))", [], "", CR_tc_2early_SLOT23> { bits<2> Pd; bits<2> Ps; bits<2> Pt; bits<2> Pu; let IClass = 0b0110; let Inst{27-24} = 0b1011; let Inst{23} = IsNeg; let Inst{22-21} = OpBits; let Inst{20} = 0b1; let Inst{17-16} = Ps; let Inst{13} = 0b0; let Inst{9-8} = Pt; let Inst{7-6} = Pu; let Inst{1-0} = Pd; } def C4_and_and : T_LOGICAL_3OP<"and", "and", 0b00, 0>; def C4_and_or : T_LOGICAL_3OP<"and", "or", 0b01, 0>; def C4_or_and : T_LOGICAL_3OP<"or", "and", 0b10, 0>; def C4_or_or : T_LOGICAL_3OP<"or", "or", 0b11, 0>; def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>; def C4_and_orn : T_LOGICAL_3OP<"and", "or", 0b01, 1>; def C4_or_andn : T_LOGICAL_3OP<"or", "and", 0b10, 1>; def C4_or_orn : T_LOGICAL_3OP<"or", "or", 0b11, 1>; // op(Ps, op(Pt, Pu)) class LogLog_pat : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, I1:$Pu))), (MI I1:$Ps, I1:$Pt, I1:$Pu)>; // op(Ps, op(Pt, ~Pu)) class LogLogNot_pat : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, (not I1:$Pu)))), (MI I1:$Ps, I1:$Pt, I1:$Pu)>; def: LogLog_pat; def: LogLog_pat; def: LogLog_pat; def: LogLog_pat; def: LogLogNot_pat; def: LogLogNot_pat; def: LogLogNot_pat; def: LogLogNot_pat; //===----------------------------------------------------------------------===// // PIC: Support for PIC compilations. The patterns and SD nodes defined // below are needed to support code generation for PIC //===----------------------------------------------------------------------===// def SDT_HexagonAtGot : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_HexagonAtPcrel : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; // AT_GOT address-of-GOT, address-of-global, offset-in-global def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>; // AT_PCREL address-of-global def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>; def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)), (L2_loadri_io I32:$got, imm:$addr)>; def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off), (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>; def: Pat<(HexagonAtPcrel I32:$addr), (C4_addipc imm:$addr)>; //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/ALU + //===----------------------------------------------------------------------===// // Logical with-not instructions. def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>; def A4_ornp : T_ALU64_logical<"or", 0b011, 1, 0, 1>; def: Pat<(i64 (and (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))), (A4_andnp DoubleRegs:$Rs, DoubleRegs:$Rt)>; def: Pat<(i64 (or (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))), (A4_ornp DoubleRegs:$Rs, DoubleRegs:$Rt)>; let hasNewValue = 1, hasSideEffects = 0 in def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0101111; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4-0} = Rd; } // Add and accumulate. // Rd=add(Rs,add(Ru,#s6)) let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 3 in def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6), "$Rd = add($Rs, add($Ru, #$s6))" , [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs), (add (i32 IntRegs:$Ru), s32ImmPred:$s6)))], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Ru; bits<6> s6; let IClass = 0b1101; let Inst{27-23} = 0b10110; let Inst{22-21} = s6{5-4}; let Inst{20-16} = Rs; let Inst{13} = s6{3}; let Inst{12-8} = Rd; let Inst{7-5} = s6{2-0}; let Inst{4-0} = Ru; } let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru), "$Rd = add($Rs, sub(#$s6, $Ru))", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<6> s6; bits<5> Ru; let IClass = 0b1101; let Inst{27-23} = 0b10111; let Inst{22-21} = s6{5-4}; let Inst{20-16} = Rs; let Inst{13} = s6{3}; let Inst{12-8} = Rd; let Inst{7-5} = s6{2-0}; let Inst{4-0} = Ru; } // Rd=add(Rs,sub(#s6,Ru)) def: Pat<(add (i32 IntRegs:$src1), (sub s32ImmPred:$src2, (i32 IntRegs:$src3))), (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>; // Rd=sub(add(Rs,#s6),Ru) def: Pat<(sub (add (i32 IntRegs:$src1), s32ImmPred:$src2), (i32 IntRegs:$src3)), (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>; // Rd=add(sub(Rs,Ru),#s6) def: Pat<(add (sub (i32 IntRegs:$src1), (i32 IntRegs:$src3)), (s32ImmPred:$src2)), (S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>; // Add or subtract doublewords with carry. //TODO: // Rdd=add(Rss,Rtt,Px):carry //TODO: // Rdd=sub(Rss,Rtt,Px):carry // Extract bitfield // Rdd=extract(Rss,#u6,#U6) // Rdd=extract(Rss,Rtt) // Rd=extract(Rs,Rtt) // Rd=extract(Rs,#u5,#U5) def S4_extractp_rp : T_S3op_64 < "extract", 0b11, 0b100, 0>; def S4_extractp : T_S2op_extract <"extract", 0b1010, DoubleRegs, u6Imm>; let hasNewValue = 1 in { def S4_extract_rp : T_S3op_extract<"extract", 0b01>; def S4_extract : T_S2op_extract <"extract", 0b1101, IntRegs, u5Imm>; } // Complex add/sub halfwords/words let Defs = [USR_OVF] in { def S4_vxaddsubh : T_S3op_64 < "vxaddsubh", 0b01, 0b100, 0, 1>; def S4_vxaddsubw : T_S3op_64 < "vxaddsubw", 0b01, 0b000, 0, 1>; def S4_vxsubaddh : T_S3op_64 < "vxsubaddh", 0b01, 0b110, 0, 1>; def S4_vxsubaddw : T_S3op_64 < "vxsubaddw", 0b01, 0b010, 0, 1>; } let Defs = [USR_OVF] in { def S4_vxaddsubhr : T_S3op_64 < "vxaddsubh", 0b11, 0b000, 0, 1, 1, 1>; def S4_vxsubaddhr : T_S3op_64 < "vxsubaddh", 0b11, 0b010, 0, 1, 1, 1>; } let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF] in { def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>; def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>; } // Logical xor with xor accumulation. // Rxx^=xor(Rss,Rtt) let hasSideEffects = 0 in def M4_xor_xacc : SInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rxx ^= xor($Rss, $Rtt)", [(set (i64 DoubleRegs:$Rxx), (xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss), (i64 DoubleRegs:$Rtt))))], "$dst2 = $Rxx", S_3op_tc_1_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<5> Rtt; let IClass = 0b1100; let Inst{27-22} = 0b101010; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; let Inst{7-5} = 0b000; let Inst{4-0} = Rxx; } // Rotate and reduce bytes // Rdd=vrcrotate(Rss,Rt,#u2) let hasSideEffects = 0 in def S4_vrcrotate : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2), "$Rdd = vrcrotate($Rss, $Rt, #$u2)", [], "", S_3op_tc_3x_SLOT23> { bits<5> Rdd; bits<5> Rss; bits<5> Rt; bits<2> u2; let IClass = 0b1100; let Inst{27-22} = 0b001111; let Inst{20-16} = Rss; let Inst{13} = u2{1}; let Inst{12-8} = Rt; let Inst{7-6} = 0b11; let Inst{5} = u2{0}; let Inst{4-0} = Rdd; } // Rotate and reduce bytes with accumulation // Rxx+=vrcrotate(Rss,Rt,#u2) let hasSideEffects = 0 in def S4_vrcrotate_acc : SInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2), "$Rxx += vrcrotate($Rss, $Rt, #$u2)", [], "$dst2 = $Rxx", S_3op_tc_3x_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<5> Rt; bits<2> u2; let IClass = 0b1100; let Inst{27-21} = 0b1011101; let Inst{20-16} = Rss; let Inst{13} = u2{1}; let Inst{12-8} = Rt; let Inst{5} = u2{0}; let Inst{4-0} = Rxx; } // Vector reduce conditional negate halfwords let hasSideEffects = 0 in def S2_vrcnegh : SInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt), "$Rxx += vrcnegh($Rss, $Rt)", [], "$dst2 = $Rxx", S_3op_tc_3x_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<5> Rt; let IClass = 0b1100; let Inst{27-21} = 0b1011001; let Inst{20-16} = Rss; let Inst{13} = 0b1; let Inst{12-8} = Rt; let Inst{7-5} = 0b111; let Inst{4-0} = Rxx; } // Split bitfield def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>; // Arithmetic/Convergent round def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>; def A4_round_ri : T_S2op_2_ii <"round", 0b111, 0b100>; let Defs = [USR_OVF] in def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>; // Logical-logical words. // Compound or-and -- Rx=or(Ru,and(Rx,#s10)) let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10, opExtendable = 3 in def S4_or_andix: ALU64Inst<(outs IntRegs:$Rx), (ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10), "$Rx = or($Ru, and($_src_, #$s10))" , [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s32ImmPred:$s10)))] , "$_src_ = $Rx", ALU64_tc_2_SLOT23> { bits<5> Rx; bits<5> Ru; bits<10> s10; let IClass = 0b1101; let Inst{27-22} = 0b101001; let Inst{20-16} = Rx; let Inst{21} = s10{9}; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Ru; } // Miscellaneous ALU64 instructions. // let hasNewValue = 1, hasSideEffects = 0 in def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0011111; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = 0b111; let Inst{4-0} = Rd; } let