//===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // // This pass is used to make Pc relative loads of constants. // For now, only Mips16 will use this. // // Loading constants inline is expensive on Mips16 and it's in general better // to place the constant nearby in code space and then it can be loaded with a // simple 16 bit load instruction. // // The constants can be not just numbers but addresses of functions and labels. // This can be particularly helpful in static relocation mode for embedded // non-linux targets. // // #include "Mips.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "Mips16InstrInfo.h" #include "MipsMachineFunction.h" #include "MipsTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include using namespace llvm; #define DEBUG_TYPE "mips-constant-islands" STATISTIC(NumCPEs, "Number of constpool entries"); STATISTIC(NumSplit, "Number of uncond branches inserted"); STATISTIC(NumCBrFixed, "Number of cond branches fixed"); STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); // FIXME: This option should be removed once it has received sufficient testing. static cl::opt AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), cl::desc("Align constant islands in code")); // Rather than do make check tests with huge amounts of code, we force // the test to use this amount. // static cl::opt ConstantIslandsSmallOffset( "mips-constant-islands-small-offset", cl::init(0), cl::desc("Make small offsets be this amount for testing purposes"), cl::Hidden); // // For testing purposes we tell it to not use relaxed load forms so that it // will split blocks. // static cl::opt NoLoadRelaxation( "mips-constant-islands-no-load-relaxation", cl::init(false), cl::desc("Don't relax loads to long loads - for testing purposes"), cl::Hidden); static unsigned int branchTargetOperand(MachineInstr *MI) { switch (MI->getOpcode()) { case Mips::Bimm16: case Mips::BimmX16: case Mips::Bteqz16: case Mips::BteqzX16: case Mips::Btnez16: case Mips::BtnezX16: case Mips::JalB16: return 0; case Mips::BeqzRxImm16: case Mips::BeqzRxImmX16: case Mips::BnezRxImm16: case Mips::BnezRxImmX16: return 1; } llvm_unreachable("Unknown branch type"); } static bool isUnconditionalBranch(unsigned int Opcode) { switch (Opcode) { default: return false; case Mips::Bimm16: case Mips::BimmX16: case Mips::JalB16: return true; } } static unsigned int longformBranchOpcode(unsigned int Opcode) { switch (Opcode) { case Mips::Bimm16: case Mips::BimmX16: return Mips::BimmX16; case Mips::Bteqz16: case Mips::BteqzX16: return Mips::BteqzX16; case Mips::Btnez16: case Mips::BtnezX16: return Mips::BtnezX16; case Mips::JalB16: return Mips::JalB16; case Mips::BeqzRxImm16: case Mips::BeqzRxImmX16: return Mips::BeqzRxImmX16; case Mips::BnezRxImm16: case Mips::BnezRxImmX16: return Mips::BnezRxImmX16; } llvm_unreachable("Unknown branch type"); } // // FIXME: need to go through this whole constant islands port and check the math // for branch ranges and clean this up and make some functions to calculate things // that are done many times identically. // Need to refactor some of the code to call this routine. // static unsigned int branchMaxOffsets(unsigned int Opcode) { unsigned Bits, Scale; switch (Opcode) { case Mips::Bimm16: Bits = 11; Scale = 2; break; case Mips::BimmX16: Bits = 16; Scale = 2; break; case Mips::BeqzRxImm16: Bits = 8; Scale = 2; break; case Mips::BeqzRxImmX16: Bits = 16; Scale = 2; break; case Mips::BnezRxImm16: Bits = 8; Scale = 2; break; case Mips::BnezRxImmX16: Bits = 16; Scale = 2; break; case Mips::Bteqz16: Bits = 8; Scale = 2; break; case Mips::BteqzX16: Bits = 16; Scale = 2; break; case Mips::Btnez16: Bits = 8; Scale = 2; break; case Mips::BtnezX16: Bits = 16; Scale = 2; break; default: llvm_unreachable("Unknown branch type"); } unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; return MaxOffs; } namespace { typedef MachineBasicBlock::iterator Iter; typedef MachineBasicBlock::reverse_iterator ReverseIter; /// MipsConstantIslands - Due to limited PC-relative displacements, Mips /// requires constant pool entries to be scattered among the instructions /// inside a function. To do this, it completely ignores the normal LLVM /// constant pool; instead, it places constants wherever it feels like with /// special instructions. /// /// The terminology used in this pass includes: /// Islands - Clumps of constants placed in the function. /// Water - Potential places where an island could be formed. /// CPE - A constant pool entry that has been placed somewhere, which /// tracks a list of users. class MipsConstantIslands : public MachineFunctionPass { /// BasicBlockInfo - Information about the offset and size of a single /// basic block. struct BasicBlockInfo { /// Offset - Distance from the beginning of the function to the beginning /// of this basic block. /// /// Offsets are computed assuming worst case padding before an aligned /// block. This means that subtracting basic block offsets always gives a /// conservative estimate of the real distance which may be smaller. /// /// Because worst case padding is used, the computed offset of an aligned /// block may not actually be aligned. unsigned Offset; /// Size - Size of the basic block in bytes. If the block contains /// inline assembly, this is a worst case estimate. /// /// The size does not include any alignment padding whether from the /// beginning of the block, or from an aligned jump table at the end. unsigned Size; // FIXME: ignore LogAlign for this patch // unsigned postOffset(unsigned LogAlign = 0) const { unsigned PO = Offset + Size; return PO; } BasicBlockInfo() : Offset(0), Size(0) {} }; std::vector BBInfo; /// WaterList - A sorted list of basic blocks where islands could be placed /// (i.e. blocks that don't fall through to the following block, due /// to a return, unreachable, or unconditional branch). std::vector WaterList; /// NewWaterList - The subset of WaterList that was created since the /// previous iteration by inserting unconditional branches. SmallSet NewWaterList; typedef std::vector::iterator water_iterator; /// CPUser - One user of a constant pool, keeping the machine instruction /// pointer, the constant pool being referenced, and the max displacement /// allowed from the instruction to the CP. The HighWaterMark records the /// highest basic block where a new CPEntry can be placed. To ensure