//===-- MipsMCCodeEmitter.cpp - Convert Mips Code to Machine Code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MipsMCCodeEmitter class. // //===----------------------------------------------------------------------===// // #include "MipsMCCodeEmitter.h" #include "MCTargetDesc/MipsFixupKinds.h" #include "MCTargetDesc/MipsMCExpr.h" #include "MCTargetDesc/MipsMCTargetDesc.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "mccodeemitter" #define GET_INSTRMAP_INFO #include "MipsGenInstrInfo.inc" #undef GET_INSTRMAP_INFO namespace llvm { MCCodeEmitter *createMipsMCCodeEmitterEB(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new MipsMCCodeEmitter(MCII, Ctx, false); } MCCodeEmitter *createMipsMCCodeEmitterEL(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new MipsMCCodeEmitter(MCII, Ctx, true); } } // End of namespace llvm. // If the D instruction has a shift amount that is greater // than 31 (checked in calling routine), lower it to a D32 instruction static void LowerLargeShift(MCInst& Inst) { assert(Inst.getNumOperands() == 3 && "Invalid no. of operands for shift!"); assert(Inst.getOperand(2).isImm()); int64_t Shift = Inst.getOperand(2).getImm(); if (Shift <= 31) return; // Do nothing Shift -= 32; // saminus32 Inst.getOperand(2).setImm(Shift); switch (Inst.getOpcode()) { default: // Calling function is not synchronized llvm_unreachable("Unexpected shift instruction"); case Mips::DSLL: Inst.setOpcode(Mips::DSLL32); return; case Mips::DSRL: Inst.setOpcode(Mips::DSRL32); return; case Mips::DSRA: Inst.setOpcode(Mips::DSRA32); return; case Mips::DROTR: Inst.setOpcode(Mips::DROTR32); return; } } // Pick a DEXT or DINS instruction variant based on the pos and size operands static void LowerDextDins(MCInst& InstIn) { int Opcode = InstIn.getOpcode(); if (Opcode == Mips::DEXT) assert(InstIn.getNumOperands() == 4 && "Invalid no. of machine operands for DEXT!"); else // Only DEXT and DINS are possible assert(InstIn.getNumOperands() == 5 && "Invalid no. of machine operands for DINS!"); assert(InstIn.getOperand(2).isImm()); int64_t pos = InstIn.getOperand(2).getImm(); assert(InstIn.getOperand(3).isImm()); int64_t size = InstIn.getOperand(3).getImm(); if (size <= 32) { if (pos < 32) // DEXT/DINS, do nothing return; // DEXTU/DINSU InstIn.getOperand(2).setImm(pos - 32); InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTU : Mips::DINSU); return; } // DEXTM/DINSM assert(pos < 32 && "DEXT/DINS cannot have both size and pos > 32"); InstIn.getOperand(3).setImm(size - 32); InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTM : Mips::DINSM); return; } bool MipsMCCodeEmitter::isMicroMips(const MCSubtargetInfo &STI) const { return STI.getFeatureBits()[Mips::FeatureMicroMips]; } bool MipsMCCodeEmitter::isMips32r6(const MCSubtargetInfo &STI) const { return STI.getFeatureBits()[Mips::FeatureMips32r6]; } void MipsMCCodeEmitter::EmitByte(unsigned char C, raw_ostream &OS) const { OS << (char)C; } void MipsMCCodeEmitter::EmitInstruction(uint64_t Val, unsigned Size, const MCSubtargetInfo &STI, raw_ostream &OS) const { // Output the instruction encoding in little endian byte order. // Little-endian byte ordering: // mips32r2: 4 | 3 | 2 | 1 // microMIPS: 2 | 1 | 4 | 3 if (IsLittleEndian && Size == 4 && isMicroMips(STI)) { EmitInstruction(Val >> 16, 2, STI, OS); EmitInstruction(Val, 2, STI, OS); } else { for (unsigned i = 0; i < Size; ++i) { unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8; EmitByte((Val >> Shift) & 0xff, OS); } } } /// encodeInstruction - Emit the instruction. /// Size the instruction with Desc.getSize(). void MipsMCCodeEmitter:: encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Non-pseudo instructions that get changed for direct object // only based on operand values. // If this list of instructions get much longer we will move // the check to a function call. Until then, this is more efficient. MCInst TmpInst = MI; switch (MI.getOpcode()) { // If shift amount is >= 32 it the inst needs to be lowered further case Mips::DSLL: case Mips::DSRL: case Mips::DSRA: case Mips::DROTR: LowerLargeShift(TmpInst); break; // Double extract instruction is chosen by pos and size operands case Mips::DEXT: case Mips::DINS: LowerDextDins(TmpInst); } unsigned long N = Fixups.size(); uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); // Check for unimplemented opcodes. // Unfortunately in MIPS both NOP and SLL will come in with Binary == 0 // so we have to special check for them. unsigned Opcode = TmpInst.getOpcode(); if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) && (Opcode != Mips::SLL_MM) && !Binary) llvm_unreachable("unimplemented opcode in encodeInstruction()"); int NewOpcode = -1; if (isMicroMips(STI)) { if (isMips32r6(STI)) { NewOpcode = Mips::MipsR62MicroMipsR6(Opcode, Mips::Arch_micromipsr6); if (NewOpcode == -1) NewOpcode = Mips::Std2MicroMipsR6(Opcode, Mips::Arch_micromipsr6); } else NewOpcode = Mips::Std2MicroMips(Opcode, Mips::Arch_micromips); // Check whether it is Dsp instruction. if (NewOpcode == -1) NewOpcode = Mips::Dsp2MicroMips(Opcode, Mips::Arch_mmdsp); if (NewOpcode != -1) { if (Fixups.size() > N) Fixups.pop_back(); Opcode = NewOpcode; TmpInst.setOpcode (NewOpcode); Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); } } const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode()); // Get byte count of instruction unsigned Size = Desc.getSize(); if (!Size) llvm_unreachable("Desc.getSize() returns 0"); EmitInstruction(Binary, Size, STI, OS); } /// getBranchTargetOpValue - Return binary encoding of the branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTargetOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 4. if (MO.isImm()) return MO.getImm() >> 2; assert(MO.isExpr() && "getBranchTargetOpValue expects only expressions or immediates"); const MCExpr *FixupExpression = MCBinaryExpr::createAdd( MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx); Fixups.push_back(MCFixup::create(0, FixupExpression, MCFixupKind(Mips::fixup_Mips_PC16))); return 0; } /// getBranchTarget7OpValueMM - Return binary encoding of the microMIPS branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTarget7OpValueMM(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 2. if (MO.isImm()) return MO.getImm() >> 1; assert(MO.isExpr() && "getBranchTargetOpValueMM expects only expressions or immediates"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_MICROMIPS_PC7_S1))); return 0; } /// getBranchTargetOpValueMMPC10 - Return binary encoding of the microMIPS /// 10-bit branch target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTargetOpValueMMPC10(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 2. if (MO.isImm()) return MO.getImm() >> 1; assert(MO.isExpr() && "getBranchTargetOpValuePC10 expects only expressions or immediates"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_MICROMIPS_PC10_S1))); return 0; } /// getBranchTargetOpValue - Return binary encoding of the microMIPS branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTargetOpValueMM(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 2. if (MO.isImm()) return MO.getImm() >> 1; assert(MO.isExpr() && "getBranchTargetOpValueMM expects only expressions or immediates"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips:: fixup_MICROMIPS_PC16_S1))); return 0; } /// getBranchTarget21OpValue - Return binary encoding of the branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTarget21OpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 4. if (MO.isImm()) return MO.getImm() >> 2; assert(MO.isExpr() && "getBranchTarget21OpValue expects only expressions or immediates"); const MCExpr *FixupExpression = MCBinaryExpr::createAdd( MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx); Fixups.push_back(MCFixup::create(0, FixupExpression, MCFixupKind(Mips::fixup_MIPS_PC21_S2))); return 0; } /// getBranchTarget26OpValue - Return binary encoding of the branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getBranchTarget26OpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 4. if (MO.isImm()) return MO.getImm() >> 2; assert(MO.isExpr() && "getBranchTarget26OpValue expects only expressions