hasSideEffects = 0 in def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-24} = 0b0100; let Inst{21} = 0b1; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4-0} = Rd; } let hasSideEffects = 0 in def dep_S2_packhl: ALU64Inst<(outs DoubleRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = packhl($Rs, $Rt):deprecated", [], "", ALU64_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-24} = 0b0100; let Inst{21} = 0b0; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4-0} = Rd; } let hasNewValue = 1, hasSideEffects = 0 in def dep_A2_addsat: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = add($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0101100; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7} = 0b0; let Inst{4-0} = Rd; } let hasNewValue = 1, hasSideEffects = 0 in def dep_A2_subsat: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = sub($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0101100; let Inst{20-16} = Rt; let Inst{12-8} = Rs; let Inst{7} = 0b1; let Inst{4-0} = Rd; } // Rx[&|]=xor(Rs,Rt) def M4_or_xor : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>; def M4_and_xor : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>; // Rx[&|^]=or(Rs,Rt) def M4_xor_or : T_MType_acc_rr < "^= or", 0b110, 0b011, 0>; let CextOpcode = "ORr_ORr" in def M4_or_or : T_MType_acc_rr < "|= or", 0b110, 0b000, 0>; def M4_and_or : T_MType_acc_rr < "&= or", 0b010, 0b001, 0>; // Rx[&|^]=and(Rs,Rt) def M4_xor_and : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>; let CextOpcode = "ORr_ANDr" in def M4_or_and : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>; def M4_and_and : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>; // Rx[&|^]=and(Rs,~Rt) def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>; def M4_or_andn : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>; def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; def: T_MType_acc_pat2 ; class T_MType_acc_pat3 : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, (not IntRegs:$src3)))), (i32 (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3))>; def: T_MType_acc_pat3 ; def: T_MType_acc_pat3 ; def: T_MType_acc_pat3 ; // Compound or-or and or-and let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 10, opExtendable = 3 in class T_CompOR MajOp, SDNode OpNode> : MInst_acc <(outs IntRegs:$Rx), (ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10), "$Rx |= "#mnemonic#"($Rs, #$s10)", [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1), (OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10)))], "$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel { bits<5> Rx; bits<5> Rs; bits<10> s10; let IClass = 0b1101; let Inst{27-24} = 0b1010; let Inst{23-22} = MajOp; let Inst{20-16} = Rs; let Inst{21} = s10{9}; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Rx; } let CextOpcode = "ORr_ANDr" in def S4_or_andi : T_CompOR <"and", 0b00, and>; let CextOpcode = "ORr_ORr" in def S4_or_ori : T_CompOR <"or", 0b10, or>; // Modulo wrap // Rd=modwrap(Rs,Rt) // Round // Rd=cround(Rs,#u5) // Rd=cround(Rs,Rt) // Rd=round(Rs,#u5)[:sat] // Rd=round(Rs,Rt)[:sat] // Vector reduce add unsigned halfwords // Rd=vraddh(Rss,Rtt) // Vector add bytes // Rdd=vaddb(Rss,Rtt) // Vector conditional negate // Rdd=vcnegh(Rss,Rt) // Rxx+=vrcnegh(Rss,Rt) // Vector maximum bytes // Rdd=vmaxb(Rtt,Rss) // Vector reduce maximum halfwords // Rxx=vrmaxh(Rss,Ru) // Rxx=vrmaxuh(Rss,Ru) // Vector reduce maximum words // Rxx=vrmaxuw(Rss,Ru) // Rxx=vrmaxw(Rss,Ru) // Vector minimum bytes // Rdd=vminb(Rtt,Rss) // Vector reduce minimum halfwords // Rxx=vrminh(Rss,Ru) // Rxx=vrminuh(Rss,Ru) // Vector reduce minimum words // Rxx=vrminuw(Rss,Ru) // Rxx=vrminw(Rss,Ru) // Vector subtract bytes // Rdd=vsubb(Rss,Rtt) //===----------------------------------------------------------------------===// // XTYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/BIT + //===----------------------------------------------------------------------===// // Bit reverse def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>; // Bit count def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>; def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>; def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>; // Count trailing zeros: 64-bit. def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>; def: Pat<(i32 (trunc (cttz_zero_undef I64:$Rss))), (S2_ct0p I64:$Rss)>; // Count trailing ones: 64-bit. def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>; def: Pat<(i32 (trunc (cttz_zero_undef (not I64:$Rss)))), (S2_ct1p I64:$Rss)>; // Define leading/trailing patterns that require zero-extensions to 64 bits. def: Pat<(i64 (ctlz I64:$Rss)), (Zext64 (S2_cl0p I64:$Rss))>; def: Pat<(i64 (ctlz_zero_undef I64:$Rss)), (Zext64 (S2_cl0p I64:$Rss))>; def: Pat<(i64 (cttz I64:$Rss)), (Zext64 (S2_ct0p I64:$Rss))>; def: Pat<(i64 (cttz_zero_undef I64:$Rss)), (Zext64 (S2_ct0p I64:$Rss))>; def: Pat<(i64 (ctlz (not I64:$Rss))), (Zext64 (S2_cl1p I64:$Rss))>; def: Pat<(i64 (ctlz_zero_undef (not I64:$Rss))), (Zext64 (S2_cl1p I64:$Rss))>; def: Pat<(i64 (cttz (not I64:$Rss))), (Zext64 (S2_ct1p I64:$Rss))>; def: Pat<(i64 (cttz_zero_undef (not I64:$Rss))), (Zext64 (S2_ct1p I64:$Rss))>; let hasSideEffects = 0, hasNewValue = 1 in def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6), "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> { bits<5> Rs; bits<5> Rd; bits<6> s6; let IClass = 0b1000; let Inst{27-24} = 0b1100; let Inst{23-21} = 0b001; let Inst{20-16} = Rs; let Inst{13-8} = s6; let Inst{7-5} = 0b000; let Inst{4-0} = Rd; } let hasSideEffects = 0, hasNewValue = 1 in def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6), "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> { bits<5> Rs; bits<5> Rd; bits<6> s6; let IClass = 0b1000; let Inst{27-24} = 0b1000; let Inst{23-21} = 0b011; let Inst{20-16} = Rs; let Inst{13-8} = s6; let Inst{7-5} = 0b010; let Inst{4-0} = Rd; } // Bit test/set/clear def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>; def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>; let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)), (S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>; def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)), (S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>; } // Add extra complexity to prefer these instructions over bitsset/bitsclr. // The reason is that tstbit/ntstbit can be folded into a compound instruction: // if ([!]tstbit(...)) jump ... let AddedComplexity = 100 in def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))), (S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>; let AddedComplexity = 100 in def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))), (S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>; def C4_nbitsset : T_TEST_BITS_REG<"!bitsset", 0b01, 1>; def C4_nbitsclr : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>; def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>; // Do not increase complexity of these patterns. In the DAG, "cmp i8" may be // represented as a compare against "value & 0xFF", which is an exact match // for cmpb (same for cmph). The patterns below do not contain any additional // complexity that would make them preferable, and if they were actually used // instead of cmpb/cmph, they would result in a compare against register that // is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF). def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)), (C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>; def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)), (C4_nbitsclr I32:$Rs, I32:$Rt)>; def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)), (C4_nbitsset I32:$Rs, I32:$Rt)>; //===----------------------------------------------------------------------===// // XTYPE/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/MPY + //===----------------------------------------------------------------------===// // Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed. let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1 in def M4_mpyri_addi : MInst<(outs IntRegs:$Rd), (ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6), "$Rd = add(#$u6, mpyi($Rs, #$U6))" , [(set (i32 IntRegs:$Rd), (add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6), u32ImmPred:$u6))] ,"",ALU64_tc_3x_SLOT23> { bits<5> Rd; bits<6> u6; bits<5> Rs; bits<6> U6; let IClass = 0b1101; let