this /// pass terminates, the CP entries are initially placed at the end of the /// function and then move monotonically to lower addresses. The /// exception to this rule is when the current CP entry for a particular /// CPUser is out of range, but there is another CP entry for the same /// constant value in range. We want to use the existing in-range CP /// entry, but if it later moves out of range, the search for new water /// should resume where it left off. The HighWaterMark is used to record /// that point. struct CPUser { MachineInstr *MI; MachineInstr *CPEMI; MachineBasicBlock *HighWaterMark; private: unsigned MaxDisp; unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions // with different displacements unsigned LongFormOpcode; public: bool NegOk; CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, bool neg, unsigned longformmaxdisp, unsigned longformopcode) : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), NegOk(neg){ HighWaterMark = CPEMI->getParent(); } /// getMaxDisp - Returns the maximum displacement supported by MI. unsigned getMaxDisp() const { unsigned xMaxDisp = ConstantIslandsSmallOffset? ConstantIslandsSmallOffset: MaxDisp; return xMaxDisp; } void setMaxDisp(unsigned val) { MaxDisp = val; } unsigned getLongFormMaxDisp() const { return LongFormMaxDisp; } unsigned getLongFormOpcode() const { return LongFormOpcode; } }; /// CPUsers - Keep track of all of the machine instructions that use various /// constant pools and their max displacement. std::vector CPUsers; /// CPEntry - One per constant pool entry, keeping the machine instruction /// pointer, the constpool index, and the number of CPUser's which /// reference this entry. struct CPEntry { MachineInstr *CPEMI; unsigned CPI; unsigned RefCount; CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} }; /// CPEntries - Keep track of all of the constant pool entry machine /// instructions. For each original constpool index (i.e. those that /// existed upon entry to this pass), it keeps a vector of entries. /// Original elements are cloned as we go along; the clones are /// put in the vector of the original element, but have distinct CPIs. std::vector > CPEntries; /// ImmBranch - One per immediate branch, keeping the machine instruction /// pointer, conditional or unconditional, the max displacement, /// and (if isCond is true) the corresponding unconditional branch /// opcode. struct ImmBranch { MachineInstr *MI; unsigned MaxDisp : 31; bool isCond : 1; int UncondBr; ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} }; /// ImmBranches - Keep track of all the immediate branch instructions. /// std::vector ImmBranches; /// HasFarJump - True if any far jump instruction has been emitted during /// the branch fix up pass. bool HasFarJump; const TargetMachine &TM; bool IsPIC; const MipsSubtarget *STI; const Mips16InstrInfo *TII; MipsFunctionInfo *MFI; MachineFunction *MF; MachineConstantPool *MCP; unsigned PICLabelUId; bool PrescannedForConstants; void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } unsigned createPICLabelUId() { return PICLabelUId++; } public: static char ID; MipsConstantIslands(TargetMachine &tm) : MachineFunctionPass(ID), TM(tm), IsPIC(TM.getRelocationModel() == Reloc::PIC_), STI(nullptr), MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {} const char *getPassName() const override { return "Mips Constant Islands"; } bool runOnMachineFunction(MachineFunction &F) override; void doInitialPlacement(std::vector &CPEMIs); CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); unsigned getCPELogAlign(const MachineInstr *CPEMI); void initializeFunctionInfo(const std::vector &CPEMIs); unsigned getOffsetOf(MachineInstr *MI) const; unsigned getUserOffset(CPUser&) const; void dumpBBs(); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, bool NegativeOK); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, const CPUser &U); void computeBlockSize(MachineBasicBlock *MBB); MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); void adjustBBOffsetsAfter(MachineBasicBlock *BB); bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); int findInRangeCPEntry(CPUser& U, unsigned UserOffset); int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); bool findAvailableWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); void createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB); bool handleConstantPoolUser(unsigned CPUserIndex); void removeDeadCPEMI(MachineInstr *CPEMI); bool removeUnusedCPEntries(); bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned Disp, bool NegOk, bool DoDump = false); bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, unsigned &Growth); bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); bool fixupImmediateBr(ImmBranch &Br); bool fixupConditionalBr(ImmBranch &Br); bool fixupUnconditionalBr(ImmBranch &Br); void prescanForConstants(); private: }; char MipsConstantIslands::ID = 0; } // end of anonymous namespace bool MipsConstantIslands::isOffsetInRange (unsigned UserOffset, unsigned TrialOffset, const CPUser &U) { return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); } /// print block size and offset information - debugging void MipsConstantIslands::dumpBBs() { DEBUG({ for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { const BasicBlockInfo &BBI = BBInfo[J]; dbgs() << format("%08x BB#%u\t", BBI.Offset, J) << format(" size=%#x\n", BBInfo[J].Size); } }); } /// createMipsLongBranchPass - Returns a pass that converts branches to long /// branches. FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) { return new MipsConstantIslands(tm); } bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { // The intention is for this to be a mips16 only pass for now // FIXME: MF = &mf; MCP = mf.getConstantPool(); STI = &static_cast(mf.getSubtarget()); DEBUG(dbgs() << "constant island machine function " << "\n"); if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { return false; } TII = (const Mips16InstrInfo *)STI->getInstrInfo(); MFI = MF->getInfo(); DEBUG(dbgs() << "constant island processing " << "\n"); // // will need to make predermination if there is any constants we need to // put in constant islands. TBD. // if (!PrescannedForConstants) prescanForConstants(); HasFarJump = false; // This pass invalidates liveness information when it splits basic