or immediates"); const MCExpr *FixupExpression = MCBinaryExpr::createAdd( MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx); Fixups.push_back(MCFixup::create(0, FixupExpression, MCFixupKind(Mips::fixup_MIPS_PC26_S2))); return 0; } /// getBranchTarget26OpValueMM - Return binary encoding of the branch /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter::getBranchTarget26OpValueMM( const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 2. if (MO.isImm()) return MO.getImm() >> 1; // TODO: Push 26 PC fixup. return 0; } /// getJumpOffset16OpValue - Return binary encoding of the jump /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getJumpOffset16OpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return MO.getImm(); assert(MO.isExpr() && "getJumpOffset16OpValue expects only expressions or an immediate"); // TODO: Push fixup. return 0; } /// getJumpTargetOpValue - Return binary encoding of the jump /// target operand. If the machine operand requires relocation, /// record the relocation and return zero. unsigned MipsMCCodeEmitter:: getJumpTargetOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 4. if (MO.isImm()) return MO.getImm()>>2; assert(MO.isExpr() && "getJumpTargetOpValue expects only expressions or an immediate"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_Mips_26))); return 0; } unsigned MipsMCCodeEmitter:: getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); // If the destination is an immediate, divide by 2. if (MO.isImm()) return MO.getImm() >> 1; assert(MO.isExpr() && "getJumpTargetOpValueMM expects only expressions or an immediate"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_MICROMIPS_26_S1))); return 0; } unsigned MipsMCCodeEmitter:: getUImm5Lsl2Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { // The immediate is encoded as 'immediate << 2'. unsigned Res = getMachineOpValue(MI, MO, Fixups, STI); assert((Res & 3) == 0); return Res >> 2; } assert(MO.isExpr() && "getUImm5Lsl2Encoding expects only expressions or an immediate"); return 0; } unsigned MipsMCCodeEmitter:: getSImm3Lsa2Value(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { int Value = MO.getImm(); return Value >> 2; } return 0; } unsigned MipsMCCodeEmitter:: getUImm6Lsl2Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { unsigned Value = MO.getImm(); return Value >> 2; } return 0; } unsigned MipsMCCodeEmitter:: getSImm9AddiuspValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { unsigned Binary = (MO.getImm() >> 2) & 0x0000ffff; return (((Binary & 0x8000) >> 7) | (Binary & 0x00ff)); } return 0; } unsigned MipsMCCodeEmitter:: getExprOpValue(const MCExpr *Expr, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { int64_t Res; if (Expr->evaluateAsAbsolute(Res)) return Res; MCExpr::ExprKind Kind = Expr->getKind(); if (Kind == MCExpr::Constant) { return cast(Expr)->getValue(); } if (Kind == MCExpr::Binary) { unsigned Res = getExprOpValue(cast(Expr)->getLHS(), Fixups, STI); Res += getExprOpValue(cast(Expr)->getRHS(), Fixups, STI); return Res; } if (Kind == MCExpr::Target) { const MipsMCExpr *MipsExpr = cast(Expr); Mips::Fixups FixupKind = Mips::Fixups(0); switch (MipsExpr->getKind()) { default: llvm_unreachable("Unsupported fixup kind for target expression!"); case MipsMCExpr::VK_Mips_HIGHEST: FixupKind = Mips::fixup_Mips_HIGHEST; break; case MipsMCExpr::VK_Mips_HIGHER: FixupKind = Mips::fixup_Mips_HIGHER; break; case MipsMCExpr::VK_Mips_HI: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16 : Mips::fixup_Mips_HI16; break; case MipsMCExpr::VK_Mips_LO: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16 : Mips::fixup_Mips_LO16; break; } Fixups.push_back(MCFixup::create(0, MipsExpr, MCFixupKind(FixupKind))); return 0; } if (Kind == MCExpr::SymbolRef) { Mips::Fixups FixupKind = Mips::Fixups(0); switch(cast(Expr)->getKind()) { default: llvm_unreachable("Unknown fixup kind!"); break; case MCSymbolRefExpr::VK_None: FixupKind = Mips::fixup_Mips_32; // FIXME: This is ok for O32/N32 but not N64. break; case MCSymbolRefExpr::VK_Mips_GPOFF_HI : FixupKind = Mips::fixup_Mips_GPOFF_HI; break; case