Inst{27-24} = 0b1000; let Inst{23} = U6{5}; let Inst{22-21} = u6{5-4}; let Inst{20-16} = Rs; let Inst{13} = u6{3}; let Inst{12-8} = Rd; let Inst{7-5} = u6{2-0}; let Inst{4-0} = U6{4-0}; } // Rd=add(#u6,mpyi(Rs,Rt)) let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1 in def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd), (ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt), "$Rd = add(#$u6, mpyi($Rs, $Rt))" , [(set (i32 IntRegs:$Rd), (add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u32ImmPred:$u6))], "", ALU64_tc_3x_SLOT23>, ImmRegRel { bits<5> Rd; bits<6> u6; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-23} = 0b01110; let Inst{22-21} = u6{5-4}; let Inst{20-16} = Rs; let Inst{13} = u6{3}; let Inst{12-8} = Rt; let Inst{7-5} = u6{2-0}; let Inst{4-0} = Rd; } let hasNewValue = 1 in class T_AddMpy : ALU64Inst <(outs IntRegs:$dst), ins, "$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))", "#$src2, $src3))"), [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))], "", ALU64_tc_3x_SLOT23> { bits<5> dst; bits<5> src1; bits<8> src2; bits<5> src3; let IClass = 0b1101; bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2}); let Inst{27-24} = 0b1111; let Inst{23} = MajOp; let Inst{22-21} = ImmValue{5-4}; let Inst{20-16} = src3; let Inst{13} = ImmValue{3}; let Inst{12-8} = dst; let Inst{7-5} = ImmValue{2-0}; let Inst{4-0} = src1; } def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred, (ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>; let isExtendable = 1, opExtentBits = 6, opExtendable = 3, CextOpcode = "ADD_MPY", InputType = "imm" in def M4_mpyri_addr : T_AddMpy<0b1, u32ImmPred, (ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel; // Rx=add(Ru,mpyi(Rx,Rs)) let CextOpcode = "ADD_MPY", InputType = "reg", hasNewValue = 1 in def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx), (ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs), "$Rx = add($Ru, mpyi($_src_, $Rs))", [(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru), (mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))], "$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel { bits<5> Rx; bits<5> Ru; bits<5> Rs; let IClass = 0b1110; let Inst{27-21} = 0b0011000; let Inst{12-8} = Rx; let Inst{4-0} = Ru; let Inst{20-16} = Rs; } // Vector reduce multiply word by signed half (32x16) //Rdd=vrmpyweh(Rss,Rtt)[:<<1] def M4_vrmpyeh_s0 : T_M2_vmpy<"vrmpyweh", 0b010, 0b100, 0, 0, 0>; def M4_vrmpyeh_s1 : T_M2_vmpy<"vrmpyweh", 0b110, 0b100, 1, 0, 0>; //Rdd=vrmpywoh(Rss,Rtt)[:<<1] def M4_vrmpyoh_s0 : T_M2_vmpy<"vrmpywoh", 0b001, 0b010, 0, 0, 0>; def M4_vrmpyoh_s1 : T_M2_vmpy<"vrmpywoh", 0b101, 0b010, 1, 0, 0>; //Rdd+=vrmpyweh(Rss,Rtt)[:<<1] def M4_vrmpyeh_acc_s0: T_M2_vmpy_acc<"vrmpyweh", 0b001, 0b110, 0, 0>; def M4_vrmpyeh_acc_s1: T_M2_vmpy_acc<"vrmpyweh", 0b101, 0b110, 1, 0>; //Rdd=vrmpywoh(Rss,Rtt)[:<<1] def M4_vrmpyoh_acc_s0: T_M2_vmpy_acc<"vrmpywoh", 0b011, 0b110, 0, 0>; def M4_vrmpyoh_acc_s1: T_M2_vmpy_acc<"vrmpywoh", 0b111, 0b110, 1, 0>; // Vector multiply halfwords, signed by unsigned // Rdd=vmpyhsu(Rs,Rt)[:<<]:sat def M2_vmpy2su_s0 : T_XTYPE_mpy64 < "vmpyhsu", 0b000, 0b111, 1, 0, 0>; def M2_vmpy2su_s1 : T_XTYPE_mpy64 < "vmpyhsu", 0b100, 0b111, 1, 1, 0>; // Rxx+=vmpyhsu(Rs,Rt)[:<<1]:sat def M2_vmac2su_s0 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b011, 0b101, 1, 0, 0>; def M2_vmac2su_s1 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b111, 0b101, 1, 1, 0>; // Vector polynomial multiply halfwords // Rdd=vpmpyh(Rs,Rt) def M4_vpmpyh : T_XTYPE_mpy64 < "vpmpyh", 0b110, 0b111, 0, 0, 0>; // Rxx^=vpmpyh(Rs,Rt) def M4_vpmpyh_acc : T_XTYPE_mpy64_acc < "vpmpyh", "^", 0b101, 0b111, 0, 0, 0>; // Polynomial multiply words // Rdd=pmpyw(Rs,Rt) def M4_pmpyw : T_XTYPE_mpy64 < "pmpyw", 0b010, 0b111, 0, 0, 0>; // Rxx^=pmpyw(Rs,Rt) def M4_pmpyw_acc : T_XTYPE_mpy64_acc < "pmpyw", "^", 0b001, 0b111, 0, 0, 0>; //===----------------------------------------------------------------------===// // XTYPE/MPY - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/Vector compare //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template class for vector compare //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_vcmpImm cmpOp, bits<2> minOp, Operand ImmOprnd> : ALU64_rr <(outs PredRegs:$Pd), (ins DoubleRegs:$Rss, ImmOprnd:$Imm), "$Pd = "#Str#"($Rss, #$Imm)", [], "", ALU64_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rss; bits<32> Imm; bits<8> ImmBits; let ImmBits{6-0} = Imm{6-0}; let ImmBits{7} = !if (!eq(cmpOp,0b10), 0b0, Imm{7}); // 0 for vcmp[bhw].gtu let IClass = 0b1101; let Inst{27-24} = 0b1100; let Inst{22-21} = cmpOp; let Inst{20-16} = Rss; let Inst{12-5} = ImmBits; let Inst{4-3} = minOp; let Inst{1-0} = Pd; } // Vector compare bytes def A4_vcmpbgt : T_vcmp <"vcmpb.gt", 0b1010>; def: T_vcmp_pat; let AsmString = "$Pd = any8(vcmpb.eq($Rss, $Rtt))" in def A4_vcmpbeq_any : T_vcmp <"any8(vcmpb.gt", 0b1000>; def A4_vcmpbeqi : T_vcmpImm <"vcmpb.eq", 0b00, 0b00, u8Imm>; def A4_vcmpbgti : T_vcmpImm <"vcmpb.gt", 0b01, 0b00, s8Imm>; def A4_vcmpbgtui : T_vcmpImm <"vcmpb.gtu", 0b10, 0b00, u7Imm>; // Vector compare halfwords def A4_vcmpheqi : T_vcmpImm <"vcmph.eq", 0b00, 0b01, s8Imm>; def A4_vcmphgti : T_vcmpImm <"vcmph.gt", 0b01, 0b01, s8Imm>; def A4_vcmphgtui : T_vcmpImm <"vcmph.gtu", 0b10, 0b01, u7Imm>; // Vector compare words def A4_vcmpweqi : T_vcmpImm <"vcmpw.eq", 0b00, 0b10, s8Imm>; def A4_vcmpwgti : T_vcmpImm <"vcmpw.gt", 0b01, 0b10, s8Imm>; def A4_vcmpwgtui : T_vcmpImm <"vcmpw.gtu", 0b10, 0b10, u7Imm>; //===----------------------------------------------------------------------===// // XTYPE/SHIFT + //===----------------------------------------------------------------------===// // Shift by immediate and accumulate/logical. // Rx=add(#u8,asl(Rx,#U5)) Rx=add(#u8,lsr(Rx,#U5)) // Rx=sub(#u8,asl(Rx,#U5)) Rx=sub(#u8,lsr(Rx,#U5)) // Rx=and(#u8,asl(Rx,#U5)) Rx=and(#u8,lsr(Rx,#U5)) // Rx=or(#u8,asl(Rx,#U5)) Rx=or(#u8,lsr(Rx,#U5)) let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8, hasNewValue = 1, opNewValue = 0 in class T_S4_ShiftOperate MajOp, InstrItinClass Itin> : MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5), "$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))", [(set (i32 IntRegs:$Rd), (Op (Sh I32:$Rx, u5ImmPred:$U5), u32ImmPred:$u8))], "$Rd = $Rx", Itin> { bits<5> Rd; bits<8> u8; bits<5> Rx; bits<5> U5; let IClass = 0b1101; let Inst{27-24} = 0b1110; let Inst{23-21} = u8{7-5}; let Inst{20-16} = Rd; let Inst{13} = u8{4}; let Inst{12-8} = U5; let Inst{7-5} = u8{3-1}; let Inst{4} = asl_lsr; let Inst{3} = u8{0}; let Inst{2-1} = MajOp; } multiclass T_ShiftOperate MajOp, InstrItinClass Itin> { def _asl_ri : T_S4_ShiftOperate; def _lsr_ri : T_S4_ShiftOperate; } let AddedComplexity = 200 in { defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>; defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>; } let AddedComplexity = 30 in defm S4_ori : T_ShiftOperate<"or", or, 0b01, ALU64_tc_1_SLOT23>; defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>; let AddedComplexity = 200 in { def: Pat<(add addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)), (S4_addi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>; def: Pat<(add addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)), (S4_addi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>; def: Pat<(sub addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)), (S4_subi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>; def: Pat<(sub addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)), (S4_subi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>; } // Vector conditional negate // Rdd=vcnegh(Rss,Rt) let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in def S2_vcnegh : T_S3op_shiftVect < "vcnegh", 0b11, 0b01>; // Rd=[cround|round](Rs,Rt) let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in { def A4_cround_rr : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>; def A4_round_rr : T_S3op_3 < "round", IntRegs, 0b11, 0b10>; } // Rd=round(Rs,Rt):sat let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>; // Rd=[cmpyiwh|cmpyrwh](Rss,Rt):<<1:rnd:sat let Defs = [USR_OVF], Itinerary = S_3op_tc_3x_SLOT23 in { def M4_cmpyi_wh : T_S3op_8<"cmpyiwh", 0b100, 1, 1, 1>; def M4_cmpyr_wh : T_S3op_8<"cmpyrwh", 0b110, 1, 1, 1>; } // Rdd=[add|sub](Rss,Rtt,Px):carry let isPredicateLate = 1, hasSideEffects = 0 in class T_S3op_carry