blocks. MF->getRegInfo().invalidateLiveness(); // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. MF->RenumberBlocks(); bool MadeChange = false; // Perform the initial placement of the constant pool entries. To start with, // we put them all at the end of the function. std::vector CPEMIs; if (!MCP->isEmpty()) doInitialPlacement(CPEMIs); /// The next UID to take is the first unused one. initPICLabelUId(CPEMIs.size()); // Do the initial scan of the function, building up information about the // sizes of each block, the location of all the water, and finding all of the // constant pool users. initializeFunctionInfo(CPEMIs); CPEMIs.clear(); DEBUG(dumpBBs()); /// Remove dead constant pool entries. MadeChange |= removeUnusedCPEntries(); // Iteratively place constant pool entries and fix up branches until there // is no change. unsigned NoCPIters = 0, NoBRIters = 0; (void)NoBRIters; while (true) { DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); bool CPChange = false; for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) CPChange |= handleConstantPoolUser(i); if (CPChange && ++NoCPIters > 30) report_fatal_error("Constant Island pass failed to converge!"); DEBUG(dumpBBs()); // Clear NewWaterList now. If we split a block for branches, it should // appear as "new water" for the next iteration of constant pool placement. NewWaterList.clear(); DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); bool BRChange = false; for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) BRChange |= fixupImmediateBr(ImmBranches[i]); if (BRChange && ++NoBRIters > 30) report_fatal_error("Branch Fix Up pass failed to converge!"); DEBUG(dumpBBs()); if (!CPChange && !BRChange) break; MadeChange = true; } DEBUG(dbgs() << '\n'; dumpBBs()); BBInfo.clear(); WaterList.clear(); CPUsers.clear(); CPEntries.clear(); ImmBranches.clear(); return MadeChange; } /// doInitialPlacement - Perform the initial placement of the constant pool /// entries. To start with, we put them all at the end of the function. void MipsConstantIslands::doInitialPlacement(std::vector &CPEMIs) { // Create the basic block to hold the CPE's. MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); MF->push_back(BB); // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); // Mark the basic block as required by the const-pool. // If AlignConstantIslands isn't set, use 4-byte alignment for everything. BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); // The function needs to be as aligned as the basic blocks. The linker may // move functions around based on their alignment. MF->ensureAlignment(BB->getAlignment()); // Order the entries in BB by descending alignment. That ensures correct // alignment of all entries as long as BB is sufficiently aligned. Keep // track of the insertion point for each alignment. We are going to bucket // sort the entries as they are created. SmallVector InsPoint(MaxAlign + 1, BB->end()); // Add all of the constants from the constant pool to the end block, use an // identity mapping of CPI's to CPE's. const std::vector &CPs = MCP->getConstants(); const DataLayout &TD = MF->getDataLayout(); for (unsigned i = 0, e = CPs.size(); i != e; ++i) { unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); assert(Size >= 4 && "Too small constant pool entry"); unsigned Align = CPs[i].getAlignment(); assert(isPowerOf2_32(Align) && "Invalid alignment"); // Verify that all constant pool entries are a multiple of their alignment. // If not, we would have to pad them out so that instructions stay aligned. assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. unsigned LogAlign = Log2_32(Align); MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; MachineInstr *CPEMI = BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) .addImm(i).addConstantPoolIndex(i).addImm(Size); CPEMIs.push_back(CPEMI); // Ensure that future entries with higher alignment get inserted before // CPEMI. This is bucket sort with iterators. for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) if (InsPoint[a] == InsAt) InsPoint[a] = CPEMI; // Add a new CPEntry, but no corresponding CPUser yet. CPEntries.emplace_back(1, CPEntry(CPEMI, i)); ++NumCPEs; DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " << Size << ", align = " << Align <<'\n'); } DEBUG(BB->dump()); } /// BBHasFallthrough - Return true if the specified basic block can fallthrough /// into the block immediately after it. static bool BBHasFallthrough(MachineBasicBlock *MBB) { // Get the next machine basic block in the function. MachineFunction::iterator MBBI = MBB->getIterator(); // Can't fall off end of function. if (std::next(MBBI) == MBB->getParent()->end()) return false; MachineBasicBlock *NextBB = &*std::next(MBBI); for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I == NextBB) return true; return false; } /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, /// look up the corresponding CPEntry. MipsConstantIslands::CPEntry *MipsConstantIslands::findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI) { std::vector &CPEs = CPEntries[CPI]; // Number of entries per constpool index should be small, just do a // linear search. for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { if (CPEs[i].CPEMI == CPEMI) return &CPEs[i]; } return nullptr; } /// getCPELogAlign - Returns the required alignment of the constant pool entry /// represented by CPEMI. Alignment is measured in log2(bytes) units. unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY); // Everything is 4-byte aligned unless AlignConstantIslands is set. if (!AlignConstantIslands) return 2; unsigned CPI = CPEMI->getOperand(1).getIndex(); assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); unsigned Align = MCP->getConstants()[CPI].getAlignment(); assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); return Log2_32(Align); } /// initializeFunctionInfo - Do the initial scan of the function, building up /// information about the sizes of each block, the location of all the water, /// and finding all of the constant pool users. void MipsConstantIslands:: initializeFunctionInfo(const std::vector &CPEMIs) { BBInfo.clear(); BBInfo.resize(MF->getNumBlockIDs()); // First thing, compute the size of all basic blocks, and see if the function // has any inline assembly in it. If so, we have to be conservative about // alignment assumptions, as we don't know for sure the size of any // instructions in the inline assembly. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) computeBlockSize(&*I); // Compute block offsets. adjustBBOffsetsAfter(&MF->front()); // Now go back through the instructions and build up our data structures. for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock &MBB = *MBBI; // If this block doesn't fall through into the next MBB, then this is // 'water' that a constant pool island could be placed. if (!BBHasFallthrough(&MBB)) WaterList.push_back(&MBB); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { if (I->isDebugValue()) continue; int Opc = I->getOpcode(); if (I->isBranch()) { bool isCond = false; unsigned Bits = 0; unsigned Scale = 1; int UOpc = Opc; switch (Opc) { default: continue; // Ignore other branches for now case Mips::Bimm16: Bits = 11; Scale = 2; isCond = false; break; case Mips::BimmX16: Bits = 16; Scale = 2; isCond = false; break; case Mips::BeqzRxImm16: UOpc=Mips::Bimm16; Bits = 8; Scale = 2; isCond = true; break; case Mips::BeqzRxImmX16: UOpc=Mips::Bimm16; Bits = 16; Scale = 2; isCond = true; break; case Mips::BnezRxImm16: UOpc=Mips::Bimm16; Bits = 8; Scale = 2; isCond = true; break; case Mips::BnezRxImmX16: UOpc=Mips::Bimm16; Bits = 16; Scale = 2; isCond = true; break; case Mips::Bteqz16: UOpc=Mips::Bimm16; Bits = 8; Scale = 2; isCond = true; break; case Mips::BteqzX16: UOpc=Mips::Bimm16; Bits = 16; Scale = 2; isCond = true; break; case Mips::Btnez16: UOpc=Mips::Bimm16; Bits = 8; Scale = 2; isCond = true; break; case Mips::BtnezX16: UOpc=Mips::Bimm16; Bits = 16; Scale = 2; isCond = true; break; } // Record this immediate branch. unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); } if (Opc == Mips::CONSTPOOL_ENTRY) continue; // Scan the instructions for constant pool operands. for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (I->getOperand(op).isCPI()) { // We found one. The addressing mode tells us the max displacement // from the PC that this instruction permits. // Basic size info comes from the TSFlags field. unsigned Bits = 0; unsigned Scale = 1; bool NegOk = false; unsigned LongFormBits = 0; unsigned LongFormScale = 0; unsigned LongFormOpcode = 0; switch (Opc) { default: llvm_unreachable("Unknown addressing mode for CP reference!"); case Mips::LwRxPcTcp16: Bits = 8; Scale = 4; LongFormOpcode = Mips::LwRxPcTcpX16; LongFormBits = 14; LongFormScale = 1; break; case Mips::LwRxPcTcpX16: Bits = 14; Scale = 1; NegOk = true; break; } // Remember that this is a user of a CP entry. unsigned CPI = I->getOperand(op).getIndex(); MachineInstr *CPEMI = CPEMIs[CPI]; unsigned MaxOffs = ((1 << Bits)-1) * Scale; unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, LongFormMaxOffs, LongFormOpcode)); // Increment corresponding CPEntry reference count. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Cannot find a corresponding CPEntry!"); CPE->RefCount++; // Instructions can only use one CP entry, don't bother scanning the // rest of the operands. break; } } } } /// computeBlockSize - Compute the size and some alignment information for MBB. /// This function updates BBInfo directly. void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; BBI.Size = 0; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) BBI.Size += TII->GetInstSizeInBytes(I); } /// getOffsetOf - Return the current offset of the specified machine instruction /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = BBInfo[MBB->getNumber()].Offset; // Sum instructions before MI in MBB. for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); Offset += TII->GetInstSizeInBytes(I); } return Offset; } /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB /// ID. static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { return LHS->getNumber() < RHS->getNumber(); } /// updateForInsertedWaterBlock - When a block is newly inserted into the /// machine function, it upsets all of the block numbers. Renumber the blocks /// and update the arrays that parallel this numbering. void MipsConstantIslands::updateForInsertedWaterBlock (MachineBasicBlock *NewBB) { // Renumber the MBB's to keep them consecutive. NewBB->getParent()->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add NewMBB as having // available water after it. water_iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, CompareMBBNumbers); WaterList.insert(IP, NewBB); } unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { return getOffsetOf(U.MI); } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update data structures and renumber blocks to /// account for this change and returns the newly created block. MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr (MachineInstr *MI) { MachineBasicBlock *OrigBB = MI->getParent(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); MachineFunction::iterator MBBI = ++OrigBB->getIterator(); MF->insert(MBBI, NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond to anything in the source. BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB); ++NumSplit; // Update the CFG. All succs of OrigBB are now succs of NewBB. NewBB->transferSuccessors(OrigBB); // OrigBB branches to NewBB. OrigBB->addSuccessor(NewBB); // Update internal data structures to account for the newly inserted MBB. // This is almost the same as updateForInsertedWaterBlock, except that // the Water goes after OrigBB, not NewBB. MF->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add OrigMBB as having // available water after it (but not if it's already there, which happens // when splitting before a conditional branch that is followed by an // unconditional branch - in that case we want to insert NewBB). water_iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, CompareMBBNumbers); MachineBasicBlock* WaterBB = *IP; if (WaterBB == OrigBB) WaterList.insert(std::next(IP), NewBB); else WaterList.insert(IP, OrigBB); NewWaterList.insert(OrigBB); // Figure out how large the OrigBB is. As the first half of the original // block, it cannot contain a tablejump. The size includes // the new jump we added. (It should be possible to do this without // recounting everything, but it's very confusing, and this is rarely // executed.) computeBlockSize(OrigBB); // Figure out how large the NewMBB is. As the second half of the original // block, it may contain a tablejump. computeBlockSize(NewBB); // All BBOffsets following these blocks must be modified. adjustBBOffsetsAfter(OrigBB); return