MCSymbolRefExpr::VK_Mips_GPOFF_LO : FixupKind = Mips::fixup_Mips_GPOFF_LO; break; case MCSymbolRefExpr::VK_Mips_GOT_PAGE : FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_PAGE : Mips::fixup_Mips_GOT_PAGE; break; case MCSymbolRefExpr::VK_Mips_GOT_OFST : FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_OFST : Mips::fixup_Mips_GOT_OFST; break; case MCSymbolRefExpr::VK_Mips_GOT_DISP : FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_DISP : Mips::fixup_Mips_GOT_DISP; break; case MCSymbolRefExpr::VK_Mips_GPREL: FixupKind = Mips::fixup_Mips_GPREL16; break; case MCSymbolRefExpr::VK_Mips_GOT_CALL: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_CALL16 : Mips::fixup_Mips_CALL16; break; case MCSymbolRefExpr::VK_Mips_GOT16: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16 : Mips::fixup_Mips_GOT_Global; break; case MCSymbolRefExpr::VK_Mips_GOT: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16 : Mips::fixup_Mips_GOT_Local; break; case MCSymbolRefExpr::VK_Mips_ABS_HI: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16 : Mips::fixup_Mips_HI16; break; case MCSymbolRefExpr::VK_Mips_ABS_LO: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16 : Mips::fixup_Mips_LO16; break; case MCSymbolRefExpr::VK_Mips_TLSGD: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_GD : Mips::fixup_Mips_TLSGD; break; case MCSymbolRefExpr::VK_Mips_TLSLDM: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_LDM : Mips::fixup_Mips_TLSLDM; break; case MCSymbolRefExpr::VK_Mips_DTPREL_HI: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_HI16 : Mips::fixup_Mips_DTPREL_HI; break; case MCSymbolRefExpr::VK_Mips_DTPREL_LO: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_LO16 : Mips::fixup_Mips_DTPREL_LO; break; case MCSymbolRefExpr::VK_Mips_GOTTPREL: FixupKind = Mips::fixup_Mips_GOTTPREL; break; case MCSymbolRefExpr::VK_Mips_TPREL_HI: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_HI16 : Mips::fixup_Mips_TPREL_HI; break; case MCSymbolRefExpr::VK_Mips_TPREL_LO: FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_LO16 : Mips::fixup_Mips_TPREL_LO; break; case MCSymbolRefExpr::VK_Mips_HIGHER: FixupKind = Mips::fixup_Mips_HIGHER; break; case MCSymbolRefExpr::VK_Mips_HIGHEST: FixupKind = Mips::fixup_Mips_HIGHEST; break; case MCSymbolRefExpr::VK_Mips_GOT_HI16: FixupKind = Mips::fixup_Mips_GOT_HI16; break; case MCSymbolRefExpr::VK_Mips_GOT_LO16: FixupKind = Mips::fixup_Mips_GOT_LO16; break; case MCSymbolRefExpr::VK_Mips_CALL_HI16: FixupKind = Mips::fixup_Mips_CALL_HI16; break; case MCSymbolRefExpr::VK_Mips_CALL_LO16: FixupKind = Mips::fixup_Mips_CALL_LO16; break; case MCSymbolRefExpr::VK_Mips_PCREL_HI16: FixupKind = Mips::fixup_MIPS_PCHI16; break; case MCSymbolRefExpr::VK_Mips_PCREL_LO16: FixupKind = Mips::fixup_MIPS_PCLO16; break; } // switch Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(FixupKind))); return 0; } return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned MipsMCCodeEmitter:: getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { unsigned Reg = MO.getReg(); unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg); return RegNo; } else if (MO.isImm()) { return static_cast(MO.getImm()); } else if (MO.isFPImm()) { return static_cast(APFloat(MO.getFPImm()) .bitcastToAPInt().getHiBits(32).getLimitedValue()); } // MO must be an Expr. assert(MO.isExpr()); return getExprOpValue(MO.getExpr(),Fixups, STI); } /// getMSAMemEncoding - Return binary encoding of memory operand for LD/ST /// instructions. unsigned MipsMCCodeEmitter::getMSAMemEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 20-16, offset is encoded in bits 15-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); // The immediate field of an LD/ST instruction is scaled which means it must // be divided (when encoding) by the size (in bytes) of the instructions' // data format. // .b - 1 byte // .h - 2 bytes // .w - 4 bytes // .d - 8 bytes switch(MI.getOpcode()) { default: assert (0 && "Unexpected instruction"); break; case Mips::LD_B: case Mips::ST_B: // We don't need to scale the offset in this