MajOp> : SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu), "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry", [], "$Px = $Pu", S_3op_tc_1_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; bits<2> Pu; let IClass = 0b1100; let Inst{27-24} = 0b0010; let Inst{23-21} = MajOp; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; let Inst{6-5} = Pu; let Inst{4-0} = Rdd; } def A4_addp_c : T_S3op_carry < "add", 0b110 >; def A4_subp_c : T_S3op_carry < "sub", 0b111 >; let Itinerary = S_3op_tc_3_SLOT23, hasSideEffects = 0 in class T_S3op_6 MinOp, bit isUnsigned> : SInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Ru), "$Rxx = "#mnemonic#"($Rss, $Ru)" , [] , "$dst2 = $Rxx"> { bits<5> Rxx; bits<5> Rss; bits<5> Ru; let IClass = 0b1100; let Inst{27-21} = 0b1011001; let Inst{20-16} = Rss; let Inst{13} = isUnsigned; let Inst{12-8} = Rxx; let Inst{7-5} = MinOp; let Inst{4-0} = Ru; } // Vector reduce maximum halfwords // Rxx=vrmax[u]h(Rss,Ru) def A4_vrmaxh : T_S3op_6 < "vrmaxh", 0b001, 0>; def A4_vrmaxuh : T_S3op_6 < "vrmaxuh", 0b001, 1>; // Vector reduce maximum words // Rxx=vrmax[u]w(Rss,Ru) def A4_vrmaxw : T_S3op_6 < "vrmaxw", 0b010, 0>; def A4_vrmaxuw : T_S3op_6 < "vrmaxuw", 0b010, 1>; // Vector reduce minimum halfwords // Rxx=vrmin[u]h(Rss,Ru) def A4_vrminh : T_S3op_6 < "vrminh", 0b101, 0>; def A4_vrminuh : T_S3op_6 < "vrminuh", 0b101, 1>; // Vector reduce minimum words // Rxx=vrmin[u]w(Rss,Ru) def A4_vrminw : T_S3op_6 < "vrminw", 0b110, 0>; def A4_vrminuw : T_S3op_6 < "vrminuw", 0b110, 1>; // Shift an immediate left by register amount. let hasNewValue = 1, hasSideEffects = 0 in def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt), "$Rd = lsl(#$s6, $Rt)" , [(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6, (i32 IntRegs:$Rt)))], "", S_3op_tc_1_SLOT23> { bits<5> Rd; bits<6> s6; bits<5> Rt; let IClass = 0b1100; let Inst{27-22} = 0b011010; let Inst{20-16} = s6{5-1}; let Inst{12-8} = Rt; let Inst{7-6} = 0b11; let Inst{4-0} = Rd; let Inst{5} = s6{0}; } //===----------------------------------------------------------------------===// // XTYPE/SHIFT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MEMOP: Word, Half, Byte //===----------------------------------------------------------------------===// def MEMOPIMM : SDNodeXFormgetSExtValue(); return XformM5ToU5Imm(imm, SDLoc(N)); }]>; def MEMOPIMM_HALF : SDNodeXFormgetSExtValue(); return XformM5ToU5Imm(imm, SDLoc(N)); }]>; def MEMOPIMM_BYTE : SDNodeXFormgetSExtValue(); return XformM5ToU5Imm(imm, SDLoc(N)); }]>; def SETMEMIMM : SDNodeXFormgetSExtValue(); return XformMskToBitPosU5Imm(imm, SDLoc(N)); }]>; def CLRMEMIMM : SDNodeXFormgetSExtValue()); return XformMskToBitPosU5Imm(imm, SDLoc(N)); }]>; def SETMEMIMM_SHORT : SDNodeXFormgetSExtValue(); return XformMskToBitPosU4Imm(imm, SDLoc(N)); }]>; def CLRMEMIMM_SHORT : SDNodeXFormgetSExtValue()); return XformMskToBitPosU4Imm(imm, SDLoc(N)); }]>; def SETMEMIMM_BYTE : SDNodeXFormgetSExtValue(); return XformMskToBitPosU3Imm(imm, SDLoc(N)); }]>; def CLRMEMIMM_BYTE : SDNodeXFormgetSExtValue()); return XformMskToBitPosU3Imm(imm, SDLoc(N)); }]>; //===----------------------------------------------------------------------===// // Template class for MemOp instructions with the register value. //===----------------------------------------------------------------------===// class MemOp_rr_base opcBits, Operand ImmOp, string memOp, bits<2> memOpBits> : MEMInst_V4<(outs), (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta), opc#"($base+#$offset)"#memOp#"$delta", []>, Requires<[UseMEMOP]> { bits<5> base; bits<5> delta; bits<32> offset; bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2 let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0}, !if (!eq(opcBits, 0b01), offset{6-1}, !if (!eq(opcBits, 0b10), offset{7-2},0))); let opExtentAlign = opcBits; let IClass = 0b0011; let Inst{27-24} = 0b1110; let Inst{22-21} = opcBits; let Inst{20-16} = base; let Inst{13} = 0b0; let Inst{12-7} = offsetBits; let Inst{6-5} = memOpBits; let Inst{4-0} = delta; } //===----------------------------------------------------------------------===// // Template class for MemOp instructions with the immediate value. //===----------------------------------------------------------------------===// class MemOp_ri_base opcBits, Operand ImmOp, string memOp, bits<2> memOpBits> : MEMInst_V4 <(outs), (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta), opc#"($base+#$offset)"#memOp#"#$delta" #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')' []>, Requires<[UseMEMOP]> { bits<5> base; bits<5> delta; bits<32> offset; bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2 let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0}, !if (!eq(opcBits, 0b01), offset{6-1}, !if (!eq(opcBits, 0b10), offset{7-2},0))); let opExtentAlign = opcBits; let IClass = 0b0011; let Inst{27-24} = 0b1111; let Inst{22-21} = opcBits; let Inst{20-16} = base; let Inst{13} = 0b0; let Inst{12-7} = offsetBits; let Inst{6-5} = memOpBits; let Inst{4-0} = delta; } // multiclass to define MemOp instructions with register operand. multiclass MemOp_rr opcBits, Operand ImmOp> { def L4_add#NAME : MemOp_rr_base ; def L4_ior#NAME : MemOp_ri_base; } multiclass MemOp_base opcBits, Operand ImmOp> { defm _#NAME : MemOp_rr ; defm _#NAME : MemOp_ri ; } // Define MemOp instructions. let isExtendable = 1, opExtendable = 1, isExtentSigned = 0 in { let opExtentBits = 6, accessSize = ByteAccess in defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>; let opExtentBits = 7, accessSize = HalfWordAccess in defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>; let opExtentBits = 8, accessSize = WordAccess in defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>; } //===----------------------------------------------------------------------===// // Multiclass to define 'Def Pats' for ALU operations on the memory // Here value used for the ALU operation is an immediate value. // mem[bh](Rs+#0) += #U5 // mem[bh](Rs+#u6) += #U5 //===----------------------------------------------------------------------===// multiclass MemOpi_u5Pats { let AddedComplexity = 180 in def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend), IntRegs:$addr), (MI IntRegs:$addr, 0, u5ImmPred:$addend)>; let AddedComplexity = 190 in def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, ImmPred:$offset)), u5ImmPred:$addend), (add IntRegs:$base, ImmPred:$offset)), (MI IntRegs:$base, ImmPred:$offset, u5ImmPred:$addend)>; } multiclass MemOpi_u5ALUOp { defm: MemOpi_u5Pats; defm: MemOpi_u5Pats; } multiclass MemOpi_u5ExtType { // Half Word defm: MemOpi_u5ALUOp ; // Byte defm: MemOpi_u5ALUOp ; } let Predicates = [UseMEMOP] in { defm: MemOpi_u5ExtType; // zero extend defm: MemOpi_u5ExtType; // sign extend defm: MemOpi_u5ExtType; // any extend // Word defm: MemOpi_u5ALUOp ; } //===----------------------------------------------------------------------===// // multiclass to define 'Def Pats' for ALU operations on the memory. // Here value used for the ALU operation is a negative value. // mem[bh](Rs+#0) += #m5 // mem[bh](Rs+#u6) += #m5 //===----------------------------------------------------------------------===// multiclass MemOpi_m5Pats { let AddedComplexity = 190 in def: Pat<(stOp (add (ldOp IntRegs:$addr), immPred:$subend), IntRegs:$addr), (MI IntRegs:$addr, 0, (xformFunc immPred:$subend))>; let AddedComplexity = 195 in def: Pat<(stOp (add (ldOp (add IntRegs:$base, ImmPred:$offset)), immPred:$subend), (add IntRegs:$base, ImmPred:$offset)), (MI IntRegs:$base, ImmPred:$offset, (xformFunc immPred:$subend))>; } multiclass MemOpi_m5ExtType { // Half Word defm: MemOpi_m5Pats ; // Byte defm: MemOpi_m5Pats ; } let Predicates = [UseMEMOP] in { defm: MemOpi_m5ExtType; // zero extend defm: MemOpi_m5ExtType; // sign extend defm: MemOpi_m5ExtType; // any extend // Word defm: MemOpi_m5Pats ; } //===----------------------------------------------------------------------===// // Multiclass to define 'def Pats' for bit operations on the memory. // mem[bhw](Rs+#0) = [clrbit|setbit](#U5) // mem[bhw](Rs+#u6) = [clrbit|setbit](#U5) //===----------------------------------------------------------------------===// multiclass MemOpi_bitPats { // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5) let AddedComplexity = 250 in def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)), immPred:$bitend), (add IntRegs:$base, extPred:$offset)), (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>; // mem[bhw](Rs+#0) = [clrbit|setbit](#U5) let