NewBB; } /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool /// reference) is within MaxDisp of TrialOffset (a proposed location of a /// constant pool entry). bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { if (UserOffset <= TrialOffset) { // User before the Trial. if (TrialOffset - UserOffset <= MaxDisp) return true; } else if (NegativeOK) { if (UserOffset - TrialOffset <= MaxDisp) return true; } return false; } /// isWaterInRange - Returns true if a CPE placed after the specified /// Water (a basic block) will be in range for the specific MI. /// /// Compute how much the function will grow by inserting a CPE after Water. bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, MachineBasicBlock* Water, CPUser &U, unsigned &Growth) { unsigned CPELogAlign = getCPELogAlign(U.CPEMI); unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); unsigned NextBlockOffset, NextBlockAlignment; MachineFunction::const_iterator NextBlock = ++Water->getIterator(); if (NextBlock == MF->end()) { NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); NextBlockAlignment = 0; } else { NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; NextBlockAlignment = NextBlock->getAlignment(); } unsigned Size = U.CPEMI->getOperand(2).getImm(); unsigned CPEEnd = CPEOffset + Size; // The CPE may be able to hide in the alignment padding before the next // block. It may also cause more padding to be required if it is more aligned // that the next block. if (CPEEnd > NextBlockOffset) { Growth = CPEEnd - NextBlockOffset; // Compute the padding that would go at the end of the CPE to align the next // block. Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); // If the CPE is to be inserted before the instruction, that will raise // the offset of the instruction. Also account for unknown alignment padding // in blocks between CPE and the user. if (CPEOffset < UserOffset) UserOffset += Growth; } else // CPE fits in existing padding. Growth = 0; return isOffsetInRange(UserOffset, CPEOffset, U); } /// isCPEntryInRange - Returns true if the distance between specific MI and /// specific ConstPool entry instruction can fit in MI's displacement field. bool MipsConstantIslands::isCPEntryInRange (MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned MaxDisp, bool NegOk, bool DoDump) { unsigned CPEOffset = getOffsetOf(CPEMI); if (DoDump) { DEBUG({ unsigned Block = MI->getParent()->getNumber(); const BasicBlockInfo &BBI = BBInfo[Block]; dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() << " max delta=" << MaxDisp << format(" insn address=%#x", UserOffset) << " in BB#" << Block << ": " << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI << format("CPE address=%#x offset=%+d: ", CPEOffset, int(CPEOffset-UserOffset)); }); } return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); } #ifndef NDEBUG /// BBIsJumpedOver - Return true of the specified basic block's only predecessor /// unconditionally branches to its only successor. static bool BBIsJumpedOver(MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; MachineBasicBlock *Succ = *MBB->succ_begin(); MachineBasicBlock *Pred = *MBB->pred_begin(); MachineInstr *PredMI = &Pred->back(); if (PredMI->getOpcode() == Mips::Bimm16) return PredMI->getOperand(0).getMBB() == Succ; return false; } #endif void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { unsigned BBNum = BB->getNumber(); for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { // Get the offset and known bits at the end of the layout predecessor. // Include the alignment of the current block. unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; BBInfo[i].Offset = Offset; } } /// decrementCPEReferenceCount - find the constant pool entry with index CPI /// and instruction CPEMI, and decrement its refcount. If the refcount /// becomes 0 remove the entry and instruction. Returns true if we removed /// the entry, false if we didn't. bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI) { // Find the old entry. Eliminate it if it is no longer used. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Unexpected!"); if (--CPE->RefCount == 0) { removeDeadCPEMI(CPEMI); CPE->CPEMI = nullptr; --NumCPEs; return true; } return false; } /// LookForCPEntryInRange - see if the currently referenced CPE is in range; /// if not, see if an in-range clone of the CPE is in range, and if so, /// change the data structures so the user references the clone. Returns: /// 0 = no existing entry found /// 1 = entry found, and there were no code insertions or deletions /// 2 = entry found, and there were code insertions or deletions int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, true)) { DEBUG(dbgs() << "In range\n"); return 1; } // No. Look for previously created clones of the CPE that are in range. unsigned CPI = CPEMI->getOperand(1).getIndex(); std::vector &CPEs = CPEntries[CPI]; for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { // We already tried this one if (CPEs[i].CPEMI == CPEMI) continue; // Removing CPEs can leave empty entries, skip if (CPEs[i].CPEMI == nullptr) continue; if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), U.NegOk)) { DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"); // Point the CPUser node to the replacement U.CPEMI = CPEs[i].CPEMI; // Change the CPI in the instruction operand to refer to the clone. for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) if (UserMI->getOperand(j).isCPI()) { UserMI->getOperand(j).setIndex(CPEs[i].CPI); break; } // Adjust the refcount of the clone... CPEs[i].RefCount++; // ...and the original. If we didn't remove the old entry, none of the // addresses changed, so we don't need another pass. return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; } } return 0; } /// LookForCPEntryInRange - see if the currently referenced CPE is in range; /// This version checks if the longer form of the instruction can be used to /// to satisfy things. /// if not, see if an in-range clone of the CPE is in range, and if so, /// change the data structures so the user references the clone. Returns: /// 0 = no existing entry found /// 1 = entry found, and there were no code insertions or deletions /// 2 = entry found, and there were code insertions or deletions int MipsConstantIslands::findLongFormInRangeCPEntry (CPUser& U, unsigned