case break; case Mips::LD_H: case Mips::ST_H: OffBits >>= 1; break; case Mips::LD_W: case Mips::ST_W: OffBits >>= 2; break; case Mips::LD_D: case Mips::ST_D: OffBits >>= 3; break; } return (OffBits & 0xFFFF) | RegBits; } /// getMemEncoding - Return binary encoding of memory related operand. /// If the offset operand requires relocation, record the relocation. unsigned MipsMCCodeEmitter::getMemEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 20-16, offset is encoded in bits 15-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); return (OffBits & 0xFFFF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm4(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 6-4, offset is encoded in bits 3-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 4; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); return (OffBits & 0xF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm4Lsl1(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 6-4, offset is encoded in bits 3-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 4; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) >> 1; return (OffBits & 0xF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm4Lsl2(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 6-4, offset is encoded in bits 3-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 4; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) >> 2; return (OffBits & 0xF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMSPImm5Lsl2(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Register is encoded in bits 9-5, offset is encoded in bits 4-0. assert(MI.getOperand(OpNo).isReg() && (MI.getOperand(OpNo).getReg() == Mips::SP || MI.getOperand(OpNo).getReg() == Mips::SP_64) && "Unexpected base register!"); unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) >> 2; return OffBits & 0x1F; } unsigned MipsMCCodeEmitter:: getMemEncodingMMGPImm7Lsl2(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Register is encoded in bits 9-7, offset is encoded in bits 6-0. assert(MI.getOperand(OpNo).isReg() && MI.getOperand(OpNo).getReg() == Mips::GP && "Unexpected base register!"); unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) >> 2; return OffBits & 0x7F; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm9(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 20-16, offset is encoded in bits 8-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI); return (OffBits & 0x1FF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // opNum can be invalid if instruction had reglist as operand. // MemOperand is always last operand of instruction (base + offset). switch (MI.getOpcode()) { default: break; case Mips::SWM32_MM: case Mips::LWM32_MM: OpNo = MI.getNumOperands() - 2; break; } // Base register is encoded in bits 20-16, offset is encoded in bits 11-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); return (OffBits & 0x0FFF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm16(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Base register is encoded in bits 20-16, offset is encoded in bits 15-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16; unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); return (OffBits & 0xFFFF) | RegBits; } unsigned MipsMCCodeEmitter:: getMemEncodingMMImm4sp(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // opNum can be invalid if instruction had reglist as operand // MemOperand is always last operand of instruction (base + offset) switch (MI.getOpcode()) { default: break; case Mips::SWM16_MM: case Mips::SWM16_MMR6: case Mips::LWM16_MM: case Mips::LWM16_MMR6: OpNo = MI.getNumOperands() - 2; break; } // Offset is encoded in bits 4-0. assert(MI.getOperand(OpNo).isReg()); // Base register is always SP - thus it is not encoded. assert(MI.getOperand(OpNo+1).isImm()); unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI); return ((OffBits >> 2) & 0x0F); } // FIXME: should be called getMSBEncoding // unsigned MipsMCCodeEmitter::getSizeInsEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { assert(MI.getOperand(OpNo-1).isImm()); assert(MI.getOperand(OpNo).isImm()); unsigned Position = getMachineOpValue(MI, MI.getOperand(OpNo-1), Fixups, STI); unsigned Size = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI); return Position + Size - 1; } template unsigned MipsMCCodeEmitter::getUImmWithOffsetEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { assert(MI.getOperand(OpNo).isImm()); unsigned Value = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI); Value -= Offset; return Value; } unsigned MipsMCCodeEmitter::getSimm19Lsl2Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { // The immediate is encoded as 'immediate << 2'. unsigned Res = getMachineOpValue(MI, MO, Fixups, STI); assert((Res & 3) == 0); return Res >> 2; } assert(MO.isExpr() && "getSimm19Lsl2Encoding expects only expressions or an immediate"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_MIPS_PC19_S2))); return 0; } unsigned MipsMCCodeEmitter::getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { // The immediate is encoded as 'immediate << 3'. unsigned Res = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI); assert((Res & 7) == 0); return Res >> 3; } assert(MO.isExpr() && "getSimm18Lsl2Encoding expects only expressions or an immediate"); const MCExpr *Expr = MO.getExpr(); Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(Mips::fixup_MIPS_PC18_S3))); return 0; } unsigned MipsMCCodeEmitter::getUImm3Mod8Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { assert(MI.getOperand(OpNo).isImm()); const MCOperand &MO = MI.getOperand(OpNo); return MO.getImm() % 8; } unsigned MipsMCCodeEmitter::getUImm4AndValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { assert(MI.getOperand(OpNo).isImm()); const MCOperand &MO = MI.getOperand(OpNo); unsigned Value = MO.getImm(); switch (Value) { case 128: return 0x0; case 1: return 0x1; case 2: return 0x2; case 3: return 0x3; case 4: return 0x4; case 7: return 0x5; case 8: return 0x6; case 15: return 0x7; case 16: return 0x8; case 31: return 0x9; case 32: return 0xa; case 63: return 0xb; case 64: return 0xc; case 255: return 0xd; case 32768: return 0xe; case 65535: return 0xf; } llvm_unreachable("Unexpected value"); } unsigned MipsMCCodeEmitter::getRegisterListOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned res = 0; // Register list operand is always first operand of instruction and it is // placed before memory operand (register + imm). for (unsigned I = OpNo, E = MI.getNumOperands() - 2; I < E; ++I) { unsigned Reg = MI.getOperand(I).getReg(); unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg); if (RegNo != 31) res++; else res |= 0x10; } return res; } unsigned MipsMCCodeEmitter::getRegisterListOpValue16(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return (MI.getNumOperands() - 4); } unsigned MipsMCCodeEmitter::getRegisterPairOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI); } unsigned MipsMCCodeEmitter::getMovePRegPairOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned res = 0; if (MI.getOperand(0).getReg() == Mips::A1 && MI.getOperand(1).getReg() == Mips::A2) res = 0; else if (MI.getOperand(0).getReg() == Mips::A1 && MI.getOperand(1).getReg() == Mips::A3) res = 1; else if (MI.getOperand(0).getReg() == Mips::A2 && MI.getOperand(1).getReg() == Mips::A3) res = 2; else if (MI.getOperand(0).getReg() == Mips::A0 && MI.getOperand(1).getReg() == Mips::S5) res = 3; else if (MI.getOperand(0).getReg() == Mips::A0 && MI.getOperand(1).getReg() == Mips::S6) res = 4; else if (MI.getOperand(0).getReg() == Mips::A0 && MI.getOperand(1).getReg() == Mips::A1) res = 5; else if (MI.getOperand(0).getReg() == Mips::A0 && MI.getOperand(1).getReg() == Mips::A2) res = 6; else if (MI.getOperand(0).getReg() == Mips::A0 && MI.getOperand(1).getReg() == Mips::A3) res = 7; return res; } unsigned MipsMCCodeEmitter::getSimm23Lsl2Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "getSimm23Lsl2Encoding expects only an immediate"); // The immediate is encoded as 'immediate >> 2'. unsigned Res = static_cast(MO.getImm()); assert((Res & 3) == 0); return Res >> 2; } #include "MipsGenMCCodeEmitter.inc"