AddedComplexity = 225 in def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), immPred:$bitend), IntRegs:$addr), (MI IntRegs:$addr, 0, (xformFunc immPred:$bitend))>; } multiclass MemOpi_bitExtType { // Byte - clrbit defm: MemOpi_bitPats; // Byte - setbit defm: MemOpi_bitPats; // Half Word - clrbit defm: MemOpi_bitPats; // Half Word - setbit defm: MemOpi_bitPats; } let Predicates = [UseMEMOP] in { // mem[bh](Rs+#0) = [clrbit|setbit](#U5) // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5) defm: MemOpi_bitExtType; // zero extend defm: MemOpi_bitExtType; // sign extend defm: MemOpi_bitExtType; // any extend // memw(Rs+#0) = [clrbit|setbit](#U5) // memw(Rs+#u6:2) = [clrbit|setbit](#U5) defm: MemOpi_bitPats; defm: MemOpi_bitPats; } //===----------------------------------------------------------------------===// // Multiclass to define 'def Pats' for ALU operations on the memory // where addend is a register. // mem[bhw](Rs+#0) [+-&|]= Rt // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt //===----------------------------------------------------------------------===// multiclass MemOpr_Pats { let AddedComplexity = 141 in // mem[bhw](Rs+#0) [+-&|]= Rt def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), (i32 IntRegs:$addend)), IntRegs:$addr), (MI IntRegs:$addr, 0, (i32 IntRegs:$addend))>; // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt let AddedComplexity = 150 in def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)), (i32 IntRegs:$orend)), (add IntRegs:$base, extPred:$offset)), (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend))>; } multiclass MemOPr_ALUOp { defm: MemOpr_Pats ; defm: MemOpr_Pats ; defm: MemOpr_Pats ; defm: MemOpr_Pats ; } multiclass MemOPr_ExtType { // Half Word defm: MemOPr_ALUOp ; // Byte defm: MemOPr_ALUOp ; } // Define 'def Pats' for MemOps with register addend. let Predicates = [UseMEMOP] in { // Byte, Half Word defm: MemOPr_ExtType; // zero extend defm: MemOPr_ExtType; // sign extend defm: MemOPr_ExtType; // any extend // Word defm: MemOPr_ALUOp ; } //===----------------------------------------------------------------------===// // XTYPE/PRED + //===----------------------------------------------------------------------===// // Hexagon V4 only supports these flavors of byte/half compare instructions: // EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by // hardware. However, compiler can still implement these patterns through // appropriate patterns combinations based on current implemented patterns. // The implemented patterns are: EQ/GT/GTU. // Missing patterns are: GE/GEU/LT/LTU/LE/LEU. // Following instruction is not being extended as it results into the // incorrect code for negative numbers. // Pd=cmpb.eq(Rs,#u8) // p=!cmp.eq(r1,#s10) def C4_cmpneqi : T_CMP <"cmp.eq", 0b00, 1, s10Ext>; def C4_cmpltei : T_CMP <"cmp.gt", 0b01, 1, s10Ext>; def C4_cmplteui : T_CMP <"cmp.gtu", 0b10, 1, u9Ext>; def : T_CMP_pat ; def : T_CMP_pat ; def : T_CMP_pat ; // rs <= rt -> !(rs > rt). /* def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)), (C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>; // (C4_cmpltei IntRegs:$src1, s32ImmPred:$src2)>; */ // Map cmplt(Rs, Imm) -> !cmpgt(Rs, Imm-1). def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)), (C4_cmpltei IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>; // rs != rt -> !(rs == rt). def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)), (C4_cmpneqi IntRegs:$src1, s32ImmPred:$src2)>; // SDNode for converting immediate C to C-1. def DEC_CONST_BYTE : SDNodeXFormgetSExtValue(); return XformU7ToU7M1Imm(imm, SDLoc(N)); }]>; // For the sequence // zext( setult ( and(Rs, 255), u8)) // Use the isdigit transformation below // Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)' // for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;. // The isdigit transformation relies on two 'clever' aspects: // 1) The data type is unsigned which allows us to eliminate a zero test after // biasing the expression by 48. We are depending on the representation of // the unsigned types, and semantics. // 2) The front end has converted <= 9 into < 10 on entry to LLVM // // For the C code: // retval = ((c>='0') & (c<='9')) ? 1 : 0; // The code is transformed upstream of llvm into // retval = (c-48) < 10 ? 1 : 0; let AddedComplexity = 139 in def: Pat<(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)), u7StrictPosImmPred:$src2)))), (C2_muxii (A4_cmpbgtui IntRegs:$src1, (DEC_CONST_BYTE u7StrictPosImmPred:$src2)), 0, 1)>; //===----------------------------------------------------------------------===// // XTYPE/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Multiclass for DeallocReturn //===----------------------------------------------------------------------===// class L4_RETURN : LD0Inst<(outs), (ins PredRegs:$src), !if(isNot, "if (!$src", "if ($src")# !if(isPredNew, ".new) ", ") ")#mnemonic# !if(isPredNew, #!if(isTak,":t", ":nt"),""), [], "", LD_tc_3or4stall_SLOT0> { bits<2> src; let BaseOpcode = "L4_RETURN"; let isPredicatedFalse = isNot; let isPredicatedNew = isPredNew; let isTaken = isTak; let IClass = 0b1001; let Inst{27-16} = 0b011000011110; let Inst{13} = isNot; let Inst{12} = isTak; let Inst{11} = isPredNew; let Inst{10} = 0b0; let Inst{9-8} = src; let Inst{4-0} = 0b11110; } // Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt multiclass L4_RETURN_PRED { let isPredicated = 1 in { def _#NAME# : L4_RETURN ; def _#NAME#new_pnt : L4_RETURN ; def _#NAME#new_pt : L4_RETURN ; } } multiclass LD_MISC_L4_RETURN { let isBarrier = 1, isPredicable = 1 in def NAME : LD0Inst <(outs), (ins), mnemonic, [], "", LD_tc_3or4stall_SLOT0> { let BaseOpcode = "L4_RETURN"; let IClass = 0b1001; let Inst{27-16} = 0b011000011110; let Inst{13-10} = 0b0000; let Inst{4-0} = 0b11110; } defm t : L4_RETURN_PRED; defm f : L4_RETURN_PRED; } let isReturn = 1, isTerminator = 1, Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0 in defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel; // Restore registers and dealloc return function call. let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1, Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in { def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP<"">; let isExtended = 1, opExtendable = 0 in def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP<"">; } // Restore registers and dealloc frame before a tail call. let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in { def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel; let isExtended = 1, opExtendable = 0 in def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel; } // Save registers function call. let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in { def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel; let isExtended = 1, opExtendable = 0 in def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel; } //===----------------------------------------------------------------------===// // Template class for non predicated store instructions with // GP-Relative or absolute addressing. //===----------------------------------------------------------------------===// let hasSideEffects = 0, isPredicable = 1 in class T_StoreAbsGP MajOp, bit isAbs, bit isHalf> : STInst<(outs), (ins ImmOp:$addr, RC:$src), mnemonic # "(#$addr) = $src"#!if(isHalf, ".h",""), [], "", V2LDST_tc_st_SLOT01> { bits<19> addr; bits<5> src; bits<16> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3}, !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2}, !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1}, /* u16_0Imm */ addr{15-0}))); // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1)); let IClass = 0b0100; let Inst{27} = 1; let Inst{26-25} = offsetBits{15-14}; let Inst{24} = 0b0; let Inst{23-22} = MajOp; let Inst{21} = isHalf; let Inst{20-16} = offsetBits{13-9}; let Inst{13} = offsetBits{8}; let Inst{12-8} = src; let Inst{7-0} = offsetBits{7-0}; } //===----------------------------------------------------------------------===// // Template class for predicated store instructions with // GP-Relative or absolute addressing. //===----------------------------------------------------------------------===// let hasSideEffects = 0, isPredicated = 1, opExtentBits = 6, opExtendable = 1 in class T_StoreAbs_Pred MajOp, bit isHalf, bit isNot, bit isNew> : STInst<(outs), (ins PredRegs:$src1, u32MustExt:$absaddr, RC: $src2), !