UserOffset) { MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getLongFormMaxDisp(), U.NegOk, true)) { DEBUG(dbgs() << "In range\n"); UserMI->setDesc(TII->get(U.getLongFormOpcode())); U.setMaxDisp(U.getLongFormMaxDisp()); return 2; // instruction is longer length now } // No. Look for previously created clones of the CPE that are in range. unsigned CPI = CPEMI->getOperand(1).getIndex(); std::vector &CPEs = CPEntries[CPI]; for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { // We already tried this one if (CPEs[i].CPEMI == CPEMI) continue; // Removing CPEs can leave empty entries, skip if (CPEs[i].CPEMI == nullptr) continue; if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getLongFormMaxDisp(), U.NegOk)) { DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"); // Point the CPUser node to the replacement U.CPEMI = CPEs[i].CPEMI; // Change the CPI in the instruction operand to refer to the clone. for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) if (UserMI->getOperand(j).isCPI()) { UserMI->getOperand(j).setIndex(CPEs[i].CPI); break; } // Adjust the refcount of the clone... CPEs[i].RefCount++; // ...and the original. If we didn't remove the old entry, none of the // addresses changed, so we don't need another pass. return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; } } return 0; } /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in /// the specific unconditional branch instruction. static inline unsigned getUnconditionalBrDisp(int Opc) { switch (Opc) { case Mips::Bimm16: return ((1<<10)-1)*2; case Mips::BimmX16: return ((1<<16)-1)*2; default: break; } return ((1<<16)-1)*2; } /// findAvailableWater - Look for an existing entry in the WaterList in which /// we can place the CPE referenced from U so it's within range of U's MI. /// Returns true if found, false if not. If it returns true, WaterIter /// is set to the WaterList entry. /// To ensure that this pass /// terminates, the CPE location for a particular CPUser is only allowed to /// move to a lower address, so search backward from the end of the list and /// prefer the first water that is in range. bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, water_iterator &WaterIter) { if (WaterList.empty()) return false; unsigned BestGrowth = ~0u; for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; --IP) { MachineBasicBlock* WaterBB = *IP; // Check if water is in range and is either at a lower address than the // current "high water mark" or a new water block that was created since // the previous iteration by inserting an unconditional branch. In the // latter case, we want to allow resetting the high water mark back to // this new water since we haven't seen it before. Inserting branches // should be relatively uncommon and when it does happen, we want to be // sure to take advantage of it for all the CPEs near that block, so that // we don't insert more branches than necessary. unsigned Growth; if (isWaterInRange(UserOffset, WaterBB, U, Growth) && (WaterBB->getNumber() < U.HighWaterMark->getNumber() || NewWaterList.count(WaterBB)) && Growth < BestGrowth) { // This is the least amount of required padding seen so far. BestGrowth = Growth; WaterIter = IP; DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() << " Growth=" << Growth << '\n'); // Keep looking unless it is perfect. if (BestGrowth == 0) return true; } if (IP == B) break; } return BestGrowth != ~0u; } /// createNewWater - No existing WaterList entry will work for /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the /// block is used if in range, and the conditional branch munged so control /// flow is correct. Otherwise the block is split to create a hole with an /// unconditional branch around it. In either case NewMBB is set to a /// block following which the new island can be inserted (the WaterList /// is not adjusted). void MipsConstantIslands::createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPELogAlign = getCPELogAlign(CPEMI); MachineBasicBlock *UserMBB = UserMI->getParent(); const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; // If the block does not end in an unconditional branch already, and if the // end of the block is within range, make new water there. if (BBHasFallthrough(UserMBB)) { // Size of branch to insert. unsigned Delta = 2; // Compute the offset where the CPE will begin. unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; if (isOffsetInRange(UserOffset, CPEOffset, U)) { DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() << format(", expected CPE offset %#x\n", CPEOffset)); NewMBB = &*++UserMBB->getIterator(); // Add an unconditional branch from UserMBB to fallthrough block. Record // it for branch lengthening; this new branch will not get out of range, // but if the preceding conditional branch is out of range, the targets // will be exchanged, and the altered branch may be out of range, so the // machinery has to know about it. int UncondBr = Mips::Bimm16; BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); ImmBranches.push_back(ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); BBInfo[UserMBB->getNumber()].Size += Delta; adjustBBOffsetsAfter(UserMBB); return; } } // What a big block. Find a place within the block to split it. // Try to split the block so it's fully aligned. Compute the latest split // point where we can add a 4-byte branch instruction, and then align to // LogAlign which is the largest possible alignment in the function. unsigned LogAlign = MF->getAlignment(); assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); DEBUG(dbgs() << format("Split in middle of big block before %#x", BaseInsertOffset)); // The 4 in the following is for the unconditional branch we'll be inserting // Alignment of the island is handled // inside isOffsetInRange. BaseInsertOffset -= 4; DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) << " la=" << LogAlign << '\n'); // This could point off the end of the block if we've already got constant // pool entries following this block; only the last one is in the water list. // Back past any possible branches (allow for a conditional and a maximally // long unconditional). if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { BaseInsertOffset = UserBBI.postOffset() - 8; DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); } unsigned EndInsertOffset = BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); MachineBasicBlock::iterator