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ", ") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""), [], "", ST_tc_st_SLOT01>, AddrModeRel { bits<2> src1; bits<6> absaddr; bits<5> src2; let isPredicatedNew = isNew; let isPredicatedFalse = isNot; // Store upper-half and store doubleword cannot be NV. let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1)); let IClass = 0b1010; let Inst{27-24} = 0b1111; let Inst{23-22} = MajOp; let Inst{21} = isHalf; let Inst{17-16} = absaddr{5-4}; let Inst{13} = isNew; let Inst{12-8} = src2; let Inst{7} = 0b1; let Inst{6-3} = absaddr{3-0}; let Inst{2} = isNot; let Inst{1-0} = src1; } //===----------------------------------------------------------------------===// // Template class for predicated store instructions with absolute addressing. //===----------------------------------------------------------------------===// class T_StoreAbs MajOp, bit isHalf> : T_StoreAbsGP , AddrModeRel { string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19, !if (!eq(ImmOpStr, "u16_2Imm"), 18, !if (!eq(ImmOpStr, "u16_1Imm"), 17, /* u16_0Imm */ 16))); let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3, !if (!eq(ImmOpStr, "u16_2Imm"), 2, !if (!eq(ImmOpStr, "u16_1Imm"), 1, /* u16_0Imm */ 0))); } //===----------------------------------------------------------------------===// // Multiclass for store instructions with absolute addressing. //===----------------------------------------------------------------------===// let addrMode = Absolute, isExtended = 1 in multiclass ST_Abs MajOp, bit isHalf = 0> { let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in { let opExtendable = 0, isPredicable = 1 in def S2_#NAME#abs : T_StoreAbs ; // Predicated def S4_p#NAME#t_abs : T_StoreAbs_Pred; def S4_p#NAME#f_abs : T_StoreAbs_Pred; // .new Predicated def S4_p#NAME#tnew_abs : T_StoreAbs_Pred; def S4_p#NAME#fnew_abs : T_StoreAbs_Pred; } } //===----------------------------------------------------------------------===// // Template class for non predicated new-value store instructions with // GP-Relative or absolute addressing. //===----------------------------------------------------------------------===// let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1, isNewValue = 1, opNewValue = 1 in class T_StoreAbsGP_NV MajOp, bit isAbs> : NVInst_V4<(outs), (ins u32Imm:$addr, IntRegs:$src), mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src.new", [], "", V2LDST_tc_st_SLOT0> { bits<19> addr; bits<3> src; bits<16> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3}, !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2}, !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1}, /* u16_0Imm */ addr{15-0}))); let IClass = 0b0100; let Inst{27} = 1; let Inst{26-25} = offsetBits{15-14}; let Inst{24-21} = 0b0101; let Inst{20-16} = offsetBits{13-9}; let Inst{13} = offsetBits{8}; let Inst{12-11} = MajOp; let Inst{10-8} = src; let Inst{7-0} = offsetBits{7-0}; } //===----------------------------------------------------------------------===// // Template class for predicated new-value store instructions with // absolute addressing. //===----------------------------------------------------------------------===// let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1, isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in class T_StoreAbs_NV_Pred MajOp, bit isNot, bit isNew> : NVInst_V4<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, IntRegs:$src2), !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ", ") ")#mnemonic#"(#$absaddr) = $src2.new", [], "", ST_tc_st_SLOT0>, AddrModeRel { bits<2> src1; bits<6> absaddr; bits<3> src2; let isPredicatedNew = isNew; let isPredicatedFalse = isNot; let IClass = 0b1010; let Inst{27-24} = 0b1111; let Inst{23-21} = 0b101; let Inst{17-16} = absaddr{5-4}; let Inst{13} = isNew; let Inst{12-11} = MajOp; let Inst{10-8} = src2; let Inst{7} = 0b1; let Inst{6-3} = absaddr{3-0}; let Inst{2} = isNot; let Inst{1-0} = src1; } //===----------------------------------------------------------------------===// // Template class for non-predicated new-value store instructions with // absolute addressing. //===----------------------------------------------------------------------===// class T_StoreAbs_NV MajOp> : T_StoreAbsGP_NV , AddrModeRel { string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19, !if (!eq(ImmOpStr, "u16_2Imm"), 18, !if (!eq(ImmOpStr, "u16_1Imm"), 17, /* u16_0Imm */ 16))); let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3, !if (!eq(ImmOpStr, "u16_2Imm"), 2, !if (!eq(ImmOpStr, "u16_1Imm"), 1, /* u16_0Imm */ 0))); } //===----------------------------------------------------------------------===// // Multiclass for new-value store instructions with absolute addressing. //===----------------------------------------------------------------------===// let addrMode = Absolute, isExtended = 1 in multiclass ST_Abs_NV MajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in { let opExtendable = 0, isPredicable = 1 in def S2_#NAME#newabs : T_StoreAbs_NV ; // Predicated def S4_p#NAME#newt_abs : T_StoreAbs_NV_Pred ; def S4_p#NAME#newf_abs : T_StoreAbs_NV_Pred ; // .new Predicated def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred ; def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred ; } } //===----------------------------------------------------------------------===// // Stores with absolute addressing //===----------------------------------------------------------------------===// let accessSize = ByteAccess in defm storerb : ST_Abs <"memb", "STrib", IntRegs, u16_0Imm, 0b00>, ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>; let accessSize = HalfWordAccess in defm storerh : ST_Abs <"memh", "STrih", IntRegs, u16_1Imm, 0b01>, ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>; let accessSize = WordAccess in defm storeri : ST_Abs <"memw", "STriw", IntRegs, u16_2Imm, 0b10>, ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>; let isNVStorable = 0, accessSize = DoubleWordAccess in defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>; let isNVStorable = 0, accessSize = HalfWordAccess in defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>; //===----------------------------------------------------------------------===// // GP-relative stores. // mem[bhwd](#global)=Rt // Once predicated, these instructions map to absolute addressing mode. // if ([!]Pv[.new]) mem[bhwd](##global)=Rt //===----------------------------------------------------------------------===// let isAsmParserOnly = 1 in class T_StoreGP MajOp, bit isHalf = 0> : T_StoreAbsGP { // Set BaseOpcode same as absolute addressing instructions so that // non-predicated GP-Rel instructions can have relate with predicated // Absolute instruction. let BaseOpcode = BaseOp#_abs; } let isAsmParserOnly = 1 in multiclass ST_GP MajOp, bit isHalf = 0> { // Set BaseOpcode same as absolute addressing instructions so that // non-predicated GP-Rel instructions can have relate with predicated // Absolute instruction. let BaseOpcode = BaseOp#_abs in { def NAME#gp : T_StoreAbsGP ; // New-value store def NAME#newgp : T_StoreAbsGP_NV ; } } let accessSize = ByteAccess in defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel; let accessSize = HalfWordAccess in defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel; let accessSize = WordAccess in defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel; let isNVStorable = 0, accessSize = DoubleWordAccess in def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>, PredNewRel; let isNVStorable = 0, accessSize = HalfWordAccess in def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>, PredNewRel; class Loada_pat : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>; class Loadam_pat : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>; class Storea_pat : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>; class Stoream_pat : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, (ValueMod Value:$val))>; def: Storea_pat, I32, addrgp, S2_storerbgp>; def: Storea_pat, I32, addrgp, S2_storerhgp>; def: Storea_pat, I32, addrgp, S2_storerigp>; def: Storea_pat, I64, addrgp, S2_storerdgp>; let AddedComplexity = 100 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; // Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1" // to "r0 = 1; memw(#foo) = r0" let AddedComplexity = 100 in def: Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)), (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>; } //===----------------------------------------------------------------------===// // Template class for non predicated load instructions with // absolute addressing mode. //===----------------------------------------------------------------------===// let isPredicable = 1, hasSideEffects = 0 in class T_LoadAbsGP MajOp> : LDInst <(outs RC:$dst), (ins ImmOp:$addr), "$dst = "#mnemonic# "(#$addr)", [], "", V2LDST_tc_ld_SLOT01> { bits<5> dst; bits<19> addr; bits<16> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3}, !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2}, !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1}, /* u16_0Imm */ addr{15-0}))); let IClass = 0b0100; let Inst{27} = 0b1; let Inst{26-25} = offsetBits{15-14}; let Inst{24} = 0b1; let Inst{23-21} = MajOp; let Inst{20-16} = offsetBits{13-9}; let Inst{13-5} = offsetBits{8-0}; let Inst{4-0} = dst; } class T_LoadAbs MajOp> : T_LoadAbsGP , AddrModeRel { string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19, !if (!eq(ImmOpStr, "u16_2Imm"), 18, !if (!eq(ImmOpStr, "u16_1Imm"), 17, /* u16_0Imm */ 16))); let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3, !if (!eq(ImmOpStr, "u16_2Imm"), 2, !if (!eq(ImmOpStr, "u16_1Imm"), 1, /* u16_0Imm */ 0))); } //===----------------------------------------------------------------------===// // Template class for predicated load instructions with // absolute addressing mode. //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, hasNewValue = 1, opExtentBits = 6, opExtendable = 2 in class T_LoadAbs_Pred MajOp, bit isPredNot, bit isPredNew> : LDInst <(outs RC:$dst), (ins PredRegs:$src1, u32MustExt:$absaddr), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel { bits<5> dst; bits<2> src1; bits<6> absaddr; let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; let hasNewValue = !if (!eq(!cast(RC), "DoubleRegs"), 0, 1); let IClass = 0b1001; let Inst{27-24} = 0b1111; let Inst{23-21} = MajOp; let Inst{20-16} = absaddr{5-1}; let Inst{13} = 0b1; let Inst{12} = isPredNew; let Inst{11} = isPredNot; let Inst{10-9} = src1; let Inst{8} = absaddr{0}; let Inst{7} = 0b1; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Multiclass for the load instructions with absolute addressing mode. //===----------------------------------------------------------------------===// multiclass LD_Abs_Pred MajOp, bit PredNot> { def _abs : T_LoadAbs_Pred ; // Predicate new def new_abs : T_LoadAbs_Pred ; } let addrMode = Absolute, isExtended = 1 in multiclass LD_Abs MajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in { let opExtendable = 1, isPredicable = 1 in def L4_#NAME#_abs: T_LoadAbs ; // Predicated defm L4_p#NAME#t : LD_Abs_Pred; defm L4_p#NAME#f : LD_Abs_Pred; } } let accessSize = ByteAccess, hasNewValue = 1 in { defm loadrb : LD_Abs<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>; defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>; } let accessSize = HalfWordAccess, hasNewValue = 1 in { defm loadrh : LD_Abs<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>; defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>; } let accessSize = WordAccess, hasNewValue = 1 in defm loadri : LD_Abs<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>; let accessSize = DoubleWordAccess in defm loadrd : LD_Abs<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>; //===----------------------------------------------------------------------===// // multiclass for load instructions with GP-relative addressing mode. // Rx=mem[bhwd](##global) // Once predicated, these instructions map to absolute addressing mode. // if ([!]Pv[.new]) Rx=mem[bhwd](##global) //===----------------------------------------------------------------------===// let isAsmParserOnly = 1 in class T_LoadGP MajOp> : T_LoadAbsGP , PredNewRel { let BaseOpcode = BaseOp#_abs; } let accessSize = ByteAccess, hasNewValue = 1 in { def L2_loadrbgp : T_LoadGP<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>; def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>; } let accessSize = HalfWordAccess, hasNewValue = 1 in { def L2_loadrhgp : T_LoadGP<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>; def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>; } let accessSize = WordAccess, hasNewValue = 1 in def L2_loadrigp : T_LoadGP<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>; let accessSize = DoubleWordAccess in def L2_loadrdgp : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; // Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd def: Loadam_pat; def: Loadam_pat; def: Stoream_pat; def: Stoream_pat; // Map from load(globaladdress) -> mem[u][bhwd](#foo) class LoadGP_pats : Pat <(VT (ldOp (HexagonCONST32_GP tglobaladdr:$global))), (VT (MI tglobaladdr:$global))>; let AddedComplexity = 100 in { def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; def: LoadGP_pats ; } // When the Interprocedural Global Variable optimizer realizes that a certain // global variable takes only two constant values, it shrinks the global to // a boolean. Catch those loads here in the following 3 patterns. let AddedComplexity = 100 in { def: LoadGP_pats ; def: LoadGP_pats ; } // Transfer global address into a register def: Pat<(HexagonCONST32 tglobaladdr:$Rs), (A2_tfrsi s16Ext:$Rs)>; def: Pat<(HexagonCONST32_GP tblockaddress:$Rs), (A2_tfrsi s16Ext:$Rs)>; def: Pat<(HexagonCONST32_GP tglobaladdr:$Rs), (A2_tfrsi s16Ext:$Rs)>; let AddedComplexity = 30 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; } let AddedComplexity = 30 in { def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; } // Indexed store word - global address. // memw(Rs+#u6:2)=#S8 let AddedComplexity = 100 in def: Storex_add_pat; // Load from a global address that has only one use in the current basic block. let AddedComplexity = 100 in { def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; } // Store to a global address that has only one use in the current basic block. let AddedComplexity = 100 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Stoream_pat; } // i8/i16/i32 -> i64 loads // We need a complexity of 120 here to override preceding handling of // zextload. let AddedComplexity = 120 in { def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; } let AddedComplexity = 100 in { def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; } let AddedComplexity = 100 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; } def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Storea_pat, I32, addrgp, S2_storerbabs>; def: Storea_pat, I32, addrgp, S2_storerhabs>; def: Storea_pat, I32, addrgp, S2_storeriabs>; def: Storea_pat, I64, addrgp, S2_storerdabs>; let Constraints = "@earlyclobber $dst" in def Insert4 : PseudoM<(outs DoubleRegs:$dst), (ins IntRegs:$a, IntRegs:$b, IntRegs:$c, IntRegs:$d), ".error \"Should never try to emit Insert4\"", [(set (i64 DoubleRegs:$dst), (or (or (or (shl (i64 (zext (i32 (and (i32 IntRegs:$b), (i32 65535))))), (i32 16)), (i64 (zext (i32 (and (i32 IntRegs:$a), (i32 65535)))))), (shl (i64 (anyext (i32 (and (i32 IntRegs:$c), (i32 65535))))), (i32 32))), (shl (i64 (anyext (i32 IntRegs:$d))), (i32 48))))]>; //===----------------------------------------------------------------------===// // :raw for of boundscheck:hi:lo insns //===----------------------------------------------------------------------===// // A4_boundscheck_lo: Detect if a register is within bounds. let hasSideEffects = 0 in def A4_boundscheck_lo: ALU64Inst < (outs PredRegs:$Pd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Pd = boundscheck($Rss, $Rtt):raw:lo"> { bits<2> Pd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1101; let Inst{27-23} = 0b00100; let Inst{13} = 0b1; let Inst{7-5} = 0b100; let Inst{1-0} = Pd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } // A4_boundscheck_hi: Detect if a register is within bounds. let hasSideEffects = 0 in def A4_boundscheck_hi: ALU64Inst < (outs PredRegs:$Pd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Pd = boundscheck($Rss, $Rtt):raw:hi"> { bits<2> Pd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1101; let Inst{27-23} = 0b00100; let Inst{13} = 0b1; let Inst{7-5} = 0b101; let Inst{1-0} = Pd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } let hasSideEffects = 0, isAsmParserOnly = 1 in def A4_boundscheck : MInst < (outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt), "$Pd=boundscheck($Rs,$Rtt)">; // A4_tlbmatch: Detect if a VA/ASID matches a TLB entry. let isPredicateLate = 1, hasSideEffects = 0 in def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, IntRegs:$Rt), "$Pd = tlbmatch($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-23} = 0b00100; let Inst{20-16} = Rs; let Inst{13} = 0b1; let Inst{12-8} = Rt; let Inst{7-5} = 0b011; let Inst{1-0} = Pd; } // We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH // because the SDNode ISD::PREFETCH has properties MayLoad and MayStore. // We don't really want either one here. def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>; def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH, [SDNPHasChain]>; // Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't // really do a load. let hasSideEffects = 1, mayLoad = 0 in def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3), "dcfetch($Rs + #$u11_3)", [(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)], "", LD_tc_ld_SLOT0> { bits<5> Rs; bits<14> u11_3; let IClass = 0b1001; let Inst{27-21} = 0b0100000; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{10-0} = u11_3{13-3}; } //===----------------------------------------------------------------------===// // Compound instructions //===----------------------------------------------------------------------===// let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1, isTerminator = 1 in class CJInst_tstbit_R0 : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2), ""#px#" = tstbit($Rs, #0); if (" #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2", [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon { bits<4> Rs; bits<11> r9_2; // np: !p[01] let isPredicatedFalse = np; // tnt: Taken/Not Taken let isBrTaken = !if (!eq(tnt, "t"), "true", "false"); let isTaken = !if (!eq(tnt, "t"), 1, 0); let IClass = 0b0001; let Inst{27-26} = 0b00; let Inst{25} = !if (!eq(px, "!p1"), 1, !if (!eq(px, "p1"), 1, 0)); let Inst{24-23} = 0b11; let Inst{22} = np; let Inst{21-20} = r9_2{10-9}; let Inst{19-16} = Rs; let Inst{13} = !if (!eq(tnt, "t"), 1, 0); let Inst{9-8} = 0b11; let Inst{7-1} = r9_2{8-2}; } let Defs = [PC, P0], Uses = [P0] in { def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">; def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">; def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">; def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">; } let Defs = [PC, P1], Uses = [P1] in { def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">; def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">; def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">; def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">; } let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 2, isTerminator = 1 in class CJInst_RR : InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2), ""#px#" = cmp."#op#"($Rs, $Rt); if (" #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2", [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon { bits<4> Rs; bits<4> Rt; bits<11> r9_2; // np: !p[01] let isPredicatedFalse = np; // tnt: Taken/Not Taken let isBrTaken = !if (!eq(tnt, "t"), "true", "false"); let isTaken = !if (!eq(tnt, "t"), 1, 0); let IClass = 0b0001; let Inst{27-23} = !if (!eq(op, "eq"), 0b01000, !if (!eq(op, "gt"), 0b01001, !if (!eq(op, "gtu"), 0b01010, 0))); let Inst{22} = np; let Inst{21-20} = r9_2{10-9}; let Inst{19-16} = Rs; let Inst{13} = !if (!eq(tnt, "t"), 1, 0); // px: Predicate reg 0/1 let Inst{12} = !if (!eq(px, "!p1"), 1, !if (!eq(px, "p1"), 1, 0)); let Inst{11-8} = Rt; let Inst{7-1} = r9_2{8-2}; } // P[10] taken/not taken. multiclass T_tnt_CJInst_RR { let Defs = [PC, P0], Uses = [P0] in { def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">; def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">; } let Defs = [PC, P1], Uses = [P1] in { def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">; def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">; } } // Predicate / !Predicate multiclass T_pnp_CJInst_RR{ defm J4_cmp#NAME#_t : T_tnt_CJInst_RR; defm J4_cmp#NAME#_f : T_tnt_CJInst_RR; } // TypeCJ Instructions compare RR and jump defm eq : T_pnp_CJInst_RR<"eq">; defm gt : T_pnp_CJInst_RR<"gt">; defm gtu : T_pnp_CJInst_RR<"gtu">; let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 2, isTerminator = 1 in class CJInst_RU5 : InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2), ""#px#" = cmp."#op#"($Rs, #$U5); if (" #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2", [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon { bits<4> Rs; bits<5> U5; bits<11> r9_2; // np: !p[01] let isPredicatedFalse = np; // tnt: Taken/Not Taken let isBrTaken = !if (!eq(tnt, "t"), "true", "false"); let isTaken = !if (!eq(tnt, "t"), 1, 0); let IClass = 0b0001; let Inst{27-26} = 0b00; // px: Predicate reg 0/1 let Inst{25} = !if (!eq(px, "!p1"), 1, !if (!eq(px, "p1"), 1, 0)); let Inst{24-23} = !if (!eq(op, "eq"), 0b00, !if (!eq(op, "gt"), 0b01, !if (!eq(op, "gtu"), 0b10, 0))); let Inst{22} = np; let Inst{21-20} = r9_2{10-9}; let Inst{19-16} = Rs; let Inst{13} = !if (!eq(tnt, "t"), 1, 0); let Inst{12-8} = U5; let Inst{7-1} = r9_2{8-2}; } // P[10] taken/not taken. multiclass T_tnt_CJInst_RU5 { let Defs = [PC, P0], Uses = [P0] in { def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">; def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">; } let Defs = [PC, P1], Uses = [P1] in { def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">; def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">; } } // Predicate / !Predicate multiclass T_pnp_CJInst_RU5{ defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5; defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5; } // TypeCJ Instructions compare RI and jump defm eq : T_pnp_CJInst_RU5<"eq">; defm gt : T_pnp_CJInst_RU5<"gt">; defm gtu : T_pnp_CJInst_RU5<"gtu">; let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1, isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1, isTerminator = 1 in class CJInst_Rn1 : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2), ""#px#" = cmp."#op#"($Rs,#-1); if (" #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2", [], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon { bits<4> Rs; bits<11> r9_2; // np: !p[01] let isPredicatedFalse = np; // tnt: Taken/Not Taken let isBrTaken = !if (!eq(tnt, "t"), "true", "false"); let isTaken = !if (!eq(tnt, "t"), 1, 0); let IClass = 0b0001; let Inst{27-26} = 0b00; let Inst{25} = !if (!eq(px, "!p1"), 1, !if (!eq(px, "p1"), 1, 0)); let Inst{24-23} = 0b11; let Inst{22} = np; let Inst{21-20} = r9_2{10-9}; let Inst{19-16} = Rs; let Inst{13} = !if (!eq(tnt, "t"), 1, 0); let Inst{9-8} = !if (!eq(op, "eq"), 0b00, !if (!eq(op, "gt"), 0b01, 0)); let Inst{7-1} = r9_2{8-2}; } // P[10] taken/not taken. multiclass T_tnt_CJInst_Rn1 { let Defs = [PC, P0], Uses = [P0] in { def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">; def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">; } let Defs = [PC, P1], Uses = [P1] in { def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">; def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">; } } // Predicate / !Predicate multiclass T_pnp_CJInst_Rn1{ defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1; defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1; } // TypeCJ Instructions compare -1 and jump defm eq : T_pnp_CJInst_Rn1<"eq">; defm gt : T_pnp_CJInst_Rn1<"gt">; // J4_jumpseti: Direct unconditional jump and set register to immediate. let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1, isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 2 in def J4_jumpseti: CJInst < (outs IntRegs:$Rd), (ins u6Imm:$U6, brtarget:$r9_2), "$Rd = #$U6 ; jump $r9_2"> { bits<4> Rd; bits<6> U6; bits<11> r9_2; let IClass = 0b0001; let Inst{27-24} = 0b0110; let Inst{21-20} = r9_2{10-9}; let Inst{19-16} = Rd; let Inst{13-8} = U6; let Inst{7-1} = r9_2{8-2}; } // J4_jumpsetr: Direct unconditional jump and transfer register. let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1, isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 2 in def J4_jumpsetr: CJInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, brtarget:$r9_2), "$Rd = $Rs ; jump $r9_2"> { bits<4> Rd; bits<4> Rs; bits<11> r9_2; let IClass = 0b0001; let Inst{27-24} = 0b0111; let Inst{21-20} = r9_2{10-9}; let Inst{11-8} = Rd; let Inst{19-16} = Rs; let Inst{7-1} = r9_2{8-2}; } // Duplex instructions //===----------------------------------------------------------------------===// include "HexagonIsetDx.td"