MI = UserMI; ++MI; unsigned CPUIndex = CPUserIndex+1; unsigned NumCPUsers = CPUsers.size(); //MachineInstr *LastIT = 0; for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); Offset < BaseInsertOffset; Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { assert(MI != UserMBB->end() && "Fell off end of block"); if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { CPUser &U = CPUsers[CPUIndex]; if (!isOffsetInRange(Offset, EndInsertOffset, U)) { // Shift intertion point by one unit of alignment so it is within reach. BaseInsertOffset -= 1u << LogAlign; EndInsertOffset -= 1u << LogAlign; } // This is overly conservative, as we don't account for CPEMIs being // reused within the block, but it doesn't matter much. Also assume CPEs // are added in order with alignment padding. We may eventually be able // to pack the aligned CPEs better. EndInsertOffset += U.CPEMI->getOperand(2).getImm(); CPUIndex++; } } --MI; NewMBB = splitBlockBeforeInstr(MI); } /// handleConstantPoolUser - Analyze the specified user, checking to see if it /// is out-of-range. If so, pick up the constant pool value and move it some /// place in-range. Return true if we changed any addresses (thus must run /// another pass of branch lengthening), false otherwise. bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPI = CPEMI->getOperand(1).getIndex(); unsigned Size = CPEMI->getOperand(2).getImm(); // Compute this only once, it's expensive. unsigned UserOffset = getUserOffset(U); // See if the current entry is within range, or there is a clone of it // in range. int result = findInRangeCPEntry(U, UserOffset); if (result==1) return false; else if (result==2) return true; // Look for water where we can place this CPE. MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); MachineBasicBlock *NewMBB; water_iterator IP; if (findAvailableWater(U, UserOffset, IP)) { DEBUG(dbgs() << "Found water in range\n"); MachineBasicBlock *WaterBB = *IP; // If the original WaterList entry was "new water" on this iteration, // propagate that to the new island. This is just keeping NewWaterList // updated to match the WaterList, which will be updated below. if (NewWaterList.erase(WaterBB)) NewWaterList.insert(NewIsland); // The new CPE goes before the following block (NewMBB). NewMBB = &*++WaterBB->getIterator(); } else { // No water found. // we first see if a longer form of the instrucion could have reached // the constant. in that case we won't bother to split if (!NoLoadRelaxation) { result = findLongFormInRangeCPEntry(U, UserOffset); if (result != 0) return true; } DEBUG(dbgs() << "No water found\n"); createNewWater(CPUserIndex, UserOffset, NewMBB); // splitBlockBeforeInstr adds to WaterList, which is important when it is // called while handling branches so that the water will be seen on the // next iteration for constant pools, but in this context, we don't want // it. Check for this so it will be removed from the WaterList. // Also remove any entry from NewWaterList. MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); if (IP != WaterList.end()) NewWaterList.erase(WaterBB); // We are adding new water. Update NewWaterList. NewWaterList.insert(NewIsland); } // Remove the original WaterList entry; we want subsequent insertions in // this vicinity to go after the one we're about to insert. This // considerably reduces the number of times we have to move the same CPE // more than once and is also important to ensure the algorithm terminates. if (IP != WaterList.end()) WaterList.erase(IP); // Okay, we know we can put an island before NewMBB now, do it! MF->insert(NewMBB->getIterator(), NewIsland); // Update internal data structures to account for the newly inserted MBB. updateForInsertedWaterBlock(NewIsland); // Decrement the old entry, and remove it if refcount becomes 0. decrementCPEReferenceCount(CPI, CPEMI); // No existing clone of this CPE is within range. // We will be generating a new clone. Get a UID for it. unsigned ID = createPICLabelUId(); // Now that we have an island to add the CPE to, clone the original CPE and // add it to the island. U.HighWaterMark = NewIsland; U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); ++NumCPEs; // Mark the basic block as aligned as required by the const-pool entry. NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); // Increase the size of the island block to account for the new entry. BBInfo[NewIsland->getNumber()].Size += Size; adjustBBOffsetsAfter(&*--NewIsland->getIterator()); // Finally, change the CPI in the instruction operand to be ID. for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) if (UserMI->getOperand(i).isCPI()) { UserMI->getOperand(i).setIndex(ID); break; } DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); return true; } /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update /// sizes and offsets of impacted basic blocks. void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { MachineBasicBlock *CPEBB = CPEMI->getParent(); unsigned Size = CPEMI->getOperand(2).getImm(); CPEMI->eraseFromParent(); BBInfo[CPEBB->getNumber()].Size -= Size; // All succeeding offsets have the current size value added in, fix this. if (CPEBB->empty()) { BBInfo[CPEBB->getNumber()].Size = 0; // This block no longer needs to be aligned. CPEBB->setAlignment(0); } else // Entries are sorted by descending alignment, so realign from the front. CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); adjustBBOffsetsAfter(CPEBB); // An island has only one predecessor BB and one successor BB. Check if // this BB's predecessor jumps directly to this BB's successor. This // shouldn't happen currently. assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); // FIXME: remove the empty blocks after all the work is done? } /// removeUnusedCPEntries - Remove constant pool entries whose refcounts /// are zero. bool MipsConstantIslands::removeUnusedCPEntries() { unsigned MadeChange = false; for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { std::vector &CPEs = CPEntries[i]; for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { removeDeadCPEMI(CPEs[j].CPEMI); CPEs[j].CPEMI = nullptr; MadeChange = true; } } } return MadeChange; } /// isBBInRange - Returns true if the distance between specific MI and /// specific BB can fit in MI's displacement field. bool MipsConstantIslands::isBBInRange (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { unsigned PCAdj = 4; unsigned BrOffset = getOffsetOf(MI) + PCAdj; unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() << " from BB#" << MI->getParent()->getNumber() << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) << " to " << DestOffset << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); if (BrOffset <= DestOffset) { // Branch before the Dest. if (DestOffset-BrOffset <= MaxDisp) return true; } else { if (BrOffset-DestOffset <= MaxDisp) return true; } return false; } /// fixupImmediateBr - Fix up an immediate branch whose destination is too far /// away to fit in its displacement field. bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; unsigned TargetOperand = branchTargetOperand(MI); MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); // Check to see if the DestBB is already in-range. if (isBBInRange(MI, DestBB, Br.MaxDisp)) return false; if (!Br.isCond) return fixupUnconditionalBr(Br); return fixupConditionalBr(Br); } /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is /// too far away to fit in its displacement field. If the LR register has been /// spilled in the epilogue, then we can use BL to implement a far jump. /// Otherwise, add an intermediate branch instruction to a branch. bool MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *MBB = MI->getParent(); MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); // Use BL to implement far jump. unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) { Br.MaxDisp = BimmX16MaxDisp; MI->setDesc(TII->get(Mips::BimmX16)); } else { // need to give the math a more careful look here // this is really a segment address and not // a PC relative address. FIXME. But I think that // just reducing the bits by 1 as I've done is correct. // The basic block we are branching too much be longword aligned. // we know that RA is saved because we always save it right now. // this requirement will be relaxed later but we also have an alternate // way to implement this that I will implement that does not need jal. // We should have a way to back out this alignment restriction if we "can" later. // but it is not harmful. // DestBB->setAlignment(2); Br.MaxDisp = ((1<<24)-1) * 2; MI->setDesc(TII->get(Mips::JalB16)); } BBInfo[MBB->getNumber()].Size += 2; adjustBBOffsetsAfter(MBB); HasFarJump = true; ++NumUBrFixed; DEBUG(dbgs() << " Changed B to long jump " << *MI); return true; } /// fixupConditionalBr - Fix up a conditional branch whose destination is too /// far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; unsigned TargetOperand = branchTargetOperand(MI); MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); unsigned Opcode = MI->getOpcode(); unsigned LongFormOpcode = longformBranchOpcode(Opcode); unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode); // Check to see if the DestBB is already in-range. if (isBBInRange(MI, DestBB, LongFormMaxOff)) { Br.MaxDisp = LongFormMaxOff; MI->setDesc(TII->get(LongFormOpcode)); return true; } // Add an unconditional branch to the destination and invert the branch // condition to jump over it: // bteqz L1 // => // bnez L2 // b L1 // L2: // If the branch is at the end of its MBB and that has a fall-through block, // direct the updated conditional branch to the fall-through block. Otherwise, // split the MBB before the next instruction. MachineBasicBlock *MBB = MI->getParent(); MachineInstr *BMI = &MBB->back(); bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode); ++NumCBrFixed; if (BMI != MI) { if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && isUnconditionalBranch(BMI->getOpcode())) { // Last MI in the BB is an unconditional branch. Can we simply invert the // condition and swap destinations: // beqz L1 // b L2 // => // bnez L2 // b L1 unsigned BMITargetOperand = branchTargetOperand(BMI); MachineBasicBlock *NewDest = BMI->getOperand(BMITargetOperand).getMBB(); if (isBBInRange(MI, NewDest, Br.MaxDisp)) { DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " << *BMI); MI->setDesc(TII->get(OppositeBranchOpcode)); BMI->getOperand(BMITargetOperand).setMBB(DestBB); MI->getOperand(TargetOperand).setMBB(NewDest); return true; } } } if (NeedSplit) { splitBlockBeforeInstr(MI); // No need for the branch to the next block. We're adding an unconditional // branch to the destination. int delta = TII->GetInstSizeInBytes(&MBB->back()); BBInfo[MBB->getNumber()].Size -= delta; MBB->back().eraseFromParent(); // BBInfo[SplitBB].Offset is wrong temporarily, fixed below } MachineBasicBlock *NextBB = &*++MBB->getIterator(); DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() << " also invert condition and change dest. to BB#" << NextBB->getNumber() << "\n"); // Insert a new conditional branch and a new unconditional branch. // Also update the ImmBranch as well as adding a new entry for the new branch. if (MI->getNumExplicitOperands() == 2) { BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) .addReg(MI->getOperand(0).getReg()) .addMBB(NextBB); } else { BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) .addMBB(NextBB); } Br.MI = &MBB->back(); BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); // Remove the old conditional branch. It may or may not still be in MBB. BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); MI->eraseFromParent(); adjustBBOffsetsAfter(MBB); return true; } void MipsConstantIslands::prescanForConstants() { unsigned J = 0; (void)J; for (MachineFunction::iterator B = MF->begin(), E = MF->end(); B != E; ++B) { for (MachineBasicBlock::instr_iterator I = B->instr_begin(), EB = B->instr_end(); I != EB; ++I) { switch(I->getDesc().getOpcode()) { case Mips::LwConstant32: { PrescannedForConstants = true; DEBUG(dbgs() << "constant island constant " << *I << "\n"); J = I->getNumOperands(); DEBUG(dbgs() << "num operands " << J << "\n"); MachineOperand& Literal = I->getOperand(1); if (Literal.isImm()) { int64_t V = Literal.getImm(); DEBUG(dbgs() << "literal " << V << "\n"); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, V); unsigned index = MCP->getConstantPoolIndex(C, 4); I->getOperand(2).ChangeToImmediate(index); DEBUG(dbgs() << "constant island constant " << *I << "\n"); I->setDesc(TII->get(Mips::LwRxPcTcp16)); I->RemoveOperand(1); I->RemoveOperand(1); I->addOperand(MachineOperand::CreateCPI(index, 0)); I->addOperand(MachineOperand::CreateImm(4)